
Using Publish/Subscribe for Short-lived IoT Data

Frank T. Johnsen

Norwegian Defence Research Establishment (FFI)

P.O. Box 25

2027 Kjeller, Norway

Abstract—Efficient distribution of IoT sensor data requires
one-to-many communication, for which publish/subscribe is a
better communication approach than request/response. In this
paper, the goal is to identify the/those publish/subscribe proto-
col(s) that are best suited for IoT data. The premise is that data
should be as fresh as possible. Hence, the metric is end-to-end
delay and the recommended approach is the solution that yields
the lowest delay under the test conditions. Raspberry Pi 3 was
used as the testbed, since it is representative as an IoT platform.
The protocols evaluated are: AMQP, MQTT, MQTT-SN, STOMP,
WSN, and XMPP, as well as using a mediation service to translate
between them.

I. INTRODUCTION

The term Internet of Tings (IoT) can be traced back as early

as 1999 when Kevin Ashton used it to describe a network

that linked physical “stuff” to the Internet. Nevertheless, it

would be a few years before “IoT” became an active research

area and the buzzword it is today. There are many different

interpretations of what IoT is, but the core idea stems from

Ashton. A more recent and elaborate definition of IoT is as

follows:

The Internet of Things (IoT) describes the revolution

already under way that is seeing a growing number

of internet enabled devices that can network and

communicate with each other and with other web-

enabled gadgets. IoT refers to a state where Things

(e.g. objects, environments, vehicles and clothing)

will have more and more information associated with

them and may have the ability to sense, communi-

cate, network and produce new information, becom-

ing an integral part of the Internet. A widespread

Internet of Things has the potential to transform how

we live in our cities, how we move, how we develop

sustainably, how we age, and more. – From [1]

The reason why IoT has become commonplace over the last

five years is that a number of factors that can be considered

mandatory precursors to this phenomenon have come into

place:

• Cheap sensors (easily accessible from eBay, deal extreme,

etc).

• Cloud computing (serves as a backend for IoT systems

and can handle big data)

• Powerful smartphones (often used as a consumer’s con-

trol panel in the IoT context)

Given these precursors, there have been many business ideas

in the healthcare sector, logistics and other areas that give

rise to a number of applications that fuel the current IoT

trend. IoT as a concept is definitely relevant in a defense

context. An example of this is the pioneer work described

in [2], which deals with the use of sensor networks and

lightweight processing platforms that require low power. IoT

includes several disciplines, as one needs networking, em-

bedded hardware, software architectures, sensors, information

management, data analysis and visualization to fully leverage

the concept. A key component within IoT is the use of

distributed online devices that communicate using Internet

protocols. A “thing” in IoT may be any device that is able to

communicate, gather data or offer some kind of control. With

this wide interpretation of “things”, IoT may include, but is

not limited to: Vehicles, appliances, medical equipment, power

grids, transport infrastructure and production equipment.

Military organizations can exploit IoT deployed in battle-

fields and operational theaters to improve situational aware-

ness, mission performance and achieve information superior-

ity [3]. Within NATO, the Research Task Group (RTG) IST-

147 “Military Application of Internet of Things” is investigat-

ing how to best employ IoT in a coalition force, particularly

in the context of augmenting situational awareness in military

operations in smart cities [4].

Today there is a great focus on using Commercial off-the-

shelf (COTS) products where possible because it is considered

a cost-effective way of acquiring a capability. This idea is well

rooted in NATO, and has been considered foundational for an

effective Network Enabled Capability (NEC) as identified in

the NATO NEC Feasibility Study [5]. In this study it was also

pointed out that the principles of service orientation must be

taken into account when building distributed systems. These

observations can be continued within the IoT venture, as there

will also be a need to build large, efficient and interoperable

systems.

NATO has identified a set of Core Services, which pro-

vide common communication functionality that other services

(e.g., C2 services) depend upon. An example of a Core

Service is messaging, which includes both request/response

and publish/subscribe services. In this paper, the focus is

publish/subscribe services as applied to support IoT. Here,

the focus is on short-lived IoT data, in other words data that

comes fresh from a sensor and needs to be delivered as soon

as possible. Publish/subscribe is considered the most efficient

communication paradigm for this type of data, in contrast

to long-lived data, where the new approach of Information-

Centric Networking offers some desirable properties [6].

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 645–649

DOI: 10.15439/2018F232

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 645



Fig. 1. Publish/subscribe information flow. It is assumed that subscriptions have been set up prior to this occurring.

II. PUBLISH SUBSCRIBE PROTOCOLS

The publish/subscribe pattern implies that a consumer ex-

plicitly signals its interest in a given type of data by registering

a subscription. The most common approach to signal such an

interest is through a topic, i.e., a string that is used to identify

the data a consumer is after. When new data is available on

a certain topic, all consumers that have expressed interest in

that topic receive it. This pattern is particularly well suited

for IoT, as many sensors produce information more or less

periodically, and thus, a push-pattern can reduce network

activity considerably when compared to using a request/re-

sponse or pull-pattern. A broker is used between the producer

and consumer. Its tasks include subscription management

and message dissemination according to topics, so that the

producer only has to send new data to the broker, which then

handles all further dissemination. For an illustration of the

publish/subscribe pattern, see Fig. 1.

A number of publish/subscribe standards exist. This paper

considers several of the most commonly available standards

today. A short overview of the protocols follows.

A. Message Queue Telemetry Transport (MQTT)

MQTT is a popular publish/subscribe protocol for IoT,

standardized as ISO/IEC PRF 20922 [7]. It provides publish/-

subscribe messaging for resource-constrained devices: Low

processing power, low memory, as well as network constraints.

MQTT is designed to function well over unreliable networks

by providing three levels of Quality of Service (QoS): Level 0,

“at most once”-semantics – messages are delivered on a “best

effort” basis. As MQTT is based on TCP, this is usually

enough to ensure delivery. However, if the TCP connection is

broken there will be no retransmission later on reconnection

with this QoS level. So, though not likely, message loss

can occur. Level 1 provides “at least once”-semantics, where

messages are assured to arrive but duplicates can occur, hence

systems must be able to handle duplicate packets. Level 2

gives “exactly once”-semantics, so messages are assured to

arrive exactly once. This latter method requires an exchange

of four packets, and decreases performance of the broker.

B. MQTT for Sensor Networks (MQTT-SN)

MQTT-SN is, in short, a version of MQTT that is optimized

specifically for sensor networks [8]. The major difference is

that it uses UDP as the underlying transport protocol rather

than TCP.

C. Advanced Message Queuing Protocol (AMQP)

AMQP [9] is a binary wire protocol, which was designed

as a reliable and interoperable open replacement for exist-

ing proprietary messaging middleware. As the name implies,

it provides a wide range of features related to messaging,

including reliable queuing, topic-based publish-and-subscribe

messaging, flexible routing, transactions, and security. AMQP

has been shown to be scalable and reliable, and is much

used for civilian applications, notably for supporting financial

transactions and also as a backbone in cloud computing

clusters.

D. Web Services Notification (WSN)

NATO has chosen WSN [10] for publish/subscribe in its

SOA baseline [11]. WSN is a part of the family of SOAP Web

services standards. SOAP services promote interoperability,

but being based on XML the cost is increased overhead

compared to other protocols.

E. Simple/Streaming Text Oriented Messaging Protocol

(STOMP)

STOMP [12] is text-based, making it somewhat similar

to how HTTP operates. The main design principle was to

create something simple to use and understand. However, the

STOMP flavor of topics (called a destination in STOMP)

is not mandated in the protocol specification, meaning that

different brokers may support it differently. This, in turn,

lowers interoperability across brokers, since publishers and

consumers that function well with one broker implementation

may not work with another. If you don’t encounter portability

issues, then STOMP is simple, lightweight, and offers a wide

range of language bindings.

646 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Fig. 2. The Raspberry Pi 3B single board computer.

F. Extensible Messaging and Presence Protocol (XMPP)

Just like WSN, XMPP [13] is an XML-based protocol.

Unlike WSN, XMPP does not use SOAP, so it does away with

the extra abstraction layer (and thus extra overhead). XMPP

is most known as a chat (instant messaging) and presence

protocol, however it does offer additional features as well,

like SIP-compatible multimedia signaling for voice, video, file

transfer, and other applications as well as publish/subscribe

functionality. XMPP aims to be the main competitor to MQTT

for civilian IoT applications, and is, as such, interesting to

compare with MQTT to see which protocol is “best”.

III. TESTBED SETUP

The testbed was put together of two Raspberry Pi 3B single

board computers. The main motivation for using this as the

testbed was that the Raspberry Pi 3B is a somewhat capable

yet cheap computer that is representative for IoT development.

The board is shown in Fig. 2. The technical specifications of

the board are as follows [14]:

• Broadcom BCM2837 64bit ARMv7 Quad Core Processor

powered Single Board Computer running at 1.2GHz

• 1GB RAM

• BCM43143 WiFi

• Bluetooth Low Energy

• 40pin extended GPIO

• 4x USB 2 ports

• 4 pole Stereo output and Composite video port

• Full size HDMI

• CSI camera port for connecting the Raspberry Pi camera

• DSI display port for connecting the Raspberry Pi touch

screen display

• Micro SD port for loading your operating system and

storing data

One Raspberry Pi 3B functioned as the client: That is, it set

up subscriptions to pre-determined topics up front, published

messages to said topics, and ran the consumers that received

the messages. This was done so that time measurements across

publishers and consumers (via the broker) would be accurate,

since timestamps would originate from one and the same node

rather than several, where clock skew could become an issue.

The second Raspberry Pi 3B offered the protocol brokers

and the mediation service to translate between protocols. All

publishers and consumers were implemented using Java, and

the respective protocols’ native Java libraries. The brokers and

mediation service (let us call this component a multi-protocol

broker) was also Java software. In fact, the multi-protocol

broker was an extended version of the federation mechanism

described here [18], enhanced for the purpose of this paper

to support all the protocols discussed above. For networking,

100 Mbps Ethernet was used, and both Raspberry Pi 3B’s

were connected to a switch. This was done to ensure the best

possible networking conditions during the tests, so that local

disturbances and interference should not affect the results,

which could have been an issue if using e.g., WiFi.

Tests were executed as follows:

1) The multi-protocol broker was started.

2) A subscription to a topic was set up for a particular

protocol α.

3) A publisher was initiated to fire off a burst of 100

messages over protocol β.

4) Having received 100 messages, the consumer terminated

its subscription to protocol α.

5) The duration of steps 3-4 above was measured.

6) Steps 1-5 above were repeated for all α, β of protocol

permutations.

IV. RESULTS

Tab I shows the results when transmitting 100 messages.

This table shows when the publisher sends 100 consecutive

messages via the multi-protocol broker. The consumer receives

the messages, and terminates the subscription after message

number 100. The time (in seconds) of this entire burst of

messages was measured here.

We see that WSN is the overall loser when considering our

protocol delay metric. Consistently WSN shows the highest

delays here. We see that having WSN as either the publisher

or subscriber results in a high delay, with an even higher

delay exhibited (just over 20s – the highest in the test)

when both publisher and subscriber used WSN. This can be

attributed to the SOAP layer used in the protocol; having this

extra abstraction layer on top of HTTP does have an impact

performance wise.

Of the other protocols, the performance difference is not so

large when considering publisher/subscriber pairs of the same

protocol (no translation is involved – indicated in bold in the

table). Here, we see that AMQP is the “worst” (just above

4.5s) and STOMP is the “best” (just above 2.5s). This is un-

derstandable when thinking about the fact that AMQP provides

a reliable message queue. Messages are ensured delivery and

acknowledged in the queue. STOMP does not perform this

added value service. MQTT achieves slightly better results

than MQTT-SN, which again is slightly more efficient than

XMPP (just over 3s). At first glance this may seem strange,

since MQTT-SN is based on UDP which inherently has lower

overhead than TCP, which is the underlying transport in

FRANK TRETHAN JOHNSEN: USING PUBLISH/SUBSCRIBE FOR SHORT-LIVED IOT DATA 647



TABLE I
PROTOCOL DELAY PUBLISHING AND RECEIVING 100 MESSAGES.

AMQP Sub. MQTT Sub. MQTT-SN Sub. STOMP Sub. WSN Sub. XMPP Sub.

AMQP Publisher 4.577313 5.054525 5.065977 3.529224 16.309429 4.443499

MQTT Publisher 3.022697 2.655891 2.303168 2.448346 14.992253 4.470155

MQTT-SN Publisher 3.438891 2.716955 2.895711 2.466580 14.462532 4.340074

STOMP Publisher 3.017157 3.215914 4.876303 2.256608 15.458013 4.347493

WSN Publisher 12.518343 11.745184 12.116381 11.534597 20.769935 13.644167

XMPP Publisher 7.165085 6.414229 6.492992 6.086224 16.023309 3.001673

MQTT. The reason why MQTT-SN has slightly higher delays

here, is that it is actually implemented as a gateway that uses

plain MQTT in the backend. Hence, MQTT-SN gets a slight

performance impact going through this gateway which moves

it from UDP to TCP and vice versa locally on the broker node

(UDP is used between client and broker across the network).

The remaining rows in the table show the different pro-

tocols’ delay where the impact of translating between them

is also included. We see that XMPP and WSN here show the

cost of translating to/from XML based protocols. WSN has the

impact of using both XML and SOAP, whereas XMPP only

uses XML. An interesting observation is the above mentioned

performance of the XMPP publisher/subscriber pair, which

shows that the XML-based XMPP does not perform too badly

when no translation is involved.

V. RELATED WORK

The NATO IST-090 RTG has demonstrated the use of WSN

at the tactical level. WSN has the benefit of being a NATO

recommended standard for information exchange in a coalition

environment. However, it is a resource heavy protocol and its

application at the tactical level requires applying proprietary

optimizations [15].

More recently, the IST-118 RTG conducted initial exper-

iments comparing different publish/subscribe approaches on

tactical broadband radios. Namely, WSN, MQTT and AMQP

were investigated in a preliminary small-scale study [16].

Here, MQTT was found to be a very lightweight alternative to

the other two protocols when applied in the tactical network.

Currently, the IST-150 RTG is continuing work where IST-

118 left off, and is considering MQTT specifically for use in

soldier systems on the tactical level [17].

In [18], the authors provided a solution for federating be-

tween different publish/subscribe protocols, i.e., WSN, MQTT,

and AMQP. The work in this paper uses an extended version

of that open source implementation with support for additional

protocols as the broker and mediation service (aka multi-

protocol broker) in the testbed.

VI. CONCLUSION

If you need to use UDP from your sensor to the mediation

service, then your choice is MQTT-SN, which is the only one

based on UDP of the protocols tested.

If you need interoperability with NATO (i.e., you need WSN

subscribers), then the most efficient protocols to use when

going through the mediation service are MQTT-SN (UDP)

and MQTT (TCP). You definitely don’t want your sensors to

deliver data using WSN directly, as that is the protocol with

the overall highest delay.

If you are free to choose any protocol you want for the entire

network, then using STOMP as both publisher and receiver

was marginally quicker than using any of the other protocols.

However, if you need advanced capabilities like multi broker

meshing, then MQTT or AMQP can offer that, though they

had slightly larger delays than STOMP. Though never best,

XMPP shows overall favorable results given that it is based

on XML. It goes to show that it is possible to implement a

somewhat efficient XML based protocol, in comparison with

WSN, which has very high delays. The reason for this is that

WSN, being based on SOAP, adds an extra abstraction layer

in the protocol that none of the other protocols have.

The overall recommendations are summarized in Tab. II.

TABLE II
RECOMMENDATIONS FOR PUBLISH/SUBSCRIBE COMBINATIONS.

GOAL Publisher Subscriber

Lowest overall delay STOMP STOMP

UDP necessary MQTT-SN MQTT-SN

NATO Interoperable MQTT or MQTT-SN WSN

Meshable brokers MQTT or AMQP MQTT or AMQP

The table gives an overview of which protocol combinations

to use to achieve a specific goal. Note that where the lowest

delay is not the primary goal, it is considered the secondary

goal when giving the recommendations.

VII. FUTURE WORK

The testbed consisted of a publisher and subscriber running

on one Raspberry Pi and the broker on another. Hence, it is

only a small scale test of how the protocols perform. One of

the challenges of IoT is the scale, so for future work it would

be interesting to make similar tests of a larger scale setup.

Also, it would be beneficial to test the protocol performance

over a typical IoT networking technology, such as LoRa. Other

relevant networking options would be 4G and WiFi, to name

a couple.

REFERENCES

[1] IoT Special Interest Group. Technology Strategy Board. 2013.

648 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



[2] Wind River Systems. The Internet Of Things For Defense. White Paper,
2015.

[3] Niranjan Suri et al. Analyzing the Applicability of Internet of Things
to the Battlefield Environment. IEEE ICMCIS 2016, Brussels, Belgium,
May 2016.

[4] Frank T. Johnsen, Zbigniew Zielinski, Konrad Wrona, Niranjan Suri,
Christoph Fuchs, Manas Pradhan, Janusz Furtak, Bogdan Vasilache, Vin-
cenzo Pellegrini, Michal Dyk, Michal Marks, and Mateusz Krzyszton.
Application of IoT in Military Operations in a Smart City. IEEE ICMCIS
2018, Warsaw, Poland, 22nd – 23rd May 2018.

[5] P. Bartolomasi, T. Buckman, A. Campbell, J. Grainger, J. Mahaffey, R.
Marchand, O. Kruidhof, C. Shawcross, and K. Veum. NATO network
enabled capability feasibility study. Version 2.0, October 2005.

[6] A. Carzaniga, M. Papalini, and A. Wolf. Content-based Publish/Sub-
scribe Networking and Information-centric Networking. Proceedings of
the ACM SIGCOMM workshop on Information-centric networking,
ACM, 2011.

[7] ISO/IEC 20922:2016. Information technology – Message Queuing
Telemetry Transport (MQTT) v3.1.1. ISO/IEC JTC 1 Information
technology. Publication date: June-2016. https://www.iso.org/standard/
69466.html

[8] Andy Stanford-Clark and Hong Linh Truong. MQTT For Sensor
Networks (MQTT-SN) Protocol Specification. Version 1.2. November
14, 2013. http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_
spec_v1.2.pdf

[9] RabbitMQ. AMQP 0.9.1 protocol specification. https://www.rabbitmq.
com/resources/specs/amqp0-9-1.pdf

[10] OASIS. WSN specifications. https://www.oasis-open.org/committees/
wsn/

[11] Consultation, Command and Control Board (C3B). CORE EN-
TERPRISE SERVICES STANDARDS RECOMMENDATIONS: THE
SOA BASELINE PROFILE VERSION 1.7. Enclosure 1 to AC/322-
N(2011)0205, NATO Unclassified releasable to EAPC/PFP, 11 Novem-
ber 2011.

[12] STOMP Protocol Specification, Version 1.2 http://stomp.github.io/
stomp-specification-1.2.html

[13] XMPP is the open standard for messaging and presence. https://xmpp.
org/

[14] Farnell.com. Raspberry Pi 3 Model B. http://www.farnell.com/
datasheets/2020826.pdf

[15] IST-090. SOA Challenges for Real-Time and Disadvantaged Grids, Final
Report of IST-090. AC/323(IST-090)TP/520. NATO. Published April
2014

[16] IST-118. IST-118 SOA recommendations for Disadvantaged Grids:
Tactical SOA Profile, Metrics and the Demonstrator Development Spiral.
Paper presented at the SCI-254 Symposium on “Architecture Assessment
for NEC”. 14-15 May, 2013 in ESTONIA.

[17] Marco Manso, Frank T. Johnsen, Ketil Lund, and Kevin Chan. Using
MQTT to Support Mobile Tactical Force Situational Awareness. IEEE
ICMCIS 2018, Warsaw, Poland, 22nd – 23rd May 2018.

[18] Eirik Bertelsen et al. Federated publish/subscribe services. 9th IFIP
International Conference on New Technologies, Mobility & Security
26 to 28 February 2018. Paris, France.

FRANK TRETHAN JOHNSEN: USING PUBLISH/SUBSCRIBE FOR SHORT-LIVED IOT DATA 649


