First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign

Forfatter
Rapp, Markus
Strelnikova, Irina
Strelnikov, Boris
Latteck, Ralph
Baumgarten, Gerd
Li, Qiang
Megner, Linda
Gumbel, Jörg
Friedrich, Martin
Hoppe, Ulf-Peter
Robertson, Scott
Publisert
2009
Permalenke
http://hdl.handle.net/20.500.12242/755
https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/755
DOI
10.5194/angeo-27-755-2009
Samling
Articles
Description
Rapp, Markus; Strelnikova, Irina; Strelnikov, Boris; Latteck, Ralph; Baumgarten, Gerd; Li, Qiang; Megner, Linda; Gumbel, Jörg; Friedrich, Martin; Hoppe, Ulf-Peter; Robertson, Scott. First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign. Annales Geophysicae 2009 ;Volum 27.(2) s. 755-766
346951.pdf
Size: 3M
Sammendrag
We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density - which we here estimate to be on the order of similar to 100 cm(-3) - and the presence of small scale structures (commonly assumed to be caused by turbulence) need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82-88 km) seen on the upleg is replaced by a narrow layer from 84.5-86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass) within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range similar to 2-8 x 10(-14) cm(3)/cm(3) (corresponding to mass densities of similar to 20-80 ng/m(3), and water vapor mixing ratios of 3-12 ppm) and are the first such estimates with the unique spatial resolution of an in situ measurement.
View Meta Data