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Abstract

In this paper, we discuss the need for explainable artificial intelligence (AI) in defense systems. Further, we elaborate on
the need for Big Data solutions to support AI on tactical infrastructure, and discuss an architectural approach to address
this need. Finally, we present our proof of concept implementation of this architecture, instantiated to support the human
concepts of fast and slow thinking. The proof of concept was built using free and open source software to allow the
solution to be shared, and our approach to be repeatable for others.

1 INTRODUCTION

The drive towards increased digitalization1 is perva-
sive in both the civilian and defense sectors. For de-
fense, digitalization may increase both Information
and Communication Technologies (ICT) operations
and combat operations efficiency2 and effective-
ness3. Situational awareness, the perception of the
elements in the environment within a volume of time
and space, the comprehension of their meaning and a
projection of their status in the near future [1], is of
paramount importance both for planning and when
executing missions. Today, with dynamic situations
and need for rapid decisions, the actor with informa-
tion superiority4 gains the operational advantage [7].
Investigating new approaches to digitalization and
novel ICT solutions may facilitate continued infor-
mation superiority.

Artificial Intelligence, or AI for short, is the science
of making computers do things that require intelligence
when done by humans [8]. AI is being used exten-
sively for civilian applications, and in recent years
has also seen an increase in military applications
as well. Indeed, with the rapidly increasing amount
of data, automating analysis tasks becomes more

1. Note that digitization involves converting from analog to
digital, whereas digitalization is when data from throughout
the organization and its assets is processed through advanced
digital technologies, which leads to fundamental changes in
business processes that can result in new business models and
social change [54].
2. Efficient (adj.) — Performing or functioning in the best

possible manner with the least waste of time and effort.
3. Effective (adj.) — Adequate to accomplish a purpose; pro-

ducing the intended or expected result.
4. Information Superiority is the operational advantage de-

rived from the ability to collect, process, and disseminate an
uninterrupted flow of information while exploiting or denying
an adversary’s ability to do the same [7].

andmore necessary to reduce information overload
in a defense context [2]. It seems evident that AI
may play a major role in the future of situational
awareness and maintaining information superiority.
One strength of AI is that computers may work and
analyze high-volume and high-velocity data much
more efficiently than a human operator can.

Kahneman [4] launched the theory that humans
have two basic systems of thinking to guide deci-
sions:

1) Thinking Fast
2) Thinking Slow

Here, System 1 implies an approach that, while be-
ing fast, is instinctive, unconscious, imprecise, and
sensitive to bias.5 Conversely, System 2 implies a
slow approach, that is logical, conscious and ra-
tional. Indeed, the two human systems are anal-
ogous to machine learning and logical reasoning,
respectively, and likely the combination of these two
approaches will prove necessary to achieve desired
properties of an AI-based system [6]. Due to this, we
aim for an architecture in our work that can support
a combination of fast and slow thinking processes.

We can envision a large number of sensors, both
a combination of military and civilian (e.g., Inter-
net of Battlefield Things (IoBT) [9]) in the modern
battlefield. The plethora of sensors leads to Big
Data, which would overwhelm any human operator.
Gartner [3] defines Big Data as high-volume, high-
velocity and/or high-variety information assets that
demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision mak-
ing, and process automation. Indeed, there is a need

5. Bias is the inclination or prejudice of a decision made by an
AI system which is for or against one person or group, especially
in a way considered to be unfair [61].
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for a next generation of Communications Informa-
tion Systems (CIS) concepts and solutions that can
leverage AI-based applications for Command and
Control (C2).

Different sensors can support situational aware-
ness and C2 processes in different ways. By in-
vestigating a proof of concept solution supporting
human thought processes, we contend that this will
be a necessary component in future tactical plat-
forms.6 This motivates our design and implemen-
tation, as described throughout this paper. Initially,
we pursue setting up a single node as a first step,
which can later be part of a network of nodes. The
premises we set for our work are that:

• AI is needed in the tactical domain to achieve
information superiority through digitaliza-
tion and automated analysis.

• Digitalization involves speeding up manual
processes, and so the AI system should sup-
port the two basic systems of thinking (i.e.,
fast and slow).

Our hypothesis is that we can realize a technical
architecture using open source products that support
both basic systems of thinking, and that this may be
used in a stand-alone tactical node.

Working towards realizing this hypothesis, our
contribution is a functioning technical solution
based on open source software, that can support
both basic systems of thinking. Further, we establish
the technology requirements for a minimum base-
line. Here we identify the minimum needed with
respect to computational resources that must be
set aside in a tactical node to install such a system.

The remainder of this paper is organized as
follows: Section 2 presents related work. The mo-
tivation and scope is elaborated on in Section 3.
Our design and architectural approach considera-
tions are discussed in Section 4. Section 5 covers
our proof of concept implementation. We discuss
technology trends in light of our proof of concept in
Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

AI and machine learning are used for an increasing
number of applications. Here, we give a few exam-
ples of defense applications.

6. In this paper, we define tactical platform to be the ICT
platform used in the tactical domain, i.e., hardware, software,
and the security profile allowing said platform to host services
and process classified data.

One example is in tactical policy routers, where
policies allow assigning a specific portion of the
available network capacity do different services.
Recent developments with this approach includes
aspects of AI and machine learning, e.g., [10]
proposes an architectural concept for the use of
decentralized, machine learning based reinforce-
ment agents to improve communications in tacti-
cal networks. Another example is within Internet
of Things (IoT) [25], and its military counterpart,
IoBT [9]. The possibilities of IoBT are best exploited
through highly automated systems, and there is a
need for well-developed analysis modules. Though
analysis may be performed by simple statistical
means for some applications, e.g., a soldier wear-
able, in [11] we observe that more advanced AI-
based approaches to handle the Big Data would be
the preferred approach in large, complex systems.

Explainable AI is a set of processes and meth-
ods that allows human users to comprehend and
trust the results and output created by machine
learning algorithms [12]. Explainable AI is deemed a
necessity in defense systems that leverage this tech-
nology, since it is needed to establish trust in the
system for operators and soldiers, as well as for eth-
ical reasons. This is necessary not only nationally,
but also in coalition forces, where Neuro-Symbolic
AI7 technology has been identified for addressing
explainability and managing trust in data across
the coalition [13]. Additionally, Neuro-Symbolic AI
can support several different applications like de-
tecting different IED (improvised explosive device)
threats [13], and routing convoys to minimize risk
in complex attack scenarios [16].

Crowdsensing8 is much used as a data source
for civilian applications, but may also be leveraged
for military operations. In segregated networks in-
volving multiple actors, collaborative sensing may
prove helpful to fill information gaps on lower lev-
els, i.e., between collaborating nations in a coali-
tion force, or otherwise disconnected units due to
hierarchical structures or technical barriers [26].
In Norway, crowdsensing experiments have been
conducted as part of a Home Guard field training

7. Neuro-symbolic artificial intelligence is a novel area of AI
research which seeks to combine traditional rules-based AI
approaches with modern deep learning techniques [14]. For
defense systems, it is claimed that neuro-symbolic learning is
necessary for complex event processing [15].
8. Crowdsensing is short for Mobile Crowdsensing (MCS).

MCS is a new sensing paradigm that empowers ordinary citi-
zens to contribute data sensed or generated from their mobile
devices, aggregates and fuses the data in the cloud for crowd
intelligence extraction and people-centric service delivery [59].
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exercise, where the soldiers were equipped with
Android phones installed with an app for situational
awareness [50].

Many tools, both commercial and open source,
exist to aid in building AI systems. A full survey of
such systems is beyond the scope of this paper,
but prominent examples include Apache Hadoop,
Apache Spark, and Apache Flink, which are com-
monly used frameworks for Big Data analysis [55].
Further, distributed message systems like Kafka [56]
are often used to enable sensor integration with
AI systems. Kafka provides what is called an im-
mutable "log" of incoming data. However, for Big
Data processing, a database that can be structured
efficiently, read from, written to and also modi-
fied, is needed. Classical relational databases may
be used, but so-called graph databases are often
used instead, due to their superior performance
for Big Data handling [57]. There exist many graph
databases, ArangoDB, Neo4j, Oracle Spatial and
Graph, IBM System G Native Store and OrientDB
are a few of them. For our work, we opted for
Neo4j [58] because it is easy to learn, and supports
the important properties of protecting data integrity
while providing fast reads and writes. Neo4j exists
in both an open and a closed source version, where
we used the open source.

3 MOTIVATION AND SCOPE

Technology increases the complexity and pace of
operations [60]. For military decision-makers this
means that situational awareness as well as a
functioning, effective C2 system, will be crucial to
emerge victorious from the war of the future. This is
already the case today, but in the course of the next
10–20 years, we contend that this will become even
clearer. When an opponent is able to leverage units
across domains, and employs new and disruptive
technologies from both the civilian and military
sectors, it becomes challenging to understand what
is happening and to know how to respond. The
uncertainty that occurs can be exploited and an
adversary can create confusion and lead to paralysis
of action. To counter this effect, it is important
to investigate new communications and computing
paradigms.

In a few years, access to sensor information,
data and intelligence will increase significantly for
the Armed forces. With the phasing in of new plat-
forms, the Armed forces must be able to utilize
these to the fullest extent. Hence, data processing

and analysis of this information will be very impor-
tant. The possibilities that have been introduced
with new information technology can even today
assist with this. The ability to automate multi-source
analysis using Big Data and AI can have positive
effects over the next years for the operational per-
formance of the Armed forces. The technology will
be able to drastically reduce the time needed to
analyze complex situations, and enable the access
to more sensors to be utilized better.

3.1 Fast/slow "thinking" and the applicability of
AI

The appropriateness of computation and AI as
analogous to human thinking, has been discussed
extensively [5], including theorems about practical
limits of computation [45] and extensive arguments
about whether digital computers can be conscious,
e.g. [47].

According to the Penrose–Lucas argument [46],
the human mind must arise from quantum pro-
cesses, and a revolution in physics is required
in order to scientifically explain the human mind.
Whether the argument holds, is contentious.

Such deep considerations have their place, but
are far beyond the scope of this paper. However,
the biological plausibility of the division into fast and
slow thinking is worth some attention.

Biological analogies have lead to several im-
portant developments in AI, such as neurons and
synapses of the brain giving rise to machine learn-
ing based on artificial neural networks. Convolu-
tional neural networks (CNN) [48], inspired specif-
ically by the visual cortex, is an example of such
inspiration that has been hugely successful in image
recognition. The analogy of AI to fast and slow
thinking has been made [5], and we aim to identify
any practical limitations on the analogy.

Machine learning is an important field of AI,
basically covering all systems designed to improve
themselves over time. AI is much broader, covering
any artificial systems that would require intelligence
if the task were performed by humans.

As discussed above, we base our work on Sys-
tem 1 (thinking fast) and System 2 (thinking slow)
being analogous respectively to machine learning
and logical reasoning. However, these are not ab-
solute correlations. The learning phase of machine
learning is usually pretty slow, for example. How-
ever, once a model has been trained, exploiting the
trained model is often fast. Therefore, creating an
online learning system, one that learns continuously
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as the data arrives, may be slower but also more
up-to-date on the latest data and therefore less
sensitive to bias. So, in that case, it may be closer
to the thinking slow concept. It depends on the
problem one is trying to solve.

Some machine learning systems are less sen-
sitive to bias than human agents and their logical
approaches. However, once a newmachine learning
system has been developed, their type of bias is
often different than that of a human analyst. For ex-
ample, a machine learning system may outperform
humans on image recognition, successfully distin-
guishing faces that appear really similar, even to
an experienced human eye. However, then it might
fail on a case that seems simple to humans. Which
type of error is more harmful is not necessarily
obvious. However, human errors may be more likely
to be socially accepted, because they seem more
understandable to humans than machine errors.

This is one reason why explainable AI is impor-
tant. Somebody needs to be responsible for deploy-
ing an intelligent computer system and be able to
defend that decision if a failure occurs. Obviously,
as a decision maker, one wants to optimize and
secure some success criteria. Being able to char-
acterize a level of certainty that the criteria will be
met, is a good start. However, one wants to also be
able to explain why the criteria will be met with a
given level of certainty and in the event of failure,
still be able to explain why trusting the computer
system was still a good decision in the first place.

Logical reasoning systems have an advantage
over many machine learning systems, in that the
latter are so-called black box approaches: the way
they produce results is not directly explainable, or
only explainable at a high level of abstraction. Such
black box approaches may still be explainable at
some level. For example, it may be possible to prove
a certain probability or frequency of failure. It may
be sufficient to explain why the probability holds,
as opposed to explaining exactly how a system is
going to behave, in order to satisfy the need for
explainability.

Explainability may come at a cost, because re-
quiring explainability in a certain form, may rule
out methods with a higher performance. Therefore,
it’s important to be conscious of what level of ex-
plainability one requires and understand any costs
involved. For example, performance statistics may
be sufficient evidence that an algorithm works as it
should.

The thinking fast and slow paradigm keeps the

more explainable methods in the top level9 decision
making, while less explainable methods serve more
immediate purposes. In addition to any technical
advantages of this approach, it may also be most
politically acceptable, because it mimics human be-
havior. Humans, similarly, often base short term
decisions on heuristics and intuition, which, while
successful, cannot necessarily be proven rationally
to be optimal. We contend that if such failure to give
a detailed account of how one makes a decision
is accepted of a human, then it may also more
easily be accepted by a computer system. Even
then, computer systems may be held to a higher
standard and so it is worth erring on the side of a
more explainable system.

3.2 Use case description

An example of a use case in the tactical domain
is illustrated in Figure 1, which shows a joint force
comprising a deployed headquarter (HQ) at a fixed
location, multiple ships, operational experts (not de-
ployed) and several deployed mobile tactical units
(e.g., combat vehicles, drones and dismounted sol-
diers). The figure also shows the links between
the force’s main components, including some char-
acteristics and functional area services. Since the
tactical domain is characterized as a Disconnected,
Intermittent connectivity and Low-bandwidth (DIL)
environment [28], tactical links typically lead to is-
sues when systems need to communicate. Due to
this, CIS in the tactical domain typically must be
specially tailored to cope with the DIL character-
istics. This is, of course, a well known problem,
and has been studied extensively in NATO research
task groups, such as IST-118, which worked towards
creating a tactical SOA10 profile [27]. This group, and
its successor IST-150 [29], typically targeted opti-
mizing the communication going across the tactical
links, to make the most out of the performance
of deployed services. Due to disconnections, units
must occasionally work totally disconnected from
any deployed infrastructure. This means that one
group of units may be able to communicate among

9. By top level, we mean operational level decisions that use
aggregated knowledge.
10. SOA, or service-oriented architecture, defines a way to

make software components reusable and interoperable via ser-
vice interfaces. Services use common interface standards and
an architectural pattern so they can be rapidly incorporated
into new applications. This removes tasks from the application
developer who previously redeveloped or duplicated existing
functionality or had to know how to connect or provide inter-
operability with existing functions [44].
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Fig. 1. Tactical domain use case example (from [27])

themselves, but cut off from other groups of units.
Or, in the extreme case, that a unit has to rely
only on its own resources, being fully cut off from
other units. This lack of communications capability
may remain for some time, in which case it is a
disconnection, or be for a shorter time frame, in
which case we do not consider it a full disconnection
but rather an intermittent connection. Supporting
traditional user-facing services like voice, video, and
blue force tracking (BFT) in conditions like these
is definitely challenging, even more so in current
operations where there is an increasing number of
sensors being deployed, which leads to an increase
in data needing to be processed, and ultimately
shared, among units in the field.

Introducing IoBT, with sensors being deployed
in the field, on soldiers, on manned and unmanned
vehicles, there comes a large increase in the amount
of data that needs to be processed. One approach
to optimizing information processing could be to
attempt to process as much of this data as pos-
sible near where the data originates, and so only
allow certain identified “events” to propagate across
the tactical network. The analogy here would be
the civilian approach of so-called Edge computing11,
which we contend will be the main enabler for
coping with Big Data in the tactical domain. One can

11. Gartner defines Edge computing as a part of a distributed
computing topology in which information processing is located
close to the edge—where things and people produce or consume
that information [30].

anticipate that such an approach would be benefi-
cial in tactical networks, since the inherent volume
of data will likely be too much for the network
to handle. As for cloud computing12, one cannot
expect to have continuous access to the cloud, from
the tactical battlefield. Hence, cloud computing re-
sources must be provided near the tactical edge
(e.g., in the deployed HQ, like we did in our previous
work on coalition cloud [32]) or processing must be
done on the mobile units themselves (e.g., vehicles,
soldiers) in the battlefield. In this paper, we consider
the latter case, that is, the Edge computing aspect
of processing data near/on the unit that needs the
information.

3.3 Edge computing tactical node

Pursuing the idea of Edge computing, we aim to
support Big Data analysis in a stand-alone tactical
node. Our current national tactical platform comes
with several different profiles. Considering Figure 1,
you would find the most capable profile realized
in the deployed HQ. This profile encompasses high
performance servers and storage solutions that you
would find deployed in the HQ. Our biggest ships
can also carry such servers. There is also a less

12. NIST defines cloud computing as a model for enabling
ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers,
storage, applications and services) that can be rapidly provisioned
and released with minimal management effort or service provider
interaction [31].
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capable profile, for servers that can be installed in
lighter units, like the manned land vehicles shown
in the figure. Finally, the least capable profile targets
rugged laptops for field use, which can be brought
onboard vehicles or carried by a soldier. For the fu-
ture, we foresee further automation possibilities, by
introducing further CIS diversity. For example, Edge
computing could be supported on all tactical units
by leveraging small form factor computers, that
could be integrated into both soldier equipment
and unmanned vehicles. The aim of the prototype
we’re developing, is to support Big Data analysis on
the least capable tactical platform profile.

Glancing at Figure 1 again, we can anticipate the
need for a Local Operational Picture (LOP) for each
unit. Further, for each group of units, there needs to
be a common understanding, they need the Group
Operational Picture (GOP). Finally, the HQ builds
the Common Operational Picture (COP), across the
units and groups of units that are part of the opera-
tion. Here, we understand that the amount of data
that needs to go into a COP is larger than that of a
GOP or LOP. Due to the DIL characteristics of tactical
networks, sensors capacities may come and go in
the network. This means that being able to pro-
cess data near the source makes a lot of sense to
optimize communications capabilities. Further, data
can be turned into information at the edge, and so
reducing complexity by only transmitting valuable
information to other units and higher levels. We aim
to support digitalization of these processes by using
AI.

Processing Big Data requires both CPU and RAM,
and the higher the data volume is, the larger the
requirements for these resources become. For the
sake of this paper, we do not consider the most
capable servers that would be able to use traditional
approaches to Big Data handling, like MapReduce.
MapReduce has been shown to work in "tactical
clouds" [35], and so this approach would be suitable
in, e.g., a HQ or onboard a ship where you find
the most capable tactical platforms. However, for
the least capable tactical profile, we need a less
resource demanding approach. Hence, we pursue a
Lambda architecture in this paper, since it has been
shown to be a cost-effective approach to supporting
both batch and speed layer processing [36]. The
Lambda architecture is presented in the following
section.

4 ARCHITECTURAL APPROACH

4.1 Lambda architecture

As described in [24], the Lambda architecture spec-
ifies two parallel data processing pipelines, called
the batch and speed layers, which produce views
that should answer questions pertaining to the
business logic, made accessible through the serving
layer. The batch views are computed using all ex-
isting data (consistent and complete, high latency),
while the speed view is computed using current
data only (low latency, lacking in consistency and
completeness). Drawing the parallel to the two hu-
man basic systems of thinking, this means that the
speed layer implements fast thinking. Conversely,
the batch layer represents slow thinking. A high-level
illustration of the Lambda architecture is shown in
Figure 2.

4.2 Software component stack

Following the recommendations from [23], we want
to build knowledge graphs which represents the
LOP for a single unit. Thus, we chose to utilize a
graph database which naturally translates entities
from the real world to a graph structure. In this
particular context, the root node is the unit itself
identified by its callsign, which has a relationship to
two logical sets of views, namely batch and speed,
further separated by the type of data (e.g., weather
information).

The message queue layer should be as easy as
possible for any given sensor to communicate with,
as they should be loosely connected to the data
processing layer of the Big Data infrastructure. This
is due to the inherently complex and challenging
environment battlefield sensors reside in, and they
could potentially be leaving and joining the network
at random.

At the processing layer, which in this case encap-
sulates both the speed and batch layers, resource
consumption is a restriction in itself, as outlined in
Section 3.2. Simultaneously, processing speed is of
utmost importance in order to achieve timely de-
livery of potentially mission-critical data. The speed
layer must react within seconds, whereas the batch
layer may digest data for hours.

Finally, the serving layer needs only be demon-
strative for this project, as integration with existing
systems such as analysis tools and Battle Manage-
ment Systems (BMS’es) is a task for future work.
Thus, we chose to build a simple RESTful web API to
fulfill this purpose.
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Fig. 2. Lambda architecture high-level perspective (from [37])

The prototype Big Data implementation was
built using the following open source software com-
ponents:

• Kafka [17] server, a distributed event-
processing platform

• Zookeeper [18], Kafka dependency for ser-
vice synchronization and naming registry

• Spark [20] Master and Worker nodes, data
processing cluster

• Neo4j [21] graph database, storage for view
calculations

Kafka was chosen based on its flexibility to sup-
port both streaming and more classic publish/sub-
scribe patterns. In addition, the data ingested to the
architecture is stored in Kafka’s immutable, append-
only log, which served as the immutable master
data.

Furthermore, Spark was chosen to serve as the
processing engine in both the speed- and batch
layers, as it can support both paradigms using
the native Kafka connector for data ingestion and
proper offset configurations [43]. Using Spark for
both paradigms implies that the two AI components
realizing speed and batch layer functionality, re-
spectively, will both submit their jobs to the same
Spark cluster.

Finally, Neo4j was chosen to serve as the storage
component for views produced by both processing
layers, which could be made queryable using a
number of tools. In addition, Spark can be easily
configured to ingest data to Neo4j using its Spark
connector [33], further simplifying development of
the data pipeline.

5 IMPLEMENTATION

The implementation was built with the open source
software components outlined above, where we
used simple weather sensors to extract, process,
and store data for the purpose of establishing a
proof of concept. During execution, we collected
some run-time metrics which we provide later
in this paper, establishing the minimum baseline
needed to deploy this software stack on a com-
puter.

5.1 Proof of concept
The proposed solution architecture is shown in Fig-
ure 3.

5.1.1 Sensors
The sensors are, for the proof of concept, diverse
IoT weather sensors which pertain to the unit’s LOP
with respect to the local environment. Based on
the Raspberry Pi 3, we have added sensor hard-
ware that each provides a stream of JSON-encoded
weather data. This data is published from the sen-
sor to the message queue layer, by publishing the
data on a Kafka topic. The data is processed in
the batch and speed layers, and eventually the
information is included in the LOP. The sensors we
have are

• Enviro pHAT [51]
• Pioneer 600 [52]
• Sense HAT [53]
An example JSON-encoded reading from one of

these sensors is given in Listing 1.



8

Fig. 3. Technical solution architecture

Listing 1. Pioneer600 sensor reading
{’host’: ’pioneer’, ’sensor’: ’Pioneer600’,
’ts’: ’2022-05-18T11:31:23.118751’,
’temperature’: 31.6, ’pressure’: 1008.27,
’altitude’: 41.03}

In Listing 1, the "host" identifies the node on
which the sensor is mounted, here simply called
"pioneer". Next, the sensor type is identified, in
this case it is the "Pioneer600". The sensor reading
has an associated ISO standard timestamp ("ts")
showing the time and date of this particular mea-
surement. Following this, the measurement values
are included, here the "temperature" (Celsius), the
"pressure" (in hectopascal), and finally the "altitude"
(in meters). Different sensors give different read-
ings, for example, the Enviro pHAT can also give
values for the light level (in lux), whereas the Sense
HAT provides measures of relative humidity. Rela-
tive humidity is expressed as a percentage. For any
given air temperature there is a maximum amount
of water vapour that it can suspend. Relative humid-
ity is the percentage of actual water vapour present,
compared to the maximum possible amount.

These data are all fed into our tactical node via
Kafka, where the data may be further used by the
batch and speed layers.

5.1.2 Batch and speed layers

At the message queue layer, Kafka and Zookeeper
create the entry point and storage. By enabling
Kafka to keep data forever by configuring log reten-
tion, we can access all producer data from the be-
ginning by using the earliest offset. This is realized
in the batch layer where, following the principle of
conducting re-computation on the entire data set,
all data on a given topic is considered when com-
puting the batch view. Similarly, the "latest" offset
configuration is used in the speed layer to produce
the speed view. This approach also removes the

need for an additional storage layer, by utilizing the
data already existing in the Kafka log.

At the speed and batch layer, two separate
Java applications connect to the Kafka broker by
using Spark’s native Kafka connector and the above-
mentioned offset configuration to extract data for
the processing logic in the two layers. As we are
only working with simple weather data, the batch
layer calculates an average value based on all exist-
ing data, while the speed layer simply extracts the
current temperature value. Only statistical functions
and no trained models were utilized at this point in
time. However, for future work, we want to extend
the logic in both layers with more advanced AI-
capabilities for the purpose of for instance anomaly
detection and predictions.

Both layers write to a local instance of Neo4j
graph database, which uses the structure illustrated
in Figure 4. The blue node represents the local
unit on which a LOP is being generated. For the
LOP, a set of nodes representing a given named
view, further segregated by layer logic, are created.
In this example, views named "LOP_weather" are
generated with both a batch- and a speed view
label, annotated by the red color. Finally, the actual
view data is represented by data nodes, which each
hold a descriptive name, the current value, and a
timestamp for when the view was last calculated.

5.1.3 Serving layer

Finally, at the serving layer, a simple RESTful web
API was built using Jersey [22] which queries the
graph database using Cypher [34] and outputs the
value of the above-mentioned data node, as shown
in Listing 2.
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Fig. 4. Graph database structure

Listing 2. Serving layer output using curl
curl -XGET http://localhost:8888/weather | jq
{
"viewDataSet": [
{

"name": "vd.updated_timestamp",
"value": "2022-05-30T08:39:07.132"

},
{

"name": "vd.value",
"value": 31.88495635986328

}
]

}

5.2 Open source products resource use
To establish the baseline resource use, we mea-
sured how the different software components used
in our prototype impacted the node. The node was
set up with Ubuntu 20 LTS using a standard desktop
computer in our lab:

• HP ELITEDESK 800 G3 SFF
• 16GB RAM
• Intel i7-6700 CPU @ 3.40GHz (8 CPU cores)
• 1TB hard disk drive

On this node, we instantiated 1x Zookeper, 1x Kafka,
1x Spark with 3x Spark workers, and 1x Neo4j. The
software used 3.5GB of the total RAM, 11GB was
still available, and the remainder was used by the
operating system and supporting libraries. A deeper
analysis of each component, with individual (idle)
CPU and RAM usage, is shown in Table 1.

From these findings, we can see that the base-
line can easily be accommodated by common off-
the-shelf hardware. The desktop used has, by to-
day’s standards, modest specifications and perfor-
mance, and so the same capabilities can easily be
found in rugged laptops suitable for use in the
field. Hence, we deduce that this software stack is
definitely viable at the tactical edge, and can be ac-
commodated even in the least capable of our future

Component name CPU usage RAM usage Of RAM total
Kafka 1.10% 356.7MB 2.25%
Zookeeper 0.16% 117.0MB 0.74%
Spark 0.13% 200.7MB 1.26%
Spark-worker-1 0.14% 195.1MB 1.23%
Spark-worker-2 0.13% 204.3MB 1.29%
Spark-worker-3 0.14% 202.3MB 1.27%
Neo4j 3.39% 1.427GB 9.20%

TABLE 1
Resource use when the entire system is up, but idle.

tactical platform nodes. Note that we do not list any
data of the system under load here, where naturally
resource use will increase. The specific resource use
will depend on the AI model supported, the nature
of connected sensors and volume of sensor data be-
ing analyzed. However, our findings do support our
hypothesis that we can realize a technical architecture
using open source products that support both basic
systems of thinking and may be used in a stand-alone
tactical node. For future work, we foresee testing
many different sensor and application types, where
such a deeper analysis could be performed.

6 DISCUSSION

We provide some insights into how we foresee the
bigger picture of AI in conjunction with other tech-
nologies for the future. Following that, we discuss
limitations in our current approach, and how we
may develop the proof of concept further.

6.1 AI and other technology developments

Trend analyzes from NATO [2] (and also the re-
search community; both universities and defense
institutes) are relatively consistent in identifying
technology areas that will be of great and increasing
importance for military operations in the future.
These are the technology areas where progress is
constantly being made, but where maturity and
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real-world applications vary today. However, they
have in common that they are all technologies with
great potential added value for the Armed forces
and social security.

Developments in advanced electronics and com-
puting are important because almost all platforms,
systems and services contain a programmable ele-
ment. Quantum computers are an immature tech-
nology, and there is a long way to go before military
exploitation. There is a lot of research in the field
because there is a great deal of civilian demand,
since a breakthrough could have a major impact on
complex and hyper-fast data processing. For mili-
tary purposes, quantum computers combined with
AI have the potential to process vast amounts of
data and thus solve problems that today appear to
be unsolvable, such as breaking the crypto solutions
that are considered secure today [38].

The next generation of sensor technology will
be able to detect signals with increasing sensitivity,
detect more signal types and thus improve the
overall sensing abilities. New sensors will contribute
data sets from IoT which increase situational aware-
ness. Much of the development takes place in the
civilian sector, but some areas will be reserved for
military development [39]. The military should focus
on adapting and integrating the sensors in plat-
forms [40]. Due to the commercial drive behind IoT,
the sensors are becoming lighter and cheaper, and
the use of modules and open architecture makes
it easier to change sensors as new technology be-
comes available.

AI, machine learning and Big Data are in a rapid
development for a plethora of civilian applications,
and this development is also applicable to and af-
fects the defense sector. AI, as we have mentioned
earlier in this paper, is about getting machines to
perform tasks that normally require human intelli-
gence, such as interpreting speech, translating be-
tween languages or recognizing objects in images.
The progress in AI is mainly due to the fact that
we have gained access to a lot of good data that
the machines can train on, as well as fast enough
machines. Among other things, this will help to
establish a superior understanding of the situation,
and provide a more robust basis for quick and good
decisions.

Increasing investments are made in au-
tonomous systems, both in the civilian and mil-
itary sectors. Technology is moving in the direc-
tion of concepts where autonomous systems and
humans complement each other [49]. Military ap-
plications of autonomous systems include surveil-

lance, reconnaissance, transport tasks, logistics, but
also swarms of armed, unmanned systems. The
technology implies that demanding tasks can be
solved faster, better and with lower risk when using
unmanned systems. Developments in AI and au-
tonomous systems, however, raise legal and ethical
questions about how far the systems should be
allowed to make decisions themselves [41].

When different technologies work together and
reinforce each other, it can fundamentally change
future operations. An example of a grouping of
technology areas that we contend will have such
an effect in the future is AI, Big Data, autonomy and
sensors. In the interplay between these technolo-
gies, there is a significant potential for innovation
that may radically change the future of military
operations. Such advances may have great added
value for a range of defense activities, from op-
timizing the performance of military equipment,
reducing costs, and improving ways of conducting
military operations.

The proof of concept implementation we have
described in the previous section, supports this
vision for the future in that we have investigated
one initial building block of the future battlefield. In-
vestigating the technology that needs to go into one
tactical node, to enable Big Data analysis. By having
this functionality in the tactical domain, the data can
be processed where it occurs. Thus, we may say
that Edge computing is a technology approach that
supports the vision of an edge organization.13

6.2 State of the proof of concept
Recall that our aim in this paper was to address
a stand-alone tactical node. Although the solution
proposed in this paper shows promising results,
further discussion and development is required in
order to provide an operational Big Data solution at
the tactical edge, which ultimately should provide
decision makers with the necessary information to
improve the operational efficiency of own forces.
For instance, a complete overview of what kind of
data that can be acquired through sensing devices
that is of interest for military commanders at all
levels is currently lacking.

In addition, the time of delivery requirements
for such intelligence is also not specifically set,
and it can be argued that various data may have
varying time of delivery requirements. For instance,

13. Edge organizations are organizations where everyone is
empowered by information and has the freedom to do what
makes sense [42].
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detection of Chemical, Biological, Radiological, Nu-
clear (CBRN)-agents should be alerted immediately,
while we may tolerate some delay for weather data.
Another application would be Radio Frequency (RF)
spectrum data analysis, which is another use of AI
that we think would be beneficial for future work.

Furthermore, not all data may be suitable for
processing using the technology stack used in this
paper, which either requires an additional layer for
source-specific data ingestion, processing, and stor-
age, or an additional interface which could convert
the raw data into something that can be understood
by the components used in this project.

It should also be emphasized that a tactical in-
frastructure such as the one proposed in this paper
is not the sole source of intelligence. Rather, it is a
supplement to existing procedures and capabilities
already present in modern Armed forces. To suc-
ceed in becoming an integral part of military opera-
tions, however, further development involving dis-
tributed processing and autonomous information
exchange for the purpose of building GOP and COP
in disadvantaged networks and IT infrastructure is
required. In addition, it can be argued that such a
system must be as autonomous and user friendly
as possible, requiring minimal interaction of users
operating at the front lines.

7 CONCLUSION

7.1 Summary
When the Armed forces can establish situational
awareness quickly and with high credibility, this will
lead to a need for decisions to be made at the same
pace. This means that explainable AI will be needed,
both to automate analysis of the information flow,
and to support the decision making. In a complex,
multi-domain battlespace, the analysis needs to be
distributed and the resulting information products
need to be disseminated efficiently. In this paper,
we have started the journey towards such capa-
bilities, by investigating open source software for
supporting Big Data analysis at the tactical edge.
The continued research of robust communication
and secure ICT solutions will therefore remain very
important in parallel with surveying and leveraging
the long-term technological development and with
the possible introduction of new disruptive capabil-
ities.

7.2 Future work
For future work, we aim to investigate further ap-
plications of the technology stack we set up. We

discussed some of these applications in this paper,
which include CBRN sensor data and RF sensor
data. We also plan to expand the proof of concept
by investigating a network of collaborating tactical
AI nodes. The idea is to leverage parallel data pro-
cessing and also introduce high availability of the AI
capability in the tactical domain. There is also the
federation aspect to explore, how this AI capability
can be used in a network involving multi-national
forces and collective C2.
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