Automating Behaviour Tree Generation for
Simulating Troop Movements
(Poster)

Gabriel Berthling-Hansen*, Eivind Morch*, Rikke Amilde Lovlid®, and Odd Erik Gundersen**
*Norwegian University of Science and Technology (NTNU), Trondheim, Norway
TNorwegian Defence Research Establishment (FFI), Kjeller, Norway
iCorresponding author: odderik @ntnu.no

Abstract—Computer generated forces are simulated units that
are used in simulation based training and decision support in
the military. These simulations are used to help trainees build
a mental model of how different scenarios could play out, and
thus give them a better situation awareness when conducting
operations in real life. The behaviour of these simulated units
should be as realistic as possible, so that the lessons learned
while simulating are applicable in real situations. However, it is
time consuming and difficult to build behaviour models manually.
Instead, we explore the possibility of applying machine learning
to generate behaviour models from a set of examples. In this
paper we present the results of our preliminary experiments on
using machine learning for behaviour modelling. We implement
a follow behaviour by using behaviour trees that are evolved
using genetic algorithms. The fitness of the evolved behaviour
trees have been evaluated by comparing them with a manually
generated behaviour tree that implements the behaviour properly.
The genetic algorithm converges to a tree that is very similar
to the manually generated behaviour tree, suggesting that the
method works. Further work is necessary to test whether this
approach will work on more complex behaviours.

Index Terms—Behaviour tree, simulation, genetic algorithms

I. INTRODUCTION

Computer generated forces (CGFs) are autonomous or semi-
autonomous entities that represent military units, such as
tanks, soldiers and combat aircrafts, in simulation software for
military operations. CGFs are similar to non-player characters
in computer games and are used in military simulation-
based training and decision support applications. CGFs enable
simulating large military operations as one operator is able to
control several military units. The behaviour of the CGFs, e.g.
how they move, where they look, when they shoot etc., should
represent the behaviour of corresponding human soldiers or
manned systems as accurately as possible. Ideally, a soldier
training with a virtual simulator should not notice whether
his teammates or opponents are human controlled entities or
CGPFs. Realistic CGF behaviour also makes it possible to
simulate various plans or courses of actions to improve the
situation awareness and get a good understanding of how a
situation could play out [1]. Simulations can help build and
train the mental model of the trainee by practising situation
comprehension and projection, situation awareness level two

and three in Endsley’s model of situation awareness [2]. In
aviation, around 20% of the errors are related to problems with
the mental model according to Endsley and Garland [3]. Given
that errors made by soldiers in a stress situation are similar
to those made in aviation, improving their mental model is of
high importance. This requires the CGFs to behave in a natural
way, as their behaviour affects the situation comprehension and
projection of the trainee.

There are several ways to represent the behaviour of CGFs.
The most common way is to use state machines that describe
different states that the CGFs can be in and the actions they can
perform in every state. Lately, however, behaviour trees have
grown very popular [4]. In any case, the behaviour models
are typically made manually. This means that military experts
have to tell programmers how they want CGFs to behave. This
is a difficult and time consuming process [5], and we want to
explore how to use machine learning to generate behaviour
models from examples of desired behaviour.

One potential problem when building a behaviour model
with machine learning is that the model often becomes opaque,
meaning it becomes hard to interpret what the model has
learned. In our work we decided to focus on trying to learn
behaviour trees, i.e. the same type of model that can be used
to model the behaviour manually. By using behaviour trees,
the learned model for a CGF is explicit, which enables and
simplifies explaining the behaviour. Core et al. [6] present
a similar system with a separate module for explaining the
CGF’s behaviours. By contrast, they represent the behaviours
as rules and not behaviour trees.

Using machine learning to generate behaviour models for
CGFs has been discussed in the NATO Research Task Group
IST-121 RTG-060 “Machine Learning Techniques for Au-
tonomous Computer Generated Entities” [7]. The paper refers
to different case studies performed by the participating na-
tions. Worth mentioning is the work done by Totalférsvarets
forskningsinstitut (FOI), who used machine learning to create
autonomous agents that learn a tactical movement called
bounding overwatch for dismounted infantry [8]. They divided
the behaviour into different decision-models, like whether
to move or not, where to aim and whether to stand or

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/COGSIMA.2018.8423978

kneel. These models where learned separately and combined
manually. This research was done with Virtual Battle Space 3
(VBS3), a game based military simulation system [9].

In this paper we present our preliminary work on using
machine learning to generate a behaviour model for CGFs.
The work has been done with a real, military simulation
system called VR-forces from MAK [10]. We have used a
genetic algorithm (GA) to generate a model for a soldier who
follows another soldier. The next section includes necessary
background information on genetic algorithms and behaviour
trees. Section III describes the simulation system architecture
and how data generation and the actual training are performed.
An experiment and results are presented in section IV, fol-
lowed by a discussion of the results and related work in section
V. Finally, conclusion and suggestions for future work are
included in VI

II. BACKGROUND
A. Genetic Algorithms

GAs are stochastic search algorithms inspired by evolution.
A GA generates and evolves a population of chromosomes,
where each chromosome is a candidate solution for solving
a problem. Chromosomes are assigned a value representing
how well they solve the problem, called fitness. In each
epoch, the GA produces a new generation of chromosomes
through crossover and selection. Crossover is the creation of
a new chromosome by combining the traits of two existing
chromosomes to produce a hybrid solution. Selection is the
process of deciding which chromosomes should be used for
crossovers, and which should be potentially included as they
are in the new generation, which is usually done by comparing
fitness values. The chromosomes are also randomly mutated,
making direct changes to existing solutions. See [11] for more
information on GAs.

B. Behaviour Trees

Behaviour trees are trees of hierarchical nodes that control
decision making and task execution, and have been popularly
used for modelling the behaviour of computer-controlled units
in video games [4]. They provide a scalable and modular solu-
tion for representing complex behaviour without the exponen-
tial scalability of Finite State Machines (FSM) and reusability-
problem of Hierarchical Finite State Machines (HSFM) [12].
Behaviour trees are also human-readable, giving the opportu-
nity for visual analysis of the represented behaviour.

Behaviour tree nodes can return one of three statuses:
running, success or failure. Running means that the node is
currently active, has not completed its tasks and needs more
time to finish. Success is returned when a node is finished
executing and its task was successfully completed, and failure
is returned when the task finished unsuccessfully.

Behaviour trees are traversed from the root node and down.
If all visited nodes are finished, the tree will be traversed from
the root and down again on the next timestep. However, if one
of the nodes return running, the tree will keep running that
node every timestep until it returns either failure or success.

Once the node is done, the tree will continue traversing from
the position of the node.

1) Composite Nodes: A composite node is used to group
nodes into a higher level task [12]. The type of the composite
node dictates in which order it will execute children nodes,
when to stop, and what status to return. The system described
in this article uses two types of composite nodes, sequence
and selector. A sequence node (displayed as —) executes its
children from left to right until one of the children returns
failure or all return success. If a child returns failure, then the
sequence will stop and return failure. If all its children return
success, it will return success. A selector node (displayed as ?)
executes its children from left to right until one of the children
returns success or all children return failure. If a child returns
success, the selector will stop and return success. If all its
children return failure, the selector will return failure.

2) Leaf Nodes: A leaf node has no children, and is either
an action node or a condition node. An action node is used
to perform a specific low-level action, e.g. move to a certain
location. A condition node returns success or failure based
on some condition, e.g. whether an object is within a specific
distance or not.

3) Blackboard: A blackboard contains data that is acces-
sible for all the nodes of the behaviour tree. Nodes may also
alter data inside the blackboard. A blackboard is an important
feature of a behaviour tree as it enables nodes to share and
alter the same state representation, avoiding an exponential
state complexity such as in FSMs.

III. GENERATING BEHAVIOUR TREES FOR CGF
A. System Architecture

For our experiments we used a real, military simulation sys-
tem called VR-Forces from MAK. The virtual terrain, physical
simulation of entities etc. are simulated in this system. We
made a separate system that can record data from VR-Forces,
generate the behaviour models using machine learning and
send commands to the entities in VR-Forces. Figure 1 shows
an example of a virtual terrain in VR-Forces. Our system
communicates with VR-Forces using high level architecture
(HLA), a standard for distributed simulation that is commonly
used in military simulation systems [13]. Other CGF systems
that support HLA could be used in place of VR-Forces.

Systems that communicate over HLA must agree on data
and data formats to exchange. This is formalised in a feder-
ation object model (FOM), and we have used the Real-time
Platform-level Reference (RPR) FOM, which is a standard
FOM that many military simulation systems support [14],
[15]. However, this FOM does not include commands or the
perceived truth of the CGF entities. For this we use an extra
module for low level battle management language (LL-BML),
which is made as an extension to the RPR FOM [16], [17].
Bruvoll et al. describe using a multiagent system to control a
CGF system in a similar manner [1], [18].

Our system generates and evaluates behaviour models for
different types of units in different scenarios. Different units,
scenarios and objectives require different behaviour tree nodes

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/COGSIMA.2018.8423978

- = ,-". ¥ J
YD B IEPP L E

Fig. 1: VR-Forces simulation environment

---- Communication over HLA

Our system
MAK [HLA Interface Simulation -
VR-Forces RPREFOM 2.0 Controller

T l

Trainer

NSGA-II

Unit Logger

Fig. 2: Architecture Overview

with specialised tasks, different data collection and data
processing, different performance evaluations (fitness), and
different training algorithm tuning.

Figure 2 shows a high level overview of the system architec-
ture. The Simulation Controller provides an abstraction level
for the rest of the system to interact with VR-Forces, which
it communicates with through the HLA Interface. These in-
teractions include sending instructions to play, pause and load
a scenario, as well as forwarding events of newly discovered
units from VR-Forces to the Unit Handler. The Unit Handler
handles the registration of simulation entities as local unit
objects that can be used for logging data or giving commands.
The Simulation Controller also instructs the Unit Handler to
update unit data when the simulation time advances (tick).
The Unit Logger writes data from the units registered by the
Unit Handler to a database. The Trainer handles training of
behaviour models. This includes deciding which scenario to
simulate, initiating simulations, and creating, evaluating and
modifying the behaviour trees. The main system has two
modes—example recording and training.

1) Example Recording: The recording mode is used to
record the behaviour of a unit that is controlled by an ex-
ternal source (human or script), in order to generate training
data. This could be a person controlling a unit by joystick
or mouse and keyboard through VR-Engage [19] while our
system records data relevant to the performed task from the
simulation. When recording, VR-Forces is initiated externally,
and our system is only listening to and logging data updates,

i Action !

i Action !

(c) Child

Fig. 3: Crossover

such as position, velocity and current engagement status. This
data can later be used as examples of desired behaviour in the
respective scenario.

2) Training: During training, the system uses a GA to
generate, evaluate and improve behaviour trees. This is han-
dled by the Trainer, shown in Figure 2, which takes a GA
implementation as an argument upon initiation. NSGA-II [20],
a multi-objective GA, is used for the experiments described
in this paper. The Trainer also requires a list of scenarios and
recorded example data, an object responsible for evaluating
the fitness of behaviour trees, and an object responsible for
collecting and holding the data to be used for evaluation.

B. Evolving Behaviour Trees

The evolution of behaviour trees is done using NSGA-II,
a multi-objective GA which sorts and selects chromosomes
by non-domination [20]. A chromosome is said to dominate
another chromosome if it has a better fitness value for one or
more objectives and equal fitness value for the rest.

1) Crossover: The crossover operator chooses two be-
haviour trees as parents through tournament selection, and then
chooses a random subtree in each of the parents, as illustrated
in Figures 3a and 3b. A clone of parent 1 is then created and
the subtree of parent 2 is inserted at the position of the subtree
of parent 1. Figure 3c displays the final tree after crossover.
This is the same crossover operator as is used in [4].

2) Mutations: The system uses six different mutations with
varying level of impact on the behaviour trees. The probability
of choosing one mutation over the others is decided by
weights that are tuned per experiment. It is also possible to
set weight factors for each mutation, altering the mutation
weight depending on how many epochs the algorithm has been
running. All mutations were designed by the authors of this
paper for this specific system.

a) Add Random Subtree: This mutation generates a ran-
dom subtree with a specified minimum and maximum number
of nodes, and inserts it at a random position in the behaviour

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/COGSIMA.2018.8423978

(a) Original (b) Result

Fig. 4: Add Random Subtree

Rescue
target

Rescue
[m dange[l,.r' target

(b) Result

(a) Original
Fig. 5: Randomise Variables of Random Node

tree. Figure 4 shows the insertion of a tree with three nodes,
marked with a dotted line.

b) Randomise Variables of Random Node: Both action
nodes and condition nodes can have variables that affect
their functionality. This reduces the total number of nodes a
developer has to make and also allows the system to fine-tune
the behaviour of the behaviour tree. E.g., for a condition node
that checks if the distance between two units is lower than
a certain value, the value can be altered during training to
check for different distances. This mutation randomises one
or multiple variables in an action or condition node. In Figure
5 the value of the “Target is ...” condition node is changed
from safe to in danger.

c¢) Remove Random Subtree: This mutation removes a
random subtree from a behaviour tree.

d) Replace Random Node With Node of Same Type:
This mutation replaces a random node with another random
node of the same type. This means that a composite node
can be replaced with another composite node (e.g. sequence
to selector) or that a leaf node is replaced with another leaf
node. Condition and action nodes are not treated differently,
and may be replaced by any other leaf node.

e) Replace Tree With Subtree: This mutation replaces the
entire tree with a random subtree of that tree. In Figure 6 the
entire tree is replaced by the selector subtree.

f) Switch Positions of Random Sibling Nodes: This mu-
tation switches the position of two random sibling nodes,
including both leaf and composite nodes. In Figure 7 the
Condition 1 and Action 2 nodes have switched places.

IV. EXPERIMENTS AND RESULTS

A. Experiments

The experiment revolves around a wanderer and a follower.
The objective for the experiment is to have the follower

(a) Original (b) Result

Fig. 6: Replace Tree With Subtree

(a) Original

(b) Result

Fig. 7: Switch Positions of Random Sibling Nodes

agent follow the wanderer. The wanderer is pre-programmed
to follow a specific plan, which involves going to different
locations and waiting a given amount of time at certain
positions. The example file used to for training was recorded
from a manually created behaviour tree, shown in Figure 11.
This was an easy way to generate training data, and it also
made it possible to compare the learned model with the “true”
model.

A behaviour tree for a follower unit can have five different
types of leaf nodes: Move to target, which makes the follower
move toward its target for one tick. Turn to target, which
makes the follower turn towards its target. Wait, which makes
the follower stand still for a single tick. Is within, a variable
condition node which checks whether the followers target is
within a specified euclidean distance. Is approaching, a vari-
able condition node which checks whether the angle between
the movement vector of the target and the vector between the
follower and the target is smaller than a specified threshold—
effectively checking whether the followers target is moving
towards the follower.

For this experiment, the training was done on two separate
scenarios, using different terrains and wanderer paths. 2D
overviews of the terrain and wanderer paths for both scenarios
are shown in Figure 8. The first scenario simulates approxi-
mately 18 minutes of real-time over 1100 ticks, and the second
approximately 12 minutes of real-time over 700 ticks. The
training ran for 30 epochs with a population of 10 behaviour
trees. The objective is to imitate the recorded behaviour. The
fitness function therefore compares the behaviour produced by
the behaviour tree with the recorded behaviour. The behaviour
trees were evaluated by comparing the euclidean distance in
each tick between follower and target position in the training
data with the follower-target distance during behaviour tree
simulation. All trees were tested on both scenarios. The
equation for calculating the fitness value of a behaviour tree

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/COGSIMA.2018.8423978

(a) Scenario 1 (b) Scenario 2

Fig. 8: Scenario terrain and path overviews

for a single scenario is shown in Equation 1, where n is the
number of ticks that were simulated.

n

2
X Z (dist(eacamplet) - dist(btreet)> (D)
=0

S|

Fitness =

For each of the recorded ticks we find the follower-target
distance from the training data and the simulated behaviour
tree. The difference of these two distances is then squared
so that a large difference over a few ticks is worse than a
small difference over a large number of ticks. The squared
differences in euclidean distance are summed and normalised
over the number of ticks (n) to make the different scenario
fitness values more comparable. The fitness values should
be minimised. We chose this fitness function, as it is a
simple formula that captures the similarity of the example and
evaluated behaviour.

During training in this experiment, NSGA-II was set to
simultaneously minimise three fitness values: the fitness value
from running scenario 1, the fitness value from running
scenario 2, and the number of nodes in the behaviour tree.
By adding the tree size as a minimisation objective, we
prevented the algorithm from creating bloated behaviour trees
with unnecessary subtrees that have no significant effect on
the behaviour.

All mutations were initially weighted the same, however
with different weight factors, as described in Section III-B2.
The mutations that change the behaviour trees drastically—add
random subtree and Replace tree with subtree—were given a
factor of less than 1, while randomise variable of random
variable node was given a factor higher than 1. This way, the
algorithm prioritises local search over larger changes at later
epochs. The creation, crossover and mutation functions for
behaviour trees were also restricted from producing behaviour
trees with less than three and more than 12 nodes.

B. Results

Figure 9 shows the development of the fitness for the
first scenario over 30 epochs. Figure 10a shows the fitness
development over time for scenario 2, and Figure 10b shows
a zoomed in view of the best-fitness development. The results
show that the generated behaviour trees improve over time.
For both scenarios, the trend is that the best and average score

= Warst -e- Average - Best

0 —y |

N

260 < \

100

Fig. 9: Scenario 1 fitness development

[= worst = average - Besi]

QB = | —a n L]

‘ A
H / \ / \
Z w0 / e - /
300 / N /
260 = -
— .
e \r*/\/'_* B S

15 e
Epoch

\
w

(a) Complete

(b) Zoomed

Fig. 10: Scenario 2 fitness development

is continually decreasing as the algorithm is running. Short-
term increases in average fitness values are due to the multi-
objective selection of the NSGA-II algorithm.

We have chosen two of the non-dominated behaviour trees
from the population at epoch 30, shown in Figure 12 with fit-
ness values included in the sub figure captions. The behaviour
tree in Figure 12a has the smallest possible size following the
size restrictions, and has the lowest fitness on scenario 2 of
all the trees of the same size. The larger one, shown in Figure
12b, performs better at scenario 1 and scenario 2, but has more
than twice the number of nodes.

Move to target

Tun to target

Is approaching [20.00°]

Fig. 11: Manually made behaviour tree

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/COGSIMA.2018.8423978

vt 500

(a) Fitness: [size=3, scenariol=219, scenario2=114]

Move to target

(b) Fitness: [size=7, scenariol=84, scenario2=5]

Fig. 12: Two of the resulting behaviour trees from epoch 30

V. EVALUATION AND DISCUSSION

We used a manually created behaviour tree, shown in Figure
11, to record the example file used in the training phase.
While running the experiment, we observed different outcomes
of the simulations with identical inputs. E.g., running the
multiple simulations with the same behaviour tree controlling
the follower resulted in slightly different pathing, and therefore
different fitness values. When simulating the same behaviour
tree that was used for recording the example data, the fitness
on scenario 1 varied between 0 and 40, and on scenario 2 the
fitness varied between 0 and 9.

It appears that the simulation engine has internal inconsis-
tencies on when received unit tasks are executed. We suspect
this is caused by the internal path planning of the simulation
engine taking different lengths of time to complete due to
available processing power. It seems the simulation is not
paused while the pathing is calculated, and so the units start
to move at different ticks.

The consequence is that we have to account for stochastic
evaluation of chromosomes, where a chromosome can be
evaluated better or worse based on luck. A way of managing
stochastic problems with GAs is to simulate each chromo-
some a large number of times, combining the results [21].
However, as it takes approximately 18 seconds to simulate
each behaviour tree, running a large number of simulations per
chromosome was not an option. The inconsistencies in fitness
evaluation can also affect the selection process of NSGA-II
negatively.

When comparing the two selected resulting behaviour trees
with the manually made behaviour tree used for recording the
example, we can see that there are significant similarities.
For the tree in Figure 12a, it has managed to represent
approximately what we consider the most important part of the
example behaviour—moving only when more than 30 meters
away from the target. In both example scenarios, checking for
distance is more important than checking whether the target
is approaching. This is because the target usually moves away
from the follower, and that the target is standing still for a
significant portion of the scenarios.

The bigger resulting tree, shown in Figure 12b, includes
most of the behaviour of the manually made example tree.
Before moving to the target, both distance and movement
angle is checked with approximately the same distance and
angle used in the example tree. However, due to the sequence
of distance checks and wait node, the follower might move
closer while it is between 29.77 and 26.19 meters away from
the target. Then again, as the target is moving, the wait node
between the distance checks will often cause the target to be
further than 29.77 meters away for the next tick.

Theoretically, the system should be able to find behaviour
trees that result in O fitness on both scenarios. However, we
suspect that the stochastic simulation outcomes significantly
limits the performance of the algorithm by causing it to keep
trees that were lucky during evaluation over trees with statisti-
cally better performance that were unlucky during evaluation.
Combined with the long time it takes to simulate a behaviour
tree, finding optimal models will take a very long, even with
simple experiments.

The bottleneck of the system is running simulations to
evaluate the behaviour trees. Simulating a single behaviour
tree on the two scenarios used for the previously described
experiment takes approximately 18 seconds. This limits the
population size we can use for NSGA-II, as evaluating a
large number of chromosomes per epoch will be inefficient
use of time, especially when multiple scenarios are used for
evaluation.

Colledanchise et al. [4] and Lim et al. [12] also use GAs
to generate behaviour trees, with the same crossover operator
as we have used in our system. For mutation, however,
Colledanchise et al. used a single mutation which replaces
a single node in a behaviour tree with another node of the
same type, while we use six different mutations that alter the
behaviour tree in different ways. Another important difference
is that Colledanchise et al. use reinforcement learning to
generate behaviour trees designed to play Mario, while we
generate behaviour trees that imitate example behaviour in
complex simulation environments.

Lim et al. [12] use two mutations with similarities to two of
our mutations—adding a random behaviour tree as a subtree,
and changing the an inner variable of an existing node. They
also had issues with long simulation times, which they handled
by distributing their simulation over 20 computers, drastically
speeding up each experiment. Lim et al. trains the behaviour
using reinforcement learning while we use supervised learning.

The followers behaviour model is currently fed ground truth
information about the target from the simulation system. This
means that the follower always knows the current position of
the target, even if the follower unit is unable to observe the
targets position and velocity. For a more realistic experiment,
the follower behaviour model should only have access to
perceived truth, which is supported in VR-Forces through e.g.
line of sight and radio communication. This would probably
result in more human-like behaviour.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/COGSIMA.2018.8423978

VI. CONCLUSION AND FUTURE WORK

In this paper we used genetic algorithms to generate be-
haviour trees that control the behaviour of CGFs in a real
military simulation system. The objective was to imitate a
recorded behaviour. As mentioned in the previous section,
other researchers have used GAs to generate behaviour trees,
but we have not seen other work that has used GAs for learning
from observation. Also, the other research has been done with
simpler simulation systems.

We consider the experiment to be a success. The resulting
behaviour trees reproduce the most essential parts of the
behaviour used to record the example data, which shows that
the system is able to replicate simple behaviour by generating
and evolving behaviour trees.

We were surprised by the fact that the simulation system
is not deterministic, which resulted in significant variation in
the fitness of a behaviour tree when executed on the same
scenario multiple times. Assuming that we are able to solve
the issues with stochastic simulation outcomes, the system’s
ability to replicate more complex behaviour seems promising.
Hence, solving this issue should has the highest priority going
forward.

Increasing the complexity of the objective and scenarios is
also very relevant. E.g. using a number of agents to perform
a military action called bounding overwatch where multiple
agents must work together to advance forward. See [8] for
more information on bounding overwatch. The agents could
use radio messages to communicate when the next agent
should advance. Extending the experiment described in this
paper with variable movement speeds and using perceived
truth target information are other potential ways of increasing
experiment complexity.

In addition to implementing a larger variety of action leaf
nodes, we wish to introduce other types of composite nodes in
future experiments, e.g., random and parallel composite nodes.
We also wish to include the use of decorators, that alter the
resulting status of a single node.

The example used in this experiment was recorded with a
manually created behaviour tree used to control the follower
unit. This was done to have a representation of optimal
behaviour to compare the results with, making visual analysis
easier. However, for future experiments, the example behaviour
should be recorded with the unit controlled by a human, e.g.
using VR-Engage to control the example unit with mouse and
keyboard. It should be interesting to compare how the person
controlling the unit would represent his/her own behaviour to
how the computer ends up representing it.

Finally, we aim at investigating the possibilities of dis-
tributing the simulation to reduce the required run-time of
simulating and evaluating behaviour trees. Lim [12] had a
similar problem, where running the entire experiment would
take approximately 41 days. They were able to distribute the
computation to 20 computers, reducing the number of days to
approximately 2 days per experiment. This is also an option for
our simulation system and would allow for a larger population
or a higher number of epochs in the experiment.

[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

S. Bruvoll, J. E. Hannay, G. K. Svendsen, M. L. Asprusten, K. M.
Fauske, V. Kvernelv, R. A. Lgvlid, and J. I. Hyndgy, “Simulation-
supported wargaming for analysis of plans,” in NATO Modelling and
Simulation Group Symphosium. M&S Support to Operational Tasks
Including War Gaming, Logistics, Cyber Defence (MSG-133), 2015.
M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems,” Human factors, vol. 37, no. 1, pp. 32-64, 1995.

M. R. Endsley and D. J. Garland, “Pilot situation awareness training in
general aviation,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 44, no. 11. SAGE Publications Sage CA:
Los Angeles, CA, 2000, pp. 357-360.

M. Colledanchise, R. Parasuraman, and P. Ogren, “Learning of behavior
trees for autonomous agents,” arXiv preprint arXiv:1504.05811, 2015.
A. Toubman, G. Poppinga, J. J. Roessingh, M. Hou, L. Luotsinen, R. A.
Lgvlid, C. Meyer, R. Rijken, and M. Tur¢anik, “Modeling cgf behavior
with machine learning techniques: Requirements and future directions,”
in Proceedings of the 2015 Interservice/Industry Training, Simulation,
and Education Conference, 2015, pp. 2637-2647.

M. G. Core, H. C. Lane, M. Van Lent, D. Gomboc, S. Solomon, and
M. Rosenberg, “Building explainable artificial intelligence systems,” in
AAAI 2006, pp. 1766-1773.

J. J. Roessingh, A. Toubman, J. van Oijen, G. Poppinga, R. A. Lgvlid,
M. Hou, and L. Luotsinen, “Machine learning techniqus for autonomous
agents in military simulations - multum in parvo,” in Proceedings of the
2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2017, pp. 3445-3450.

F. Kamrani, L. J. Luotsinen, and R. A. Lgvlid, “Learning objective agent
behavior using a data-driven modeling approach,” in Systems, Man, and

Cybernetics (SMC), 2016 IEEE International Conference on. 1EEE,
2016, pp. 002 175-002 181.
Bohemia Interactive. (2016) VBS. [Online]. Available: https://

bisimulations.com/virtual-battlespace-3

MAK. (2018) VR-Forces. [Online]. Available: https://www.mak.com/
products/simulate/vr-forces

S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,
3rd ed. Pearson Education, 2014, pp. 129-132.

C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game defcon,” in European Conference on the
Applications of Evolutionary Computation. Springer, 2010, pp. 100—
110.

NATO NSA, STANAG 4603 - Modelling and Simulation Architecture
Standards for Technical Interoperability: High Level Architecture (HLA),
2nd ed., 2015.

Simulation Interoperability Standards Organization (SISO), Standard for
Guidance, Rationale, and Interoperability Modalities (GRIM) for the
Real-time Platform Reference Federation Object Model (RPR FOM),
Version 2.0, http://www.sisostds.org/DigitalLibrary.aspx ?Command=
Core_Download\&Entryld=30822, 2015, SISO-STD-001-2015.

——, Standard for Real-time Platform Reference Federation Object
Model (RPR FOM), Version 2.0, http://www.sisostds.org/DigitalLibrary.
aspx ? Command = Core \ _Download \ &Entryld=30823, 2015, SISO-
STD-001.1-2015.

A. Alstad, O. Mevassvik, M. Nielsen, R. Lgvlid, H. Henderson,
R. Jansen, and N. de Reus, “Low-level battle management language,” in
Proceedings of the 2013 Spring Simulation Interoperability Workshop,
no. 13S-SIW-032, 2013.

J. Ruiz, D. Dsert, A. Hubervic, P. Guillou, R. Jansen, N. de Reus,
H. Henderson, K. Fauske, and L. Olsson, “BML and MSDL for
multi-level simulations,” in Proceedings of the 2013 Fall Simulation
Interoperability Workshop, no. 13F-SIW-002, 2013.

A. Alstad, R. A. Lgvlid, S. Bruvoll, M. N. Nielsen, and O. M.
Mevassvik, “Autonomous simulation of a battalion operation - seamless
integration of command and control and simulation for planning and
training,” Forsvarets forskningsinstitutt, FFI-rapport 2013/01547, 2013.
VT MAK. (2017) VR-Engage. [Online]. Available: https://www.mak.
com/products/simulate/vr-engage

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182-197, 2002.

R. Al-Aomar, “Incorporating robustness into genetic algorithm search
of stochastic simulation outputs,” Simulation Modelling Practice and
Theory, vol. 14, no. 3, pp. 201-223, 2006.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/COGSIMA.2018.8423978

