
An automatic route planning service for
unmanned surface vehicles

Marius Thoresen
Solveig Bruvoll
Martin Syre Wiig

19/00229FFI-RAPPORT

An automatic route planning service for
unmanned surface vehicles

Marius Thoresen
Solveig Bruvoll
Martin Syre Wiig

Norwegian Defence Research Establishment (FFI) 8 May 2019

FFI-RAPPORT 19/00229 1

Keywords
Ruteplanlegging
Autonome overflatefarkoster
Autonomi

FFI-rapport
19/00229

Project number
1372

ISBN
P: 978-82-464-3170-3
E: 978-82-464-3171-0

Approvers
André Pettersen, Director of Research

The document is electronically approved and therefore has no handwritten signature.

Copyright
© Norwegian Defence Research Establishment (FFI). The publication may be freely cited where the
source is acknowledged.

2 FFI-RAPPORT 19/00229

(U) Summary

The Norwegian Defence Research Establishment (FFI) has developed an autonomous unmanned
surface vehicle (USV), Odin, which is tasked with performing surveys and mine countermeasures
missions. It is meant to navigate autonomously close to shore, and must do so in a safe manner.
To do so, it requires safe and efficient routes that it can follow, and thus needs a service to provide
it with such routes. In this report, we present an automatic route planning service which provides
routes that are suited for route following by the Odin USV.

The service is implemented in a common framework for route planning based on open source tools
and open standards. The same framework is also used for route planning for other platforms at
FFI. Route planning requests are made through a web interface which implements the WPS (Web
processing service) standard, which makes the service easy to integrate in a variety of applications.
The planning service uses a graph based route planning method, where a graph structure is created
offline based on S-57 Electronic Navigation Charts. This graph is then used for a graph-search
resulting in a coarse route. This route is further refined with post processing to obtain a route suitable
for direct path following by an USV.

The route planner has been used in live testing for Odin, and it has been demonstrated that the route
planner is capable of providing suitable routes for littoral operations for an USV.

FFI-RAPPORT 19/00229 3

(U) Sammendrag

Forsvarets forskningsinstitutt (FFI) har utviklet en autonom ubemannet overflatefarkost (USV), Odin,
som skal utføre minemottiltaksoperasjoner og kartleggingsoppdrag. Den skal navigere autonomt nær
kysten og må gjøre det på en sikker måte. For å gjennomføre dette trenger Odin sikre og effektive
ruter den kan følge, og den må derfor ha en tjeneste som genererer slike ruter. I denne rapporten
presenterer vi en automatisk ruteplanleggingstjeneste som leverer ruter som er tilpasset rutefølging
for USV-en Odin.

Tjenesten er implementert i et felles rammeverk for ruteplanlegging basert på åpen kildekode-
verktøy og åpne standarder. Dette rammeverket er også brukt for ruteplanleggingstjenester for
andre ubemannede plattformer ved FFI. Forespørsler om ruter gjøres gjennom en webtjeneste som
implementerer WPS-standarden (Web Processing Service), noe som gjør tjenesten enkel å integrere
i mange ulike applikasjoner. Planleggingstjenesten bruker en grafbasert ruteplanleggingsmetode
hvor en grafstruktur lages offline basert på S-57 elektroniske sjøkart. Denne grafen brukes til å gjøre
grafsøk som gir en grov rute. Denne ruten blir så forbedret i en etterprosessering for å få en rute
som er tilpasset direkte rutefølging for en USV.

Ruteplanleggeren har blitt brukt under eksperimentelle kjøringer med Odin, og det har blitt vist at
ruteplanleggeren kan lage passende ruter til en USV for kystnære operasjoner.

4 FFI-RAPPORT 19/00229

Contents

(U) Summary 3

(U) Sammendrag 4

1 Introduction 7

2 The Odin USV 8
2.1 Capabilities of Odin 8
2.2 Route planning for Odin 9

3 Graph generation 11
3.1 Water types 12
3.2 Clustering and cost function 12

4 Route planning 14
4.1 Shortest path in the graph 14

4.1.1 Use of pgRouting 14
4.1.2 Cost function 14
4.1.3 Basic route planning examples 16

4.2 Route simplification 17
4.2.1 Methods for line simplification 17
4.2.2 A new method for situational aware route simplification 17

5 Using the route planner 20
5.1 Interfaces 20

5.1.1 FFI Ground Control Station 20
5.1.2 ROS interface 21

6 Conclusions and future work 22
6.1 Future work 22

References 23

Appendix

A Appendix 25
A.1 Algorithms 25

FFI-RAPPORT 19/00229 5

6 FFI-RAPPORT 19/00229

1 Introduction

The technological development of autonomous vehicles is moving rapidly, and autonomous units in
the air, on land and at sea are becoming capable of performing increasingly complex tasks. At sea,
unmanned surface vehicles (USVs) are a type of autonomous vehicles that has many potential uses
for both civilian and military applications, and will soon be ready for fully autonomous operations.
The types of missions that USVs will perform ranges from transportation of goods and people, to
unmanned surveying and mine hunting. An important task in most missions is the transit between
two locations, and for this a route suited for the given mission is required. In this report we present
an automatic route planning service with the main goal of providing safe and efficient routes for
USVs.

The route planning service presented here is based on a framework for automatic route planning
for several types of autonomous vehicles [1]. The route planning service uses a web interface for
route requests, while several modules running in the background does the route processing. The
processing is based on route search in a mathematical graph structure that is made in advance. This
makes it possible to include a wide variety of data types such as depth maps, weather data and
terrain models for situation dependent route requests. Different aspects of the route planning can
also be prioritized depending on the given mission and situation.

In this report, the development of a route planning service, and how it is fitted to the common route
planning framework of [1] is described. The first part of this report describes the requirements and
needs for a route planner for a USV. We specifically look at the Odin USV, which is developed by
the Norwegian Defence Research Establishment (FFI). The second part describes how a graph is
generated for efficient route planning for USVs, and the attributes it provides for the route planning.
The third part describes how the route planning itself is performed with a graph search, and how
the routes are post processed for efficient routes that is suitable for following by a USV. Lastly, a
description of how the route planner can be, and has been, used for route planning for Odin.

FFI-RAPPORT 19/00229 7

2 The Odin USV

FFI is developing an autonomous USV, Odin [2], shown in Figure 2.1. Odin is a research platform
to develop autonomy for performing surveys, executing mine countermeasures operations, and
conducting surveillance. Transit between locations is required for all these purposes, and for a high
level of autonomy, an automatic route planner is needed to provide routes for these transit. Odin is a
small vessel designed to operate close to shore, which means Odin must be capable of performing
all its missions autonomously close to shore as well. Navigation close to shore is a complex task,
and it puts high demands for safety for a route planner, without it being a limiting factor for efficient
operations.

Figure 2.1 The autonomous Odin USV

2.1 Capabilities of Odin

The typical missions for Odin consist of a combination of surveying an area, patrolling along a
predetermined route and simple transit to points. The missions are planned through the FFI Ground
Control Station (GCS) [3], and uploaded to Odin. A mission can consist of several different types
of tasks. For simple "move to location" tasks, Odin follows a route. The route is either created
manually by an operator who places a sequence of waypoints, or by an automatic route planner.
An operator can also use a route from an automatic route planner for decision support or modify
the route before using it to create a mission. For the survey tasks, the planning is handled by the
autonomy module HAL [4]. In Figure 2.2, an example of a mission planned in the control station is
shown.

8 FFI-RAPPORT 19/00229

Figure 2.2 FFI GCS showing a planned mission for Odin, with planned way points and a
survey area in green

2.2 Route planning for Odin

Automatic route planning is not always necessary for conducting missions autonomously. In Figure
2.2, a manually planned mission can be seen. In short missions such as this one, especially when
there are few obstacles in the mission area, manually placing all waypoints is acceptable for an
GCS operator. When the missions are longer, cover a larger area and takes place in more complex
surroundings, manually placing every single waypoint becomes a tedious task. Both because the
number of waypoints needed goes up drastically, and because it is harder to manually check that
every leg is completely safe when the leg distance goes up. Route planning can also involve factors
such as planning routes with limited communication coverage, routes that avoid detection or routes
that has a line of sight to a location. A benefit of automatic route planning is that it can keep track
of these factors, and plan routes accordingly in ways that an operator can’t [5]. If the information
about the world is updated during a mission, a route planner can accommodate these changes and
plan updated routes based on the new information.

A route planner can also be useful as a support tool for an operator. A mission specification can
be specified and sent to the route planner, and the calculated route is returned to the operator who
can choose to use the route, modify individual waypoints or discard it entirely. Another benefit
of using a route planner as a support tool is that meta-data about the route can be returned to the
operator. This can be expected duration, distance, weather conditions along the route and other
factors relevant to the mission.

The auto pilot of Odin is only capable of following a route that is a sequence of straight legs, but it
handles the transition between legs itself [6]. This means that the route planner should also provide
route consisting of long straight legs with no curves.

FFI-RAPPORT 19/00229 9

The graph-based route planning described in [1] is used as a starting point for a route planning
service. This is efficient for exploring the available search space and obtaining the global optimal
route. However, the route obtained will not be optimized for long straight edges, and to achieve this
post processing of the routes is required. We describe this post processing procedure in Chapter 4.

10 FFI-RAPPORT 19/00229

3 Graph generation

The first step of performing graph based route planning is to create a graph. This graph can be
created offline, and later used to perform route planning requests online. The goal of creating a
graph to represent the world is that the graph is detailed enough to perform complete route planning
requests without keeping the original data. To achieve this, the graph must contain all the necessary
attributes in either the nodes or the edges. The attributes that are necessary depends on what criteria
are used in the graph search and post-processing.

The graph is created using an S-57 Electronic navigation chart [7]. This is a vector map that contain
land areas, areas with guaranteed minimum depth, rocks, bridge heights and other information
relevant for navigation. When creating a graph for an area, nodes are placed everywhere except on
land. Then the nodes are connected to their neighbors to form a mesh. There are two main ways of
placing the nodes: structured like in a regular grid or with probabilistic placement. In our case, the
nodes are placed randomly. In areas close to land or shallow areas the nodes are sampled with a
random uniform distribution with a high sampling density. Further from land, the nodes are also
sampled with a uniform distribution but with lower node density. This is because it’s more critical
with precise navigation close to land. Further from land, this is not as important, and the node
density can be decreased in order to improve search speed for route planning requests. Typical node
placement can be seen in Figure 3.1a.

(a) Random node placement (b) Mesh generated using Delaunay triangulation.

Figure 3.1 Graph generation process with node placement and edge creation

With the random node placement, a mesh can be generated using a process called Delaunay
triangulation [8]. This process connects each of the nodes to its closest neighbors, and these

FFI-RAPPORT 19/00229 11

connections makes up the edges of the graph. To perform the actual graph creation, a MATLAB
library developed at FFI has been used [9].

The uniform distribution of nodes means there will be local clustering of nodes. When a node
density is selected for the node placement, this is based on how detailed the area should be sampled
and the desired distance between nodes. With the local clustering of nodes, some of the nodes
close to each other are essentially left redundant, and contribute little to the overall sampling of
the area. More nodes means longer processing time for the route planning, and redundant nodes
should ideally be removed. In the future, this could be avoided by using another sampling method.
A more suitable option for distributing nodes evenly would be the Poisson-disk distribution [10]
which guarantees a minimum distance between nodes. Efficient sampling based on this distribution
is for example implemented with Bridson’s algorithm [11].

3.1 Water types

For a first implementation of the route planner for Odin, providing safe navigation in the area near
Horten is the goal. This was achieved with a simple cost function where what we have defined as
water types is the main attribute needed for cost calculation. The water types reflect how safe an
area is. For example being close to land should not be a problem for an USV, but it exposes the
USV to hazards such as leaving limited maneuvering space during interaction with other vessels.
Another risk is that errors in the navigation can have consequences such as running aground or
colliding with land. In shallow waters, the risk of running aground is increased due to potential
depth mapping errors, but the overall hazard can be considered lower than areas close to land. With
that in mind, the following categories have been defined for the graph generation:

Land Less than 2 m deep. Avoid completely
Near land Closer than 50 m from land-category. High hazard level
Shallow Between 2 m and 5 m deep. Moderate hazard level
Open water Deep water and far from land. No hazard

The water types are tailored to Odin, but different depth and distance limits can be selected for
other vessels, or entirely new categories as well. Here, each node sampled is assigned to one of the
four water types. The water types are the basis for the edge weights which are needed in the route
planning algorithm. An illustration of the different water types can be seen in Figure 3.2, where
three different water types are represented. In the graph creation, the nodes in the land category are
removed entirely from the graph. The actual edge weights are calculated dynamically for each query
in order to handle information not available at the time of the graph creation, such as updated depth
values. In addition to adding water types as attributes of the graph, the distance from each of the
nodes to the closest of the other categories are included. This is used by the smoothing algorithm
part of the route planning. Even though the nodes in the land category are removed, distance to
land still exists as an attribute for the remaining nodes.

3.2 Clustering and cost function

In order to make the graph search more efficient, an hierarchical approach to graph creation is used.
Groups of neighboring nodes are clustered and connected together. An example of the placement of

12 FFI-RAPPORT 19/00229

Figure 3.2 Different water types. purple=Near Land, red=Shallow, green=Open water

the clusters and their connections can be seen in Figure 3.3. When a graph search is performed, a
search is first done in the clusters to find which clusters the route will pass through. Then, using
the resulting set of clusters, a graph search is made on the subset of nodes that is contained by
the resulting clusters. This improves the overall search speed, but the resulting routes might not
be optimal if the wrong clusters were selected in the first search [12]. With the area used in this
particular route planning setup at Horten, the graph size is small enough that performing route
planning requests on the full graph is feasible. The use of a hierarchical structure is therefore not
strictly necessary, but has been included to allow for scaling of the route planner in the future.

Figure 3.3 The placement of the clusters and their connections to neighbors. The intersections
of the yellow lines are representing nodes in the clusters, and the yellow lines are
the edges between the clusters.

FFI-RAPPORT 19/00229 13

4 Route planning

The route planning is performed using PostGIS and its routing extension pgRouting. This is a
two-step process: First a hierarchical graph search is performed to obtain a coarse route. Secondly
the coarse route is then refined with a simplification step, giving an efficient route suitable for path
following by an USV.

4.1 Shortest path in the graph

As the graph generation has created a full graph, a coarse route is found by a regular shortest path
algorithm. In our case, Dijkstra’s algorithm [13] is used for this, as it is guaranteed to find the
optimal path in the graph. The commonly used algorithm A* [14] could also be used for improved
search speed. A* uses an heuristic to estimate the remaining cost to the goal. If this heuristic always
underestimates the cost to the goal, A* will also be optimal. In our case, Dijkstra’s algorithm is
considered fast enough, and A* is not used.

4.1.1 Use of pgRouting

The graph is implemented in PostGIS database as described in [1]. meta data of minimum water
depth, water type and distance to the water types are added as fields for the nodes and edges. For the
graph search itself, the pgr_dijkstra() function of the pgRouting library is used. The function
is first used on the the cluster graph to find the clusters that most likely contain the optimal path.
The algorithm is then called on the subset of nodes contained within the clusters of the coarse route
to find the optimal path among these nodes and then on the graph itself to find the optimal path
within the clusters.

The specified start and goal positions in the request will never correspond precisely to nodes in the
graph. Therefore, new temporary nodes are inserted into the graph at the start and goal points, and
edges are created between the new points and their neighbors in the graph. These new nodes are
then used as the start and goal nodes in the planning algorithm.

4.1.2 Cost function

The cost function determines what will be considered the best route. If any special properties is
desired from a route, changing the cost function is the main way to achieve the desired behavior.
This can for example be areas that are preferred or should be avoided. Factors that influence the
cost can be communications coverage or areas with cover from the open ocean. As long as data to
calculate costs is available for the graph there are many options for the selected cost function, and
this can be changed for each route request.

In the first implementation of the route planner for Odin, safe navigation is the priority. The cost
function is therefore designed so Odin stay in the safer water types as much as possible. It is based

14 FFI-RAPPORT 19/00229

on the water types defined in the graph creation, and this is available as an attribute of the nodes. An
intuitive way of thinking about the weight function is to use the traverse time for each edge as the
weight. The distance d is given directly by each edge, and the speed v can be used as a parameter.
In that case the weight w (i.e. traverse time) is given by the following equation:

w =
d
v

This method has a physical interpretation in that the maximum speed selected can be set to the
maximum speed of the USV, and this will represent the best case in the graph. By reducing the
speed, the cost is increased as if the USV reduced speed accordingly. In our case, the selected speed
values are given in table 4.1. With the given values, a edge with unit length in shallow water will
have a cost of 100, and an edge in open water with the same cost would have a length of 1000.

Speed [m/s] Cost
Open water 10 0.1 · d
Shallow 0.01 100 · d
Near land 0.00001 105 · d
Land 10−9 109 · d

Table 4.1 Selected speed in different water categories, and corresponding costs

As the speed reduction moving from one category to the next is large, the planner will behave almost
as if it is not allowed any movement in an area with higher hazard level than it is currently in. This
is not a particularly sophisticated cost function, but the relative weights assigned to each category
can be easily changed, and the cost function itself can be substituted with an entirely different one.
It also demonstrates that a dynamic cost calculation is possible if desired.

FFI-RAPPORT 19/00229 15

4.1.3 Basic route planning examples

Figure 4.1 Basic planning examples

With the method described here, simple route requests can be made. An example of such a route
can be seen in Figure 4.1. The route is jagged, and does in no way look like a route that a vessel
would ever follow. This jaggedness can simply be attributed to how the graph is made with random
node placement. The route does, however, fulfill the requirements of the routes being safe, and it
doesn’t move into areas of higher hazard levels than necessary. Disregarding the local jaggedness of
the route, the overall shape of the route seems reasonable. The behavior seen in the example is
also typical of the routes the graph search produces. In Figure 4.2, the effect of the cost function is
reflected in the calculated route. The area with the red nodes is of type shallow and has higher cost
than the area with the the green nodes, which is of type open water. This is reflected in the route,
where a the calculated route minimizes the distance in the shallow area at the expense of a longer
distance in open water.

Figure 4.2 Effect of cost function for route planning

16 FFI-RAPPORT 19/00229

4.2 Route simplification

As mentioned earlier, the Odin’s autopilot is only capable of following straight line segments [6].
This means the jagged route obtained by the graph search must be post processed so that the number
of waypoints are significantly reduced, while trying to maintain the optimal cost properties of the
original. This can be achieved by performing a line simplification, where redundant waypoints are
removed until only the key waypoints remain.

4.2.1 Methods for line simplification

The standard method for line simplification is the Ramer-Douglas-Peucker algorithm [15]. This
method removes what it considers "insignificant points", and aims to conserve the overall shape
of the line. This method is also implemented in PostGIS and is easily available. This approach
has been used for graph based route planning at sea [16]. However, by closer inspection of the
algorithm, it becomes clear that this is not suited for our uses. Maintaining the shape of the route is
actually not important for the end result, as the randomness of the graph will cause random and
possibly large deviations from a true optimal route. Such deviations should ideally be removed in
the post processing. We therefore want an algorithm that exploits the input route and cuts away
from this as much as possible when the waters allow it, and it leads to a reduced cost.

With a more complex cost function, the shape of the route can be important to preserve. Local
variations of the cost can result in seemingly strange shapes of the route which should be preserved
due to the lower cost. In these cases, using the Ramer-Douglas-Peucker can be a good choice for a
smoother route that preserves the optimal cost properties of the route.

4.2.2 A new method for situational aware route simplification

An improved algorithm for route simplification has been developed. The main idea is to start at the
beginning of the coarse route, iterate forward, and remove any unnecessary points. This is achieved
by creating new lines from a start point to new points on the route, and checking if these lines
intersect areas with water types of a higher hazard level. It checks all possible lines forward to the
end point, and selects the last valid one.

Pseudo-code for the algorithm is written in Algorithm 1. This also uses two sub-routines which can
be found in the appendix.

An illustration of how the algorithm works can be seen in Figure 4.3. A coarse route is given in
Figure 4.3a. In Figure 4.3b, lines are created from the starting point to all points in the route. Point
1, 2 and 3 are valid, but point 4 to 8 are not valid as the lines cuts across shallow areas or land. As
line 3 was the last valid line, it is added to the simplified route as seen in Figure 4.3c. In Figure 4.3d
the process is repeated from the new start point. Here, 1 and 2 are valid, while points 3 and 4 are
not. Thus point 2 is selected in Figure 4.3e. No further simplifications can be made forward from
this point, and the final result is shown in Figure 4.3f.

FFI-RAPPORT 19/00229 17

Algorithm 1 Simplify route
Input: route

current_waypoint← route[0]
simplified_route← [current_waypoint]
while current_waypoint , route[end] do
current_waypoint← find_max_simplification(route, current_waypoint)
simplified_route.push_back(current_waypoint)

end while

(a) Original route

1

2

3

4

5

6

7
8

(b) Simplification from start point (c) Result of first simplification

1

2

3
4

(d) Repeating simplification from
new point (e) Result of second simplification

(f) Final result after stepping
through route

Figure 4.3 Route simplification of a coarse route. The new route is not allowed to cross into
the shallow region near land

The simplification algorithm has been implemented in the USV route planner, and is used to post
process the routes obtained from the graph search. In Figure 4.4, the simplification algorithm has

18 FFI-RAPPORT 19/00229

been applied to a coarse route. Here, the original route is followed closely where safety margins are
tight, but it is still able to take significant shortcuts elsewhere.

(a) Original and simplified route (b) Only simplified route

Figure 4.4 Route simplification of a coarse route

FFI-RAPPORT 19/00229 19

5 Using the route planner

The route planner presented here has been fully implemented, both aboard the Odin USV and in the
USV control station. It is capable of providing routes for navigation in waters close to shore. In
the current version, it supports an area around Horten, as this is the home port of the USV Odin.
However, any desired area can be included by creating graphs according to the process described in
Chapter 3 and adding them to the database.

Figure 5.1 A longer route fromOdin’s home port

The route planner has been tested in a real-
life experiment where Odin navigated from
just outside its home port at FFI in Horten,
past the island Vealøs, and moving south
outside Vealøs following the coast. The route
obtainedwas close to the one shown in Figure
5.1. The current state of the route planner is
that it is ready for use and experimentation
by Odin.

5.1 Interfaces

The main interface of the route planner is
a web interface. The framework used is
the ZOO-project [17], an open source pro-
ject which implements the Web Processing
Service (WPS) standard by the Open Geo-
spatial Consortium (OGC). This makes the
route planner accessible for a variety of tools
such as web browsers, GIS software and
any programs and programming languages
that incorporates web request. The WPS
interface is the same interface used by the
route planning services for the other vehicles
developed at FFI [1].

5.1.1 FFI Ground Control Station

The ground control station that is used for controlling Odin has support for calling the route planner.
This allows an operator to request a route directly from the route planner, obtain route which can
be reviewed before it is sent to Odin. This is especially useful before the route planner has been
thoroughly tested, and it is verified that it behaves as desired. After a route is obtained, each
waypoint can also be manually moved by the operator before the route is sent to the vehicle.

20 FFI-RAPPORT 19/00229

5.1.2 ROS interface

A ROS interface for the route planner is also implemented. With a ROS interface, the autonomy
module HAL [4] on Odin can call route planner directly. This way, the operator will not be required
to manually accept the route before it is started, but the process can be handled by HAL directly.
Furthermore, this allows HAL to decide when it is required to call the route planner, and when an a
priori planned route can be followed. This reduces the labor of the operator, and contributes to the
overall autonomy and safety of Odin.

FFI-RAPPORT 19/00229 21

6 Conclusions and future work

In this report, an automatic route planner for USVs has been presented. The route planner includes
a new method for post-processing routes so that they are suited for safe route following by an USV.
The route planner satisfies the requirements of Odin, and is able to provide routes that are both safe,
efficient and suitable for the path following capabilities of the vehicle. In off-line testing the route
planner performs well with route requests in the vicinity of Horten. It has also been tested live in an
experiment where Odin followed routes from the route planner. The route planner still needs more
live testing in order to verify that the route planner does what is expected, and to get feedback on
how well the routes work in a real life setting.

The route planning service is integrated in the Magellan route planning service, which also supports
route planning for other autonomous vehicles [1]. The route planner supports an open standard for
route requests, that has made the integration with both Odin and the GCS a simple process. The use
of open standards can therefore be said to have provided a significant benefit, and we recommend
that this track will be followed also in the future. The route planner has been implemented both on
the USV control station, and on board the USV itself. Thus, it can be used to ease the workload of
an operator in the planning phase of an operation, and also as a part of the autonomy system of the
USV. The latter ensures that the USV is capable of autonomously finding efficient routes ensuring
that it can maintain vehicle safety while simultaneously achieving dynamic vehicle goals.

6.1 Future work

While the route planner is working great given the ENC data used in the graph, experience show
that the environment can change. For example, the port area of Horten is in the process of land
reclamation, meaning that areas that were previously water are now land masses. This change is not
present in the ENC data or in the graph, which leads to routes being planned across the new land
areas. The new coastline is however mapped by Odin during operation, but the new map is not
currently used by the route planner to update the graph and graph weights, and hence the resulting
routes. In the future, updating the graph based on in situ measurements and mappings would be
a useful extension of the route planner. In practice, this could be achieved by updating the water
types as well as distances for the existing nodes in the graph without changing the graph structure.

The route planner is suitable for extension to new tasks and missions if the need arises. By changing
the cost function, new aspects can be prioritized such as avoiding rough weather. This does require
that the necessary data is available at the time of planning. A new type of task that could be useful in
the future is autonomous coast following, where an USV follows a coast line at a specified distance,
or within a desired distance interval. This could for example be for mapping purposes. This will
require a different type of route planning, but the framework used would still be suitable.

22 FFI-RAPPORT 19/00229

References

[1] S. Bruvoll et al., ‘Systembeskrivelse av ruteplanleggingstjenesten magellan for autonome,
bemannede og simulerte systemer’, Forvarets forskningsinstitutt, Kjeller, FFI-rapport
2019/00225, Mar. 2019.

[2] E.-L. M. Ruud and J. Sandrib, ‘Usv for future maritime mine counter measures’, Forvarets
forskningsinstitutt, Kjeller, FFI-rapport 2019/00470, Apr. 2019.

[3] E. Skjervold, ‘Design og implementasjon av FFI GCS - kontrollstasjon for ubemannede
systemer’, Forsvarets forskningsinstitutt, Kjeller, FFI-rapport 2015/01620, Feb. 2016.

[4] T. R. Krogstad, K. Mathiassen, E.-L. M. Ruud, R. A. Seehuus, A. S. Simonsen andM. S. Wiig,
‘Hal - a decisional autonomy module for unmanned systems’, Forvarets forskningsinstitutt,
Kjeller, FFI-rapport 2019/00489, Apr. 2019.

[5] S. Bruvoll, ‘Situation dependent path planning for computer generated forces’, Forvarets
forskningsinstitutt, Kjeller, FFI-rapport 2014/01222, Sep. 2014.

[6] M. S. Wiig, K. Y. Pettersen, E.-L. M. Ruud and T. R. Krogstad, ‘An integral line-of-sight
guidance law with a speed-dependent lookahead distance’, in Proc. IEEE European Control
Conference, Limassol, Cyprus, 2018, pp. 1269–1276.

[7] International Hydrographic Organization, ‘IHO transfer standard for digital hydrographic
data’, International Hydrographic Bureau, Monaco, Special publication No. 57, Nov. 2000.

[8] B. Delaunay, ‘Sur la sphère vide’, Bulletin de l’Académie des Sciences de l’URSS. Classe
des sciences mathématiques et naturelles, no. 6, pp. 793–800, 1934.

[9] K. Landmark and E.Messel, ‘Tools for building path planning graphs, An annotated example’,
Forsvarets forskningsinstitutt, Kjeller, FFI-rapport 2017/16168, Oct. 2017.

[10] R. L. Cook, ‘Stochastic sampling in computer graphics’, ACM Transactions on Graphics,
vol. 5, no. 1, pp. 51–72, 1986.

[11] R. Bridson, ‘Fast poisson disk sampling in arbitrary dimensions’, in ACM SIGGRAPH 2007
Sketches, ser. SIGGRAPH ’07, New York, NY, USA: ACM, 2007.

[12] M.Thoresen, ‘Hierarchical path planning for ground vehicles’,Kjeller, FFI-rapport 2015/01608,
Jun. 2016.

[13] E. W. Dijkstra, ‘A note on two problems in connexion with graphs.’, Numerische Mathematik,
vol. 1, pp. 269–271, 1959.

[14] P. E. Hart, N. J. Nilsson and B. Raphael, ‘A formal basis for the heuristic determination of
minimum cost paths’, IEEE Transactions on Systems Science and Cybernetics, vol. SSC-4(2),
pp. 100–107, 1968.

[15] D. Douglas and T. Peucker, ‘Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature’, The Canadian Cartographer, vol. 10, no. 2,
pp. 112–122, 1973.

FFI-RAPPORT 19/00229 23

[16] V. Kvernelv and S. Bruvoll, ‘Ruteplanlegging og -følging for simulering av maritime
operasjoner’, Forvarets forskningsinstitutt, Kjeller, FFI-rapport 2015/02231, Apr. 2016.

[17] G. Fenoy, N. Bozon and V. Raghavan, ‘Zoo-project: the open WPS platform’, English,
Applied Geomatics, vol. 5, no. 1, pp. 19–24, 2013, issn: 1866-9298.

24 FFI-RAPPORT 19/00229

A Appendix

A.1 Algorithms

Sub-routines used by Algorithm 1

Algorithm 2 Find max simplification
Input: route
Input: start_node

cleared_nodes← []
last_valid_node← start_node
for node← start_waypoint to route[end] do

line← create_line(start_node, node)
line_is_safe← check_line(route, cleared_nodes, line)
if line_is_safe then
last_node← node

end if
cleared_nodes.push_back(node)
return last_valid_node

end for

Algorithm 3 Check line
Input: route
Input: cleared_nodes
Input: line

for all node in cleared_nodes do
if node.type == SHALLOW then

critical_distance← min_distance_from_land
else
critical_distance← min_distance_from_near_land

end ifdistance_to_line← distance_point_to_line(node, line)
if distance_to_line < critical_distance then

return false
end if

end for
return true

FFI-RAPPORT 19/00229 25

About FFI
The Norwegian Defence Research Establishment (FFI)
was founded 11th of April 1946. It is organised as an
administrative agency subordinate to the Ministry of
Defence.

FFI’s mIssIon
FFI is the prime institution responsible for defence
related research in Norway. Its principal mission is to
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief
adviser to the political and military leadership. In
particular, the institute shall focus on aspects of the
development in science and technology that can
influence our security policy or defence planning.

FFI’s vIsIon
FFI turns knowledge and ideas into an efficient defence.

FFI’s chArActerIstIcs
Creative, daring, broad-minded and responsible.

om FFI
Forsvarets forskningsinstitutt ble etablert 11. april 1946.
Instituttet er organisert som et forvaltnings organ med
særskilte fullmakter underlagt Forsvarsdepartementet.

FFIs Formål
Forsvarets forskningsinstitutt er Forsvarets sentrale
forskningsinstitusjon og har som formål å drive forskning
og utvikling for Forsvarets behov. Videre er FFI rådgiver
overfor Forsvarets strategiske ledelse. Spesielt skal
instituttet følge opp trekk ved vitenskapelig og
militærteknisk utvikling som kan påvirke forutsetningene
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs vIsjon
FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdIer
Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisationFFI’s organisation

Forsvarets forskningsinstitutt
Postboks 25
2027 Kjeller

Besøksadresse:
Instituttveien 20
2007 Kjeller

Telefon: 63 80 70 00
Telefaks: 63 80 71 15
Epost: ffi@ffi.no

Norwegian Defence Research Establishment (FFI)
P.O. Box 25
NO-2027 Kjeller

Office address:
Instituttveien 20
N-2007 Kjeller

Telephone: +47 63 80 70 00
Telefax: +47 63 80 71 15
Email: ffi@ffi.no

	(U) Summary
	(U) Sammendrag
	Introduction
	The Odin USV
	Capabilities of Odin
	Route planning for Odin

	Graph generation
	Water types
	Clustering and cost function

	Route planning
	Shortest path in the graph
	Use of pgRouting
	Cost function
	Basic route planning examples

	Route simplification
	Methods for line simplification
	A new method for situational aware route simplification

	Using the route planner
	Interfaces
	FFI Ground Control Station
	ROS interface

	Conclusions and future work
	Future work

	References
	Appendix
	Algorithms

