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ABSTRACT 

We report on the development and application of a random forest regressor that not only identifies but also estimates the 

relative concentrations of substances (one explosive and two simulants), both in one-substance and two-substance 

samples. Performance of the regressor is quantified using Receiver Operating Characteristics and the performance is 

contrasted with that of a simple Spectral Angle Mapping technique that worked well on single-substance samples [1-3]. 

Keywords: THz (differential) spectroscopy, spectral angle mapping, random forest regressor, receiver-operating 

characteristics 

1. INTRODUCTION 

Detection of transported illegal substances such as explosives and drugs remains a challenge for many customs 

authorities and a number of tools have been developed to counter the trafficking of such goods. Possibly, a combination 

of technologies needs to be used to improve the rate of success in such an endeavor. THz-technology has been shown, at 

least in the laboratory, to be able to detect a large number of chemical compounds. 

Common for a large number of explosives and drugs is that they have spectral fingerprints in the 0.1 – 10 THz range, 

which many of the THz sources and detectors cover. An added advantage of the technology in these types of applications 

is the transparency of many common packaging materials, such as plastic, cardboard, and cloth, in this frequency range. 

This makes it possible to detect and identify concealed materials. The development of an imaging capability makes it 

possible to visualize hidden objects, shapes with different optical properties than their background, helping to identify 

suspicious objects, such as weapons or containers. By combining the spectroscopic and the imaging capability, detection 

of suspicious objects and subsequent substance identification seems in reach. However, there are a number of obstacles 

that have to be overcome before a reliable “identifier” is realized. Some of these difficulties, which are of course widely 

known, are listed in [1]. 

There is a vast body of literature [4-18] on identifying substances by comparing their spectra. Spectral features have been 

measured in numerous wavelength bands corresponding to the energies of the transitions of interest. The purpose of this 

work is to compare different schemes for comparing spectra and to find some objective measure to rank them. Equally 

important, we are interested in finding what the limitations are of the different schemes. 

A general detection/identification scheme consists of transforming the measured raw data, a time-domain THz signal in 

our case, into a spectral characteristic, for instance the absorbance spectrum. This spectral characteristic has then to be 

compared, in some way, to known spectral characteristics. This comparison requires a measure of similarity or distance 

and a threshold so that a match or not-a-match may be declared. The performance of the detection/identification scheme 

is quantified by studying the Receiver Operating Characteristics (ROC) of the scheme: false positive rates and true 

positive rates are found as the threshold for declaration of detection/identification is swept from a minimum to a 

maximum value, zero to one, for instance. 

To limit the scope of this work we consider only one spectral characteristic, the absorbance spectrum, and we did not 

investigate the effect of smoothing on the detection/identification performance of the schemes. 

Millimetre Wave and Terahertz Sensors and Technology XI, edited by Neil A. Salmon, 
Frank Gumbmann, Proc. of SPIE Vol. 10800, 1080009 · © 2018 SPIE

CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2325529

Proc. of SPIE Vol. 10800  1080009-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/24/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

After describing the SAM and RFR schemes we briefly outline the specifics of ROC’s, followed by a presentation of the 

THz transmission measurement set-up, samples used and procedure employed. Next, we describe the analysis we 

performed and present the results we obtained. These results are reiterated and discussed in the Summary section. 

 

2. SPECTRAL ANGLE MAPPING (SAM) 

The simplest and most intuitive method for comparing spectra is SAM. A measured spectrum is viewed as a vector and 

this vector’s dot-product with library vectors (spectra) is calculated and then normalized by the lengths of the two 

vectors. In fact, one calculates the cosine of the angle between the vectors. Identical vectors point in the same direction, 

the angle between them is zero and the cosine equals 1. When the correlation between two vectors is small, their angle 

will be quite different from zero and the cosine significantly less than 1. The cosine of the angle is a direct correlation 

measure. When a threshold is defined then all correlations larger than the threshold will be declared a match and all 

others not-a-match. The only “intervention” is the choice of the threshold value. 

 

3. RANDOM FOREST REGRESSOR (RFR) 

RFR is a form of decision tree learning that produces a data classifier. By interrogating the data with questions that may 

be answered with a simple yes or no, the data is partitioned into finer and finer branches and ultimately into leaves, the 

classes. In a well-known example, one could ask: What is the chance of a particular passenger to survive the Titanic 

disaster? Is it possible to generate a list of successive queries to be asked of the data that will result in a correct 

classification: survivor or not? For instance, one could first divide the passengers into female and male, next divide them 

into over or under 20 years of age, then whether they travelled with family or not, and so on. In this example the solution 

is known: all the passengers on the Titanic are accounted for and both survivors and non-survivors can be grouped 

accordingly. The data may be used to train the classifier and then it could be used to predict the survival rates of future 

ship disasters. Rather than using a single decision tree one could consider using an ensemble of trees (a forest), each 

operating on a subset of the original input data, and then use a simple voting procedure to combine the results from the 

individual trees. In the case the predicted data are continuous (real) numbers, rather than discrete values, the classifier is 

called a regressor. A good introduction to the subject matter is Ref. 20. 

The training set of The RFR (RandomForestRegressor function from the Python library sklearn, version 0.19.1) is 

based on spectral imaging of three samples: (i) 10% RDX in Teflon, 4-mm thick, (ii) 10% Lactose in Teflon, 4-mm 

thick, (iii) 10% Tartaric acid in Teflon, 4-mm thick. The 30-mm diameter samples were imaged in 2.3-mm steps 

resulting in about 110 spectra for each of the substances. This set of about 330 spectra is not sufficiently large to train the 

regressor, especially since the goal is not only identify but also quantify the relative content of active substances. We 

extended the training set with synthetic spectra. The synthetic spectra were generated by randomly selecting two 

numbers (weights) from the sequence 0.0, 0.1, 0.2, …, 1.0 and then randomly selecting two spectra from the set of 

measured data (three classes) augmented with no-known-substance spectra (4
th

 class) which are essentially low-pass-

filtered random spectra. There are two rules: (i) the first two random numbers cannot be both equal to zero and (ii) the 

two spectra are taken from different classes. Synthetic spectra are formed by multiplying the first weight by the first 

spectrum, the second weight by the second spectrum, and summing the two terms. The resulting training set has 100.000 

spectra. 

The violin plot in Fig. 1 gives an impression of how well the RFR predicts the fraction of RDX present in the synthetic 

spectra. Plotted is the predicted fraction as a function of the actual fraction. The dashed line symbolizes the expected 

relationship and each symbol is formed as the distribution of predicted fractions  
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Figure 1. Relationship between predicted and actual fraction of RDX in the synthetic spectra. The symbols give an impression of the 

distribution of predicted values. The dashed line is the expected relationship. 

 

4. RECEIVER OPERATOR CHRACTERISTICS (ROC) 

ROC is a tool that is used to compare the performance of classifiers. A ROC is a plot of the true-positive rate (TPR) as a 

function of the false-positive rate (FPR) and is generated by sweeping the threshold value from the minimum to the 

maximum value and for each value counting the number of true and false positive matches that are found. For small 

threshold values, all data have larger correlation values than the threshold value and all true and false matches are 

detected, i. e. both the TPR and the FPR are 1. For maximum threshold value, all the data falls below the threshold and 

neither a false-positive nor a true positive is detected: TPR = FPR = 0. For intermediate values of the threshold, both 

true-positives and false-positive will be detected. For a good classifier the TPR > FPR and the ROC tends to bend 

towards the upper left-hand corner of the FPR-TPR space, where FPR = 0 and TPR = 1. The further the ROC is from the 

diagonal, the better the classifier is. This then provides a means to compare classifiers. 

 

5. EXPERIMENT 

The THz setup is based on a fiber-coupled time-domain spectroscopy system pumped by 100-fs pulses at 780 nm 

wavelength from a frequency-doubled Er-doped fiber laser [19]. THz images are acquired by mounting a sample holder 

on an x–y stage, which is scanned through the beam, with step size 5 mm for the training and reference data and 2 mm 

for the target data, while the transmitted THz waveform is captured. In this way a THz spectrum (after Fourier 

transform) is acquired for each stage position (pixel). A schematic of the setup is shown in Fig. 2. The distance between 

the emitter and detector modules is 31 cm and the sample holder has room for 3 x 3 sample pellets, with diameter 32 mm 

and thickness up to 4.2 mm. Fig. 1 (inset) shows the labeling of the sample positions. Teflon (25 µm average particle 

size) was used as a binder material, which was mixed with tartaric acid, lactose, or RDX and then pressed into pellets 

using a 2 ton press in two minutes. The top row of the sample holder (position 1–3) was used for reference 

measurements: a pure Teflon sample (4 mm thickness, position 1), no sample (position 2), and a metal plate (position 3). 

All measurements were performed in ambient air (21–26 
o
C, 10–50% relative humidity). The signal at each position of 

the x–y stage (pixel) was measured with a time window of 60 ps and a scan speed of 1 ps/s, with a sample rate of 32 Hz. 

Measurements were taken on two sets of samples: one used to train the RFR and one to judge the performance of the 

RFR. For training the six remaining slots in the sample holder contained the samples listed in Table 1 (columns 2 and 3), 

whereas the samples used to generate the unknown target set are listed in the last two columns of Table 1. 
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Table 1. Samples used to generate training set, columns 2 and 3, and samples used to verify RFR performance. 

 Samples for training set Samples for verification 
Position Active compound Thickness (mm) Active compound Thickness (mm) 

4 Tartaric acid 10% (unground) 4 RDX 5%, Lactose 5% 4 

5 Tartaric acid 10% 1 Tartaric acid 5%, RDX 5% 4 

6 Tartaric acid 5% 4 Lactose 5%, Tartaric acid 5% 4 

7 RDX 10% 4 RDX 10% 4 

8 Lactose 10% 4 Lactose 10% 4 

9 Tartaric acid 10% 4 Tartaric acid 10% 4 

 

Figure 3(left) shows reference spectra for an open beam (air) and blocked beam (noise). All spectra were calculated from 

the time-domain signals by calculating the Fourier transform (FFT). The reference spectra indicate a bandwidth of about 

2.5 THz and a peak signal-to-noise ratio (SNR) of about 60 dB. Figure 3(right) shows the absorbance for samples 

containing RDX (10%, 3.5 mm thickness), tartaric acid (10%, 4.0 mm thickness), and lactose (10%, 4.2 mm thickness). 

These samples were used as reference samples in the spectral library. The part of the spectrum spanning the frequency 

range 0.1 to 1.5 THz was used in the correlation calculations, as the SNR is high in this frequency range (SNR > 40 dB 

for an open beam). Although there are several water vapor absorption lines in this wavelength range [2], we did not 

perform any numerical removal of water lines in the data processing. The location of the water lines was used to verify 

the calibration of the frequency axis in our measurements.  

 

 
Figure 2. Experimental setup. Two fiber-coupled photoconductive antennas act as emitter and detector modules, which are 

separated by 31 cm. A sample holder, with transverse dimensions 15 x 15 cm, is scanned through the THz beam. Inset: 

Sample holder with labeled sample positions. 

  

Figure 3. Left: Reference spectra of air and noise (blocked beam). The maximum power SNR > 60 dB and the many water 

absorption lines are clearly visible. Right: Absorbance of the three pure substances considered in this study: tartaric acid 

(blue), lactose (green), and RDX (red). 
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Spectra are not corrected for background scattering effects. 

6. ANALYSIS RESULTS 

6.1 Spectral Angle Mapping 

As an example of the SAM analysis we show in Figure 4 (left) the correlation (SAM) of the target image spectra with the 

RDX reference spectrum. To find the location of the samples in the image we use the relative time delay of the THz 

pulse. Since the samples (4 mm thick) are significantly thinner than the sample holder (Teflon, 25 mm), the THz pulse 

through the samples is much less delayed than through the holder, providing a simple and error free method to separate 

sample spectra from other spectra. 

  

Figure 4. Left: Spectral correlation of target image with RDX. The color bar indicates the correlation scale. Right: Relative 

time delay of the peak of the THz pulse. The color bar indicates the delay in ps. The delay clearly separates the samples 

(blue) from the rest of the image and is used to identify the true sample pixels. 

Looking at the left panel of Fig. 4 we observe that the best correlation is obtained for the pixels in sample position 7 

(10% RDX) followed by the pixels in sample positions 4 (5% RDX + 5% Lactose) and 5 (5% RDX + 5% Tartaric acid). 

This result is of course anticipated: best correlation with the purest sample and less, but still significant, correlation with 

the mixed samples. We observe also that the contrast with the background (sample holder) is relatively small and it 

seems there is correlation also with spectra corresponding to sample position 6, which contains a mixture of Lactose and 

Tartaric acid only. Clearly this result points towards problems with high false alarm rates. Since we did not correct the 

spectra for background spectra, a significant part of the correlation comes from the background contribution. This is also 

the reason we experimented with the derivative of the spectrum in earlier work [3], yielding larger contrasts. 

The correlation results for Lactose and tartaric acid are shown in the left and right panels of Fig. 5, respectively. Similar 

remarks may be made about those results. 

 

Figure 5. Spectral correlation of target image with Lactose (left) and Tartaric acid (right). The color bar indicates the 

correlation scale. 
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In an attempt to quantify these observations we plotted the average, over the true sample pixels, as well as the standard 

deviation, of the correlation between the six samples and the three compounds. The results are plotted in Fig. 6. For all 

three substances one can define a demarcation between samples that contain the target compound and samples that do 

not, however, the separation between the two groupings is not large. Another complication is the significant correlation 

of the compound spectra with the background (sample holder) spectra, whose average value is indicated by the solid 

lines in the panels  

 

   

Figure 6. Average (over sample) correlation for each of the six samples in the holder with the three substances: RDX (left), 

Lactose (middle), and Tartaric acid (right). The line indicates the correlation of the background with the substance. R/L, 

T/R, and L/T refer to the mixed samples RDX/Lactose, Tartaric acid/RDX, and Lactose/Tartaric acid. 

From an operational point of view, ROC’s are of great interest because they describe the relationship between the true 

positive rates and the true negative rates of identification. For the true positive rates one considers only the pixels that 

“contain” the substance of interest and for the false positive rates one considers the pixels that do NOT “contain” the 

substance of interest. In the case of SAM, one then sweeps the threshold from -1 to +1 (the range of correlation values) 

in small steps and counts how many pixels have a correlation that is larger than the threshold value for these two pixel 

sets and then divide by the respective total number of pixels in each set.  

As a starting point we first considered the bottom third of the image, “containing” only the unmixed samples. As the 

ROC in Fig. 7 (left) shows the curves tend to crowd into the upper left-hand corner, where the true positive rate is high 

and the false positive rate is low, the ideal situation. Especially RDX and Tartaric acid are easily detected correctly. 

Lactose detection seems more difficult. 

 

Figure 7. Receiver Operating Characteristics for recognition of RDX, Lactose, and Tartaric acid in (left) unmixed samples and (right) 

mixed samples obtained using SAM. 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

RDX

Lactose

Tar. acid

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

RDX

Lactose

Tar. acid

Proc. of SPIE Vol. 10800  1080009-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/24/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



10

20

30

40

50

60

70

RDX content

0 10 20 30 40 50 60 70

14%

12%

10%

8.0%

6.0%

4.0%

2.0%

0.0%

io

20

30

40

50

60

70

Lactose content

20 30 40 50 60 70

14%

12%

10%

8.0%

6.0%

4.0%

2.0%

0.0%

10

20

30

40

50

60

70

Tartaric acid content

10 20 30 40 50 60 /0

14%

12%

10%

8.0%

6.0%

4.0%

2.0%

U 0"-L

 

 
 

 

Next, we considered the middle third of the image, the one that “contains” the mixed sample only. The ROC for this part 

of the image is shown in Fig. 7 (right). Although Tartaric acid still can be detected easily without many false positives, 

the situation for the other two substances is worse, with reliable detection of Lactose practically impossible in the mixed 

samples considered here. 

 

6.2 Random Forest Regressor 

The result of applying the trained RFR to the unknown target image is shown in Fig. 8. The color in the image 

corresponds to the relative content of the active compound in the sample, full scale (red) corresponding to 14%. The 

unmixed samples (bottom row in each image) are easily identified and their relative content of the active compound, 

10%, correctly indicated. The same holds true for the mixed samples, middle row, where the content is correctly 

estimated at about 5%. 

  

 

 

 

Figure 8. Estimation of the active-compound content in the sample. Full scale of the color bar corresponds to a content of 14%. 

As for the SAM procedure we calculate the average value of the estimated active-compound fraction, as well as its 

standard deviation, for each of sets of sample pixels. These values are plotted in Fig. 9. 
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Figure 9. Average, over the sample pixels, predicted fraction (%) of active compound present in sample: left – RDX, middle – 

Lactose, right – Tartaric acid. R/L, T/R, and L/T refer to the mixed samples RDX/Lactose, Tartaric acid/RDX, and Lactose/Tartaric 

acid. 

 

The unmixed samples contain 10% of the active compound, whereas the mixed samples contain 5% of the active 

compound. We observe that the RFR generally predicts the content within the margin of error for both RDX and Tartaric 

acid, but slightly over-predicts the Lactose content in the mixed samples. Note that our RFR predicts practically zero-

content for samples that do not contain that compound. Comparing Fig. 9 with Fig. 5 shows that the RFR output has a 

much larger dynamic range, allowing for a clearer classification. This observation is reinforced by looking at the ROCs 

for this output. 

In order to generate the ROCs we have to transform the data to make them fit the typical ROC mold. The predicted 

values are distributed around the target values: 5% for the two-substance samples and 10% for the one-substance 

samples. In principle the range of predicted values has no bounds, contrary to the SAM case where the range of 

correlation values is limited to [-1, +1]. In the RFR case we have two target values. By taking the absolute difference 

between predicted and target value and subtracting it from the data range has an upper bound, +1. 

We cannot simply let a threshold value run from -1 to +1 in small steps, as we did in the SAM case. In principle the 

threshold range is not bounded. The predicted values for the unmixed samples are expected to lie around 10%, but some 

prediction may result in values larger than 10 %. In this case the distance between the predicted and actual fractions is of 

interest: an over-prediction by 1 %-point is equally “bad” as an under-prediction by 1%-point. We map the data by 

looking at the absolute value of the difference between predicted and actual value and subtract this from one. At least 

this gives an upper bound of +1 for the data. With a bit of trying we find a sufficiently low starting point for the 

threshold value sweep. The results are presented in Fig. 10, in a similar way to the data in Fig. 7. 
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Figure 10.  Receiver Operating Characteristics for recognition of RDX, Lactose, and Tartaric acid in (left) unmixed samples and 

(right) mixed samples obtained using RFR. 

 

The characteristics in this case are more ideal than the ones obtained using SAM (compare with Fig. 7). Most 

significantly we do not observe the strong deterioration of the performance in regard to the quantification of the lactose 

content in mixed samples. With RFR we obtain a much more robust classification. In addition, the relative content of the 

substances in the samples may be estimated 

 

7. SUMMARY 

There are many approaches that could be useful to identify substances according to their measured spectra. In this study, 

we make use of the fact that a number of interesting substances have spectral features in the THz frequency domain. This 

technology may then be used to scan mail, parcels, and even human beings for possible illegal transportation of 

controlled substances. In security applications especially, but also in most other applications, false alarm rates must be 

balanced with throughput, sensitivity, and specificity. These requirements imply automated detection, with software 

identifying spectral matches and hence the sought-after substances. In this work we looked for a classifier that not only 

could identify the substances of interest but also estimate the relative amount of the substance that is present, even in 

mixed samples. 

In previous work we compared the performance of SAM and PCA and investigated spectral smoothing strategies as well 

as which spectral characteristic to use. But that work was limited to samples that contained only one substance. Here we 

consider samples that also consist of mixes of two substances. A preliminary investigation using SAM on these samples 

showed that especially the detection of Lactose in the mixed samples proved difficult: high false alarm rates. Despite the 

obvious advantages of the simplicity of the approach, one needs only single copies of library spectra and the method is 

transparent, the poor results require a different approach. 

Looking for a different approach we opted for a RFR, a technique which uses an ensemble of decision trees in which the 

data is sorted and binned in consecutive steps. The technique requires a data set for training purposes, a data set that 

could be very large. Fortunately, it is possible to train the regressor with synthetic data, consisting of mixes of a more 

limited set of measured spectra.  

After training the performance of the regressor was validated by feeding it with spectra of both unmixed and mixed 

samples, new data that was not part of the training data. As we showed, not only were the substances identified, the 

relative substance contents were estimated with success. The improvement of the RFR over SAM is most clearly 
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demonstrated by the ROCs (Fig. 7 for SAM and Fig. 10 for RFR). Where false alarm rates, especially for detection of 

Lactose in mixed sample, caused problems for SAM, they were significantly reduced in the RFR approach. 

Looking for a reason as to why SAM has problems identifying Lactose in the mixed samples we speculate that since the 

two spectral features are rather narrow, compared to those for RDX and Tartaric acid, they may not contribute 

significantly enough to the correlation, whereas RFR is trained to look exactly for those features. Possibly, a different 

spectral characteristic, such as the derivative, which we experimented with in previous work but only on single substance 

samples, in conjunction with SAM could yield better results. In the derivative, the contribution of the background 

scattering in the spectrum, to the correlation is reduced, increasing the relative contribution of the absorption peaks to the 

correlation, and hence making Lactose more “visible” in the spectrum.  

We realize that the scope of this study is limited to only three substances of interest whose spectra do not show 

significant overlap of spectral features, but the results are very encouraging. 

 

8. ACKNOWLEDGEMENT 

The authors acknowledge support in part from the Norwegian Customs Administration for this work. 

REFERENCES 

[1] van Rheenen, Arthur D. and Haakestad, Magnus W., “Robust identification of concealed dangerous substances by 

spectral correlation of Terahertz transmission images”, IEEE Transactions on Terahertz Science and Technology, 

vol. 5, pp. DOI: 10.1109/TTHZ.2015.2400224,  March (2015). 

[2] Nystad, H. E., Haakestad, M. W., and van Rheenen, A.D., “Robust identification of concealed dangerous substances 

using THz imaging spectroscopy”, Proc. SPIE 9483, 29 (2015) 

[3] van Rheenen, Arthur D. and Haakestad, Magnus W., “Terahertz Imaging Spectroscopy - Towards Robust 

Identification of Concealed Dangerous Substances, presented at IRMMW & THz, Tucson, September (2014). 

[4] van Exter, M., Fattinger, C., and Grischkowsky, D., “Terahertz time-domain spectroscopy of water vapor,” Optics 

Letters, vol. 14, pp. 1128–1130, Oct. (1989). 

[5] Platte, F., and Heise, M., “Substance identification based on transmission THz spectra using library search”, J. 

Molecular Structure Volume: 1073   Special Issue: SI   Pages: 3-9 (2014). 

[6] There are many tutorials on PCA available on the internet, as an examples we mention L. I. Smith, (2002) 

(http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf),  and J. Shlens (2014) 

(http://arxiv.org/pdf/1404.1100.pdf) 

[7] Chan, W. L., Deibel, J., and Mittleman, D. M., “Imaging with terahertz radiation,” Rep. Prog. Phys., vol. 70, pp. 

1325–1379, Jul. (2007). 

[8] Brigada, D. and Zhang, X.-C., “Chemical identification with information-weighted Terahertz spectrometry,” IEEE 

Transactions on Terahertz Science and Technology, vol. 2, pp. 107–112, Jan. (2012). 

[9] Tonouchi, M., “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, pp. 97–105, Feb. (2007). 

[10]  El Haddad, J., Bousquet, B., Canioni, L., and Mounaix, P., “Review in terahertz spectral analysis,” TRAC - Trends 

in analytical chemistry, vol. 44, pp. 98–105, (2013). 

[11]  Fischer, B., Hoffmann, M., Helm, H., Modjesch, G, and Uhd Jepsen, P., “Chemical recognition in terahertz time-

domain spectroscopy and imaging,” Semicond. Sci. Technol., vol. 20, pp. S246–S253, (2005). 

[12]  Shen, Y. C., Lo, T., Taday, P. F., Cole, B. E., Tribe, W. R., and Kemp, M. C., “Detection and identification of 

explosives using terahertz pulsed spectroscopic imaging,” Applied Physics Letters, vol. 86, paper no. 241116, 

(2005). 

[13]  Chen, J., Chen, Y., Zhao, H., Bastiaans, G. J., and Zhang, X.-C., “Absorption coefficients of selected explosives 

and related compounds in the range of 0.1-2.8 THz,” Optics Express, vol. 15, pp. 12 060–12 067, Sep. (2007). 

[14]  Ellrich, F., Torosyan, G., Wohnsiedler, S., Bachtler, S., Hachimi, A, Jonuscheit, J., Beigang, R, Platte, F, 

Nalpantidis, K., Sprenger, T., and Hübsch, D., “Chemometric tools for analysing terahertz fingerprints in a 

postscanner,” in 37th Int. Conf. on Infrared, Millimeter, and THz Waves, Wollongong, Australia, Sep. (2012). 

[15]  Wu, H., Heilweil, E. J., Hussain, A. S., and Khan, M. A., “Process analytical technology (pat): Quantification 

approaches in terahertz spectroscopy for pharmaceutical application,” Journal of Pharmaceutical Sciences, vol. 97, 

pp. 970–984, Feb. (2008). 

Proc. of SPIE Vol. 10800  1080009-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/24/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

[16]  Watanabe, Y., Kawase, K., Ikari, T., Ito, H., Ishikawa, Y., and Minamide, H., “Component analysis of chemical 

mixtures using terahertz spectroscopic imaging,” Optics Communications, vol. 234, pp. 125–129, (2004). 

[17]  Kemp, M. C., “Explosives detection by terahertz spectroscopy–a bridge too far?” IEEE Transactions on Terahertz 

Science and Technology, vol. 1, pp. 282–292, Sep. (2011). 

[18]  van Rheenen, A. D. and Haakestad, M. W., “Detection and identification of explosives hidden under barrier 

materials - what are the THz technology challenges?” Proc. SPIE, vol. 8017, p. 801719, (2011). 

[19]  Ellrich, F., Weinland, T., Theuer, M, Jonuscheit, J., and Beigang, R., “Fibercoupled Terahertz spectroscopy 

system,” Techn. Messen, vol. 75, pp. 14–22, (2008). 

[20]  Hastie, T., Tibshirani, R., and Friedman, J., “The Elements of Statistical Learning, Springer Series in Statistics, 

Springer, New York (2001). 

[21]  Nystad, Helle E., “Comparison of Principal Component Analysis and Spectral Angle Mapping for Identification of 

Materials in Terahertz Transmission Measurements”, Master’s thesis, Norwegian University of Technology and 

Science, January (2015). 

Proc. of SPIE Vol. 10800  1080009-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/24/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


