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Abstract. The use of formal method techniques can contribute to the production of more reliable and
dependable systems. However, a common bottleneck for industrial adoption of such techniques is the needs
for interactive proofs. We use a popular formal method, called Event-B, as our working domain, and set
invariant preservation (INV) proofs as targets, because INV proofs can account for a significant proportion
of the proofs requiring human interactions. We apply an inductive theorem proving technique, called rippling,
for Event-B INV proofs. Rippling automates proofs using meta-level guidance. The guidance is in particular
useful to develop proof patches to recover failed proof attempts. We are interested in the case when a missing
lemma is required. We combine a scheme-based theory-exploration system, called IsaScheme [MRMDB10],
with rippling to develop a proof patch via lemma discovery. We also develop two new proof patches to unfold
operator definitions and to suggest case-splits, respectively. The combined use of rippling with these three
proof patches as a proof method significantly improves the proof automation for our evaluation set.
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1. Introduction

Event-B [Abr10] is a state-based and refinement-based technique to formally model and reason about sys-
tems. This technique captures requirements in an abstract formal specification and then stepwise refines
them to the final product. At each step of development, proof obligations (POs) are generated to reason
about design choices, e.g. to ensure internal coherence of the current abstraction and the refinement of an
abstract specification. A majority of POs can be automated with the proof automation support of the Rodin
toolset [Abr07, ABH+10, BH07]. Proofs of the remaining small proportion of POs need human interactions.
For large industrial applications, even this small proportion can be hundreds and thousands [Wri09]. Ar-
guably, a part of the problem is a lack of meta-level guidance. Meta-level guidance works at a strategic level,
and gives a high-level outline of proofs and provides an explanation of how each proof step relates to each
other [Bun98]. In Event-B, a significant proportion of interactively proved POs falls into a family called
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INVariant preservation (INV). INV POs are used to ensure that each invariant is preserved when a state
changes. In our survey of 35 Event-B case studies from the Deploy Event-B repository [dep02], 270 out of
427 interactively proved POs are of type INV1.

For example, in the information flow policies (IFP) case study [BFM11], 30 out of 227 POs are proved
interactively in Rodin, and 24 of these POs belong to type INV. We observe that most of INV POs follow
a pattern that one of the hypotheses is embedded in the goal. In another word, the goal is syntactically
similar to one of the hypotheses and every part of that hypothesis appears as a sub-expression in the goal. In
IFP, all 24 INV POs follow this pattern. In this paper, we argue that invariant proofs can be considered as
inductive proofs. Previously [LBG12], we have reported the use of an automated theorem proving technique
for inductive proofs, called rippling [BBHI05], to prove Event-B INV POs. Rippling automates proofs using
meta-level guidance which rewrites a goal towards a structurally similar hypothesis. The guidance is, in
particular, useful for developing proof patches to recover failed proof attempts [BBHI05, IB96]. Proof patches
work like exception handlers. When proof attempts fail and the trigger conditions of a patch are satisfied,
the proof patch is then applied to recover rippling.

We present a proof technique, called Proof Obligation Proofs Patched Automatically(POPPA), which
combines rippling and three proof patches to recover failures. A proof patch for discovering a missing lemma,
namely AhLemma, is developed on top of a theory-exploration system, called IsaScheme [MRMDB10].
Theory-exploration systems are tools to automate mathematical discovery processes including invention of
definitions, conjectures, theorems, examples, counter-examples and algorithms. In addition to AhLemma, we
develop two other proof patches, namely Skeleton Rewrite and Case Split, to unfold operator definitions and
to suggest case-splits, respectively. Our hypothesis is:

Combining rippling with the AhLemma, Skeleton Rewrite and Case Split can significantly improve proof
automation for INV POs in the Event-B domain, and potentially for other formal methods.

The main contributions of this paper are

• We illustrate that rippling is applicable to Event-B INV POs. By evaluating 86 interactively proved INV
POs from 12 existing third-party case studies2, we show that rippling succeeds on 56 POs and 44 of them
are proved automatically.

• We combine rippling and IsaScheme to develop a proof patch for lemma discovery. This proof patch
recovers 41 out of 56 failed proofs when rippling succeeds.

• We develop two other proof patches to rewrite a goal and a hypothesis and to suggest case-splits. They
are effective and essential to recover 26 and 3 failed proofs, respectively, when rippling succeeds.

§2 introduces the background of IsaScheme, rippling and Event-B. In §3 we show that INV POs are
inductive proofs, and therefore rippling is applicable. §4 and §5 present three proof patches to recover proofs
when rippling is blocked. §6 analyses the evaluation results that we ran to verify our hypothesis. Related
work and future work are discussed in §7 and §8. The source code and the evaluation data are available
online at [pap04], and the implementation details can be found in [Lin15].

2. Background

In this section we introduce IsaScheme, rippling and Event-B, as well as an Event-B running example.

2.1. IsaScheme

IsaScheme [MRMDB10] is a theory exploration system for mathematical concepts invention and lemmas
exploration. It uses higher-order formulas, called schemes, to abstract the accumulated experience of mathe-

1 This number is calculated by checking the original proof status in Rodin. Details of the results can be found at [pap04].
2 The POs used in the development set and evaluation set are collected by exporting all INV POs of the 12 case studies
from Rodin, and then filtering out those can be proved automatically by the proof methods in Isabelle [Pau94], which are
Sledgehammer [BP13] and Axe [Sch12].
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maticians. The discovery process is achieved through instantiating higher-order variables in the schemes. In
this paper we will only focus on the functionality of lemma exploration.

Schemes can be used to capture shapes of desirable lemmas. For example, the following schemes abstract
associativity and commutativity:

F1 (F1 a b) c = F1 a (F1 b c) (1)

F1 a b = F1 b a (2)

where a, b and c can either be constants or variables, and F1 is a higher-order variable. Conjectures are
generated by instantiating each higher-order variable to one of the exact term in a provided seeding pool
exhaustively. IsaScheme then applies a configurable automatic proof method to all conjectures, and returns
that are proved. To illustrate, with seeding pool {∪, ∩}, IsaScheme returns the following lemmas:

a ∪ (b ∪ c) = (a ∪ b) ∪ c a ∩ (b ∩ c) = (a ∩ b) ∩ c
b ∪ a = a ∪ b b ∩ a = a ∩ b

The processing time of lemma discovery depends on the number of higher-order variables, the size of the
provided seeding pool and the time used for proving conjectures.

2.2. Rippling

Rippling [BBHI05] is a proof plan that was originally developed for the step case of inductive proofs. The
step case follows a pattern that the inductive conclusion is syntactically similar to one of the hypotheses
and every part of that hypothesis appears as a sub-expression in the conclusion. Rippling guides rewriting
of the induction conclusion towards the inductive hypothesis until the hypothesis can be applied to simplify
the conclusion. During rewriting, the similarities between the conclusion and the hypothesis are preserved,
and the differences are reduced. To illustrate, Consider the following example:

i : rev(t @ l) = rev l @ rev t

` rev( (h # t)
↑

@ l) = rev l @ rev (h # t)
↑ (3)

where i is a named hypothesis; rev is a function to reverse a given list; # is a list constructor; @ is an
operator to concatenate two lists; and [] represents an empty list. In rippling, the differences to be removed

are called wave-fronts, which are annotated with boxes, e.g. (h # · · · )
↑

; the parts to be preserved is called

the skeleton, e.g., rev( · · · t ↑ @ l) = rev l @ rev · · · t ↑ . The arrow (↑) on the top-right-corner of the

wave-front indicates that wave-fronts move outwards.Wave-holes are the parts of the skeleton which are
surrounded by wave-fronts, e.g. t. Wave-fronts can either move outwards (↑) or inwards (↓). (↑) moves wave-
fronts upwards to the root node of a term tree, whereas (↓) moves wave-fronts downwards to a position of
a leaf node which corresponds to a universally quantified variable in the inductive hypothesis, called a sink.
The direction can be changed from outwards to inwards, but not vice versa.

Wave-rules are rewrite rules which preserve the skeleton. To guide applications of wave-rules to decrease
differences between the hypothesis and the conclusion, rippling uses a well-founded order on annotated terms
as a measure, called a ripple measure. An example is sum of distances measure [Dix05] which sums depths of
outwards wave-fronts to root node of a term tree, or depths of inwards wave-fronts to a sink. The application
of a wave-rule with a decreased ripple measure is called a ripple-step. A formal definition of rippling is given
in Appendix B.

Wave-rules can either be unconditional or conditional. For example, LHS  RHS rewrites from LHS
to RHS ; Cond =⇒ LHS  RHS rewrites from LHS to RHS only if Cond is satisfied. Some examples of
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wave-rules are3:

(X # Y )
↑

@ Z  X # (Y @ Z)
↑

(4)

rev (H # T )
↑
 rev T @ (H # [])

↑
(5)

X @ (Y @ Z)
↑
 (X @ Y ) @ Z

↑
(6)

(X1 @ H)
↑

= Y1 @ H
↑
 X1 = Y2 (7)

The step of applying the hypothesis to the conclusion is called fertilisation. There are two types of
fertilisation, strong fertilisation and weak fertilisation. Strong fertilisation happens when the conclusion
matches the hypothesis exactly. The hypothesis can be applied directly to the conclusion. To illustrate,
consider the following proof for (3):

i : rev (t @ l) = rev l @ rev t

` rev ( (h # t)
↑

@ l) = rev l @ rev (h # t)
↑

⇓ by (4)

rev (h # (t @ l))
↑

= rev l @ rev (h # t)
↑

⇓ by (5)

rev (t @ l) @ (h @ [])
↑

= rev l @ rev t @ (h @ [])
↑

⇓ by (6)

rev (t @ l) @ (h @ [])
↑

= (rev l @ rev t) @ (h @ [])
↑

⇓ by (7)
rev (t @ l) = rev l @ rev t

⇓ by strong fertilisation with i
Proved

Sometimes it is not possible to ripple the wave-fronts completely outside of the skeleton, but it is still
possible to apply the equation-based hypothesis to simplify the conclusion. To illustrate, consider the case
when wave-rule (7) is not available. The ripple-steps will stop after the application of (6). The following
example shows an alternative proof with weak fertilisation:

rev (t @ l) @ (h @ [])
↑

= (rev l @ rev t) @ (h @ [])
↑

⇓ by weak fertilisation with i

rev l @ rev t @ (h @ [])
↑

= (rev l @ rev t) @ (h @ [])
↑

⇓ Reflexive Property of Equality
Proved

The last step is not part of rippling. It is an additional step to prove the subgoal after weak fertilisation.

2.3. Event-B and a running example

Event-B uses an event-based approach to specify systems, i.e. a system transits from one state to another
when an event occurs. There are two types of components: contexts and machines. Contexts hold static in-

3 Logical implication is from right to left, but rewriting is the opposite due to backward reasoning, e.g. A ∨B
↑
 A.
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CONTEXT C0

SETS

DIGITSEQ
STATUS

CONSTANTS

connecting
seize
ringing
speech
engaged

connected
st
num

initSubs
null

AXIOMS

StatusDef : partition(STATUS, {seize}, {connecting}, {ringing}, {speech}, {engaged})
stTyp : st ∈ (STATUS ×DIGITSEQ)→ STATUS
ConnectedTyp : connected ⊂ STATUS
ConnectedDef : connected = {ringing, speech}
numTyp : num ∈ (STATUS ×DIGITSEQ)→DIGITSEQ
stnumDef : ∀x·x ∈ (STATUS ×DIGITSEQ)⇒ (st(x) 7→ num(x)) = x
InitSubs : initSubs ⊆ DIGITSEQ
NULLTyp : null ∈ initSubs

END

Description: A context may contain carrier sets, constants and axioms. DIGITSEQ and STA-
TUS are two carrier sets which represents a set of valid telephone numbers and line status of
telephones, respectively. STATUS is an enumerated type containing the following distinct con-
stants: connecting, seize, ringing, speech and engaged. Constant connected represents connected
line status of telephones. Axioms stTyp and numTyp constrain constants st and num as two total
functions (→) which are a binary relation (↔) with the total and functional properties. There
is a family of relation types in Event-B, which constrains relations with the properties such as
total, functional, injective and surjective. Constant initSubs is a set of default registered telephone
numbers. Constant null is a special value to represent an “empty” number.

Fig. 1. The CONTEXT of an Event-B model of an telephone exchange system

formation, and machines contain dynamic one. We employ an Event-B model of a telephone exchange system
as a running example4. Note that not all events of the model are presented, and only four representative
ones are given. Fig. 1 shows the context (C0 ), and Fig. 2 shows the machine (M0 ). Both figures contain
descriptions for readers who are not familiar with Event-B.

3. Invariant proof obligations as inductive proofs

When the state of an Event-B model is changed by assigning new values to variables, INV POs are generated
to verify that each invariant still holds after the state is changed. An invariant can be represented as:

inv(var1, · · · , varn)

where var1, · · · , varn are variables, and inv is a predicate. The shape of the goal can be represented as:

inv(var′1, · · · , var′n)

where var′1, · · · , var′n are the variables with the new values after an event occurs, and (′) is used to indicate
the post state of a variable. An event can change variables as following:

1. Assigning a constant value, e.g. var′i = 1; or

2. Updating a new value based on the current values, e.g. var′i = vari + 1.

3. Non-deterministic assignment, e.g. var′i : | P (vari, var
′
i)

Both case (1) and case (3) can be unified as the form of case (2). (1) can be considered as constant func-
tions, e.g. var′i = λ vari. 1, and (3) can be represented as (2) with a Hilbert’s choice operator (ε), e.g.
var′i = ε x.λx.P (vari, x), where ε is the Hilbert’s choice operator which returns x that satisfies P (vari, x).

4 This example was originally developed in Z [LW88]. We translated it and made some changes for ease of presentation.
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MACHINE M0
SEES C0

VARIABLES

subs
call
incoming
callers

INVARIANTS
SubsTyp : subs ⊆ DIGITSEQ
callTyp : call ∈ subs 7→ (STATUS × subs)
incomingTyp : incoming ∈ subs→ P(subs)
CallersTyp : callers ∈ P(subs)
CallersDef : callers = dom((call; st) � connected)
incomingDef : ∀x·x ∈ dom(incoming)⇒ x /∈ incoming(x)
NullExisits : null ∈ subs

EVENTS

Initialisation =̂

begin

act1 : call := ∅
act3 : callers := ∅
act4 : subs := initSubs
act2 : incoming := initSubs× {∅}

end

LiftFree =̂
any s
where

grd1 : s /∈ dom(call)
grd2 : s ∈ subs

then

act1 : call := call ∪ {s 7→ (seize 7→ null)}

end

RegisterSubs =̂
any sub
where

grd1 : sub ∈ DIGITSEQ
grd2 : sub /∈ subs

then

act1 : subs := subs ∪ {sub}
act2 : incoming := incoming �− {subs 7→ ∅}

end

DialNum =̂
any s, ds
where

grd1 : s ∈ dom(call)
grd2 : (call; st)(s) = seize
grd3 : ds ∈ dom(call)
grd4 : s 6= ds

then

act1 : call := call�− {s 7→ (connecting 7→ ds)}
act2 : incoming(ds) := incoming(ds) ∪ {s}

end

END

Description: A machine may contain variables, invariants and events. Variable subs records all the registered
telephone numbers in the system; call keeps track of the status of calls, including information such as callers,
callees and the current line status (e.g. ringing); call is a partial function ( 7→) from a caller to its line
status and the callee; incoming maintains the relation between a telephone number and its incoming calls.
Invariant incomingDef states that people cannot call themselves. Variable callers records telephone numbers
of connected callers. CallersDef composes call with the projection function st in order to map callers to their
line status. The mapping is further filtered (�) by line status. The domain of the resulting mapping is the
callers’ numbers.
Event Initialisation specifies the initial state of the machine; RegisterSubs registers a new telephone number
sub; LiftFree describes an action that a caller, with telephone number s, picks up a phone and gets ready to
dial the callee’s number. A subsequent action is defined in DialNum, where s is the caller’s number and ds is
the callee’s number.

Fig. 2. The MACHINE of an Event-B model of a telephone exchange system

We choose to only merge (3) into (2) while leaving (1) as a separated one, because two case can be fitted
into the inductive proof paradigm where (1) is the based case and the merged (2) and (3) is the step case.

In case (1), the shape of the goal becomes

inv(const1, · · · , constn) (8)

An example of case (1) is the INV POs generated by the Initialisation event. For case (2), var′i can be
represented as Fi(· · · , vari, · · · ). The shape of the goal can then be described as:

inv(F1(var1, · · · ), · · · ,Fi(· · · , vari, · · · ), · · · ,Fn(· · · , varn)) (9)

where F1, · · · ,Fn are functions returning a new value based on given values. This shape follows the pattern
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of the step case of inductive proofs, which makes rippling applicable. The following formula shows a rippling
annotated version of this shape5:

i : inv(var1, · · · , varn)

· · ·

` inv( F1(var1, · · · , varn)
↑
, · · · , Fi(· · · , vari, · · · )

↑
, · · · , Fn(var1, · · · , varn)

↑
)

(10)

These two shapes fit the pattern of inductive proofs, where (8) is the base case, and (10) is the step case.
Moreover, we argue that INV POs do not only syntactically follow the pattern of inductive proofs. They are
inductive proofs, as they can be considered as an induction over the length of traces of Event-B models. We
also observe that INV POs which need human interaction are mainly of shape (10). For instance, in the IFP
case study [BFM11], all 24 of the interactively proved INV POs are of shape (10). This observation conforms
to the intuition that the step case is usually more complex than the base case.

3.1. Applying rippling to INV POs

To illustrate how rippling works for INV POs, consider invariant CallersDef from Fig. 2, which is

callers = dom((call ; st) � connected) (11)

In event LiftFree from Fig. 2, variable call is updated, which is call := call ∪ {s 7→ (seize 7→ null)}. The
generated INV PO for invariant is of shape (10):

i : inv4.4(callers, call)

· · ·

` inv4.4(callers, F(call)
↑

)

(12)

where inv4.4 is λx, y. x = dom((y ; st) � connected) and F is λx.x ∪ {s 7→ (seize 7→ null)}. By unfolding
these definitions, (12) becomes:

i : callers = dom((call ; st) � connected)

· · ·

` callers = dom(( call ∪ {s 7→ (seize 7→ null)}
↑

; st) � connected)

(13)

Next, assuming that the following wave-rules are available:

(f ∪ g)
↑

; S  (f ; S) ∪ (g ; S)
↑

(14)

(f ∪ g)
↑
� S  (f � S) ∪ (g � S)

↑
(15)

dom (f ∪ g)
↑
 dom(f) ∪ dom(g)

↑
(16)

The following proof shows the use of rippling to guide the proof by moving the wave-fronts outwards until
the invariant becomes applicable to simplify the goal:

5 Note that (· · · ) is used to indicate that not all necessary hypotheses are presented.



8 Y. Lin and A. Bundy and G. Grov and E. Maclean

i : callers = dom((call ; st) �connected)
· · ·

` callers = dom(( call ∪ {s 7→ (seize 7→ null)}
↑

; st) � connected)

⇓ by (14)

callers = dom( ((call ; st) ∪ ({s 7→ (seize 7→ null)} ; st))
↑
� connected)

⇓ by (15)

callers = dom( ((call ; st) � connected) ∪ ({s 7→ (seize 7→ null)} ; st) � connected
↑

)

⇓ by (16)

callers = dom((call ; st) � connected) ∪ dom(({s 7→ (seize 7→ null)} ; st) � connected)
↑

by weak fertilisation using i :
⇓ dom((call ; st) � connected)  callers

callers = callers ∪ dom(({s 7→ (seize 7→ null)} ; st) � connected)

The goal has now been rippled. It can be easily proved6, as st projects s 7→ (seize 7→ null) to s 7→ seize
and seize is not in connected, the subterm in the goal, i.e. ({s 7→ (seize 7→ null)} ; st) � connected can be
simplified to ∅, which completes this proof. Note that weak fertilisation is applicable immediately before
applying any wave-rules. In this case, the LHS of the goal can be rewritten with the INV to

dom((call ; st) � connected) = dom(( call ∪ {s 7→ (seize 7→ null)}
↑

; st) � connected) (17)

Rippling is then finished, but the goal cannot be proved. Therefore, we delay applications of weak fertilisation
until both LHS and RHS are fully rippled. More details of this heuristic will be given in §3.2.

3.2. Heuristics for the INV POs domain

We will present two domain specific heuristics. For each heuristic, we will show the definition followed by
the motivations and explanations.

Heuristic 3.1 (Rippling-out only). INV POs are rippled outwards only.

This heuristics is from our empirical experiments that INV POs are rarely rippled inwards. In fact, we did
not find any examples for rippling-in. Hence, we constrain the direction of rippling to outwards only for INV
POs. The point of this constraint is to limit the search space for lemma conjecturing, which will be discussed
later in §5. The constraint also helps us to filter out irrelevant causes of failures during failure analysis, which
will be discussed in §4.

When an event changes the values of several variables, or when a variable occurs several times in an
invariant, INV POs would contain multiple wave-fronts. As rippling is not confluent, a branch will be created
for each choice of wave-front used for rewriting. Our empirical experiments suggest that search control is
not concerning, because the branching rate is usually between 0 and 1; when there are 2 or more branches,
often all branches can lead to a solution. However, there does exist the case where choices of wave-fronts for
rewriting matter. We do not investigate further heuristics for such cases in this paper.

Definition 3.1 (Fully rippled). A term t is fully rippled if all the wave-fronts have moved to the root
node of the term tree of t.

Heuristic 3.2 (Eager rippling). For equation-based goals, weak fertilisation is allowed to be applied only
if both the LHS and the RHS have been fully rippled.

6 “Easily proved” means that one of Isabelle’s automated provers can prove the goal. In our case we use Sledgehammer [BP13]
and Axe [Sch12], together with Isabelle’s built-in simplifier. We do not apply automated provers to the goal before fertilisation.
This is because, for interactively proved POs, trying automated provers at each rewrite step is slower than applying the prover
after fertilisation. Also, in the case when automated provers cannot prove the goal but only simplify the goal, the skeleton of
the simplified goal is often broken, and therefore makes rippling inapplicable.
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Table 1. Proof critics and the corresponding types of failures [BBHI05, IB96]

Types of failures Proof critics Effect

(a) An incorrect induction rule is applied Revising induction rule Suggest an alternative induction rule

(b) A sink is missing to absorb wave-fronts Generalisation Insert a sink by generalisation

(c) No unconditional wave-rule can be applied,
however, there is an applicable conditional wave-
rule, but the condition cannot be proved

Case analyses Suggest a case-split from the unprov-
able condition

(d) There is no applicable wave-rule Lemma calculation,
lemma speculation

Conjecture applicable wave-rules

Weak fertilisation is applicable when one side is fully rippled. However, this becomes a potential problem for
the best use of rippling for INV POs. When an equation-based invariant is defined in a way that one side is
trivial, e.g. the LHS of invariant (11), the trivially-defined side can easily become fully rippled to make weak
fertilisation applicable. In an extreme case, weak fertilisation becomes applicable immediately when rippling
starts, e.g. (13). Applying weak fertilisation too early would not contribute much to simplifying the goal.
Take (13) for example, if we apply weak fertilisation in the first proof step, the goal becomes (17). There
is little progress in simplifying the goal. Therefore, we restrict the use of weak fertilisation to the situation
where both LHS and RHS are fully rippled. With this restriction, an equation-based INV PO would become
blocked rather than fertilised, when there are no applicable wave-rules. Instead of a fertilised goal, a blocked
PO is more preferable, because we may be able to recover the proof using proof patches. We will discuss
proof patches in §4 and §5.

4. Proof patches for rippling

The meta-level guidance of rippling can be helpful to build proof patches to recover failed attempt and
eventually finish the proof.

4.1. A profile of types of failures

The first work on proof patches for rippling, known as proof critics [BBHI05, IB96], systematically inves-
tigated failures of rippling in inductive theories. It categorised the failures into 4 types. For each type of
failure, one proof critic was developed to recover failures. These 4 types of failures and the corresponding
proof critics are summarised in Table 1. Type (a) and (b) are not in the scope of this paper. Explanation is
given as below:

• Type (a): Recall that the values of variables in an Event-B model can be defined as

vari =̂ consti 1 | · · · | consti n| Fi 1(· · · , vari, · · · ) | · · · | Fi n(· · · , vari, · · · )
This recursive definition can be used to define an induction rule. The failures in type (a) suggest that
an incorrect induction rule might have been applied. Typically, this type of failure could result in proof
failures in the step case. In the INV POs domain, these failures can be interpreted as one of the Fi j is
not appropriate. Therefore, the generated INV POs cannot be proved. The corresponding patch needs
to change the Event-B model to revise Fi j This belongs to the domain of turning failed proofs into
modelling guidance [IGB10], but we focus on the cases when models are correct. Type (a) is therefore
not within our scope.

• Type (b): As rippling will not move inwards, there are no cases where a sink is required.

Therefore, we only adopt types (c) and (d) into our profile. The proof critic/patches for the failures of
type (d) is to discover a lemma. We would like to apply some more lightweight solutions before exploring for
missing lemmas, because lemma discovery is time-consuming and is not guaranteed to be successful. In some
cases, blocked rippling can be recovered by unfolding the definitions of non-recursively defined operators
in both the hypothesis and the goal. Unfolding offers an additional type of patch for type (d). However,
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Table 2. A profile of types of failures and the corresponding proof patches for INV POs

Types of failures in INV POs Proof patches Effect

(i) No applicable wave-rule is available to proceed, but rippling
can be recovered by unfolding the definitions of operators in
both the embedding hypothesis and the skeleton.

Skeleton Rewrite To rewrite the embedding hy-
pothesis and the skeleton.

(ii) No applicable unconditional wave-rule is available to pro-
ceed, however, there is a conditional wave-rule where the LHS
of the wave-fronts and the wave-hole match the goal, but the
condition of this wave-rule is not provable.

Case Split To suggest a case-split based
on the unproven condition

(iii) No applicable wave-rule is available to proceed, but there
might exist such a wave-rule which is yet to be discovered.

AhLemma To conjecture applicable wave-
rules.

Automatic Proof Methods

Wave Steps

Fertilisation

rippled

fertilised

rippling 
applicable

Rippling

recovered

Proof Patches
Skeleton Rewriting

Case Split

ahLemma

successful

successful

failed

not applicable

not applicable
successful

blocked

Fig. 3. Rippling with our proof patches

unfolding is not generally applicable to all non-recursively defined operators, as it could complicate proofs
with unnecessarily low level definitions. Therefore, we distinguish the failures which can be recovered by
unfolding as a new type. We will discuss this type of failure later in §4.2. We combine the identified types
together with types (c) and (d) as a profile for INV POs, as shown in Table 2. Type (ii) is type (c), type (iii)
is type (d).

To develop proof patches, we have analysed 20 existing industrial and academic cases studies from the
Deploy project [dep02]. The POs have been been split into two disjoint sets: a development set and an
evaluation set (see §6). The analysis has been conducted using the development set only, which contains 163
POs. Details of this can be found in [pap04].

For type (i), Skeleton Rewrite is developed to identify the operators over which no wave-rules are available
to ripple. It rewrites the problematic operators in the hypothesis and the goal to come up with alternative
embeddings. For type (ii), Case Split is developed to suggest a case split. For type (iii), AhLemma is developed
to recover rippling by conjecturing missing wave-rules. Fig. 3 shows a framework which combines rippling
with these proof patches. Note that the order of applying Skeleton Rewrite and Case Split is not important,
but AhLemma has to be at the end. Both Skeleton Rewrite and Case Split are lightweight patches, which
can return results in seconds, but AhLemma takes longer, possibly several minutes, as it need to deal with a
larger search space. Skeleton Rewrite and Case Split are discussed in §4.2 and §4.3, respectively. AhLemma
is presented separately in §5, as it is the most important and most involved proof patch among these three.

4.2. The Skeleton Rewrite patch

For each ripple-step, a wave-rule is applied to ripple a wave-front over an outer skeleton. However, for some

operators, such a wave-rule is not always available. To illustrate, for goal P(x) ` P( H(x)
↑

), rippling will
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↔ simp : r ∈M ↔N  dom(r) ⊆M ∧ ran(r) ⊆ N
↔→ simp : r ∈M ↔→N  dom(r) ⊆M ∧ ran(r) = N

←↔ simp : r ∈M ←↔N  dom(r) = M ∧ ran(r) ⊆ N
↔↔ simp : r ∈M ↔↔M  dom(r) = A ∧ ran(r) = B

7→ simp : f ∈M 7→N  functional f ∧ dom(f) ⊆M ∧ ran(f) ⊆ N
7� simp : f ∈M 7�N  functional f ∧ injective f ∧ dom(f) ⊆M ∧ ran(f) ⊆ N
7� simp : f ∈M 7�N  functional f ∧ dom(f) ⊆M ∧ ran(f) = N

→ simp : f ∈M →N  functional f ∧ dom(f) = M ∧ ran(f) ⊆ N
� simp : f ∈M �N  functional f ∧ injective f ∧ dom(f) = M ∧ ran(f) ⊆ N
� simp : f ∈M �N  functional f ∧ dom(f) = M ∧ ran(f) = N

�� simp : f ∈M ��N  functional f ∧ injective f ∧ dom(f) = M ∧ ran(f) = N

Fig. 4. Rewrite rules for relation-based operators

Preconditions:

1. Rippling is blocked;

2. The skeleton matches the pattern: R ∈M relation based operator N

3. There is at least one wave-front in M or N

4. All wave-fronts in M and N have been fully rippled, i.e., there is no skeleton outside the wave-fronts in M and N .

Applying the patch:

1. Apply the related rewrite rule to the embedding hypothesis.

2. Apply the same rewrite rule to the goal.

3. Eliminate the conjunctions generated by the rewrite rule for both the hypothesis and the goal.

4. Re-compute the embedding for every subgoal.

Fig. 5. Pseudo code of the Skeleton Rewrite patch

be blocked if there is no wave-rule to ripple the wave-front over P. Intuitively, we need to discover a missing

wave-rule to ripple the wave-front over P, e.g. P( H(x)
↑

) Q(P(x))
↑

. However, the existence of such a

wave-rule is unknown. A lightweight solution, which can work in some cases, is to rewrite the occurrences of
the problematic operators in the skeleton to other operators for which there might be wave-rules.

Using an empirical approach, we identify a family of the problematic operators which are defined based
on the binary relation(↔). For ease of presentation, we call them relation-based operators. These operators
are often used in an invariant to constrain variable types in a machine. The format of such invariant is

var name ∈ param set1 relation based operator param set2

where var name is a variable defined as a relation-based type, and param set1 and param set2 are param-
eters to construct such type. An example is invariant callTyp in Fig. 2. When param set1 or param set2
is changed, rippling the wave-front over the relation-based operator is not trivial. The core of the problem
is that the binary relation ↔ is defined by operator powerset, i.e. M ↔ N =̂ P(M × N), and the required
wave-rules are often conditional. Our solution is to allow rewriting the skeleton and suggest new embeddings
for the goal. Fig. 4 shows a list of rewrite rules for this purpose. These rewrite rules are essentially unfolding
non-recursive definitions. Fig. 5 shows the details of Skeleton Rewrite as a proof patch.

An example: Consider the following PO from event RegisterSubs and invariant callTyp in Fig. 2:

i : call ∈ subs 7→ (STATUS × subs)
· · ·

` call ∈ (subs ∪ {s})
↑
7→ (STATUS × (subs ∪ {s})

↑
)
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Rippling is blocked at the following state:

i : call ∈ subs 7→ (STATUS × subs)
· · ·

` call ∈ (subs ∪ {s})
↑
7→ (STATUS × subs) ∪ (STATUS × {s})

↑
(18)

The Skeleton Rewrite patch can be triggered, as the preconditions of Fig. 5 are satisfied:

1. Rippling is blocked

2. The skeleton, i.e. call ∈ subs 7→ (STATUS × subs), satisfies the pattern described in precondition (2).

3. Both subs ∪ {s}
↑

and (STATUS × subs) ∪ (STATUS × {s})
↑

contain a wave-front.

4. Both have been fully rippled.

By applying ( 7→ simp), the goal and the embedding hypothesis become:

j : functional call ∧ dom(call) ⊆ subs ∧ ran(call) ⊆ STATUS × subs
· · ·

` functional call ∧ dom(call) ⊆ (subs ∪ {s}) ∧ ran(call) ⊆ (STATUS × subs) ∪ (STATUS × {s})
We then continue to eliminate ∧ in the embedding hypothesis and the goal, followed by computing

the embeddings for each subgoal. This step is called piecewise fertilisation [ASG99]. It uses the following
backwards inference rule.

Γ, A′ ` A Γ, B′ ` B
Γ, A′ ∧B′ ` A ∧B (19)

where A′ is embedded in A and B′ is embedded in B. Note that this rule is a composition of the following
elementary rules:

Γ, A′, B′ ` C
Γ, A′ ∧B′ ` C

Γ ` A Γ ` B
Γ ` A ∧B

Γ, H ` C
Γ ` C

We prefer the composed rule over the elementary ones, because it can emphasis the skeleton preservation
property, e.g. between A′ and A. Each application of this rule produces two simpler subgoals with smaller
embeddings. By applying (19) twice, we have:

k : functional call

· · ·
` functional call

l : dom(call) ⊆ subs
· · ·

` dom(call) ⊆ (subs ∪ {s})
↑

m : ran(call) ⊆ STATUS × subs
· · ·

` ran(call) ⊆ (STATUS × subs) ∪ (STATUS × {s})
↑

The problematic relation-based operator has now been eliminated, and rippling can now continue. For the
first subgoal, strong fertilisation will be applied and finish the proof. For the second and third ones, AhLemma
is needed to generate missing lemmas before fertilisation can be applied. We will present AhLemma in §5.
Here, we just give the generated missing lemmas as follows:

dom(call) ⊆ subs ∪ {s}
↑
 dom(call) ⊆ subs

ran(call) ⊆ (STATUS × subs) ∪ (STATUS × {s})
↑
 ran(call) ⊆ STATUS × subs

After applying these lemmas, strong fertilisation can be applied to finish the proof.
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funcapp �− functional:
Complementary condition: x = a ∨ x 6= a

(1) [x 6= a; functional f ; x ∈ dom(f)] =⇒ f �− {a 7→ b}
↑

(x) f(x)

(2) [x = a; functional f ] =⇒ f �− {a 7→ b}
↑

(x) b

funcapp �− injective:
Complementary condition: x = a ∨ x 6= a

(1) [x 6= a; injective r; functional (((r �− {b 7→ a}) ∼));

x ∈ dom((r �− {b 7→ a}) ∼)]

=⇒ ( (r �− {b 7→ a})
↑
∼)(x) r ∼ (x)

(2) [x = a; injective r; functional ((r �− {b 7→ a}) ∼)]

=⇒ ( (r �− {b 7→ a})
↑
∼)(x) b

Fig. 6. Wave-rules and rewrites for the Case Split proof patch

4.3. The Case Split patch

There are cases where a case split is required. Rodin provides an interactive operation, called ‘dc’, to apply
case splits [Abr07, ABH+10, BH07]. For rippling, the case analyses critic [BBHI05, IB96] can suggest a case
split on the unprovable condition of an applicable conditional wave-rule if the wave-rule is in a complementary
pair, which is a pair of conditional rewrite rules that have the same LHS and complementary conditions, e.g.{

(1) P =⇒ LHS  RHS1

(2) ¬P =⇒ LHS  RHS2

We use an empirical approach to collect the conditional wave-rules and capture the patterns where a case
split is needed. With the collected patterns, we develop the Case Split proof patch which combines the case
analyses critics with some additional processes. We first introduce the patterns followed by an explanation
of the additional processes.

Conditional rewrite rules and the case split patterns The patterns correspond to functional or
injective relation-based types. A typical use of the functional property and the injective property in an
invariant relates to the function application operator. For the functional property, it is f(x) = ... 7. For the
injective property, it is r ∼ (x) = ..., where ∼ is converse of the relation. When updating f for an element a
in the domain of f , e.g. f �− {a 7→ b}, the following PO will be generated:

(f �− {a 7→ b})(x) = ...

Similarly, for r, an update is r �− {b 7→ a}, and the corresponding PO is:

(r �− {b 7→ a}) ∼ (x) = ...

To proceed with the proof, a common strategy in Rodin is to interactively apply a case split, e.g. a case
split on x = a. This strategy was documented as a proof tactic in Rodin [Rod], but only for the functional
relation.

A proof patch based on the case split critic A conditional rewrite rule can be represented in the
following format:

[Cond1; · · · ; Condn] =⇒ LHS  RHS

7 The well-definedness conditions for f(x), which are f is a partial function and x ∈ dom(f), do not appear explicitly in the
hypotheses. They are hidden in ... .
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where [Cond1; · · · ; Condn] is a list of conditions which are required to be satisfied before rewriting; LHS is
the term to be rewritten; RHS is the term after rewriting. We provide a complementary pair of conditional
rewrite rules for each pattern in Fig. 6. Only the first condition is related to the case split, called the case-
split condition. The remaining conditions are generated for the well-definedness of the function application
operator. They are often automatically proved. Therefore the presence of these conditions does not affect
the property of complementary conditions.

Note that, for funcapp �− injective(1), a similar wave-rule can be derived from funcapp �− functional(1)
using the following rule:

[b /∈ dom(r); a /∈ ran(r)] =⇒ (r �− {b 7→ a})
↑
∼  r ∼�− {a 7→ b}

↑

The derived rule is:

[x 6= a; functional (r ∼); x ∈ dom(r ∼); b /∈ dom(r); a /∈ ran(r)]

=⇒ ( (r �− {b 7→ a})
↑
∼)(x) r ∼ (x)

(20)

funcapp �− injective(1) is more generally applicable than (20), so we use funcapp �− injective(1) instead.
With a provided complementary pair, the case analyses critic can suggest a case split on the complemen-

tary condition, and then apply the corresponding rewrite rule with a matched case-split condition. However,
for the INV POs domain, the case analyses critic has the following two problems:

(i) A case split cannot be applied, if the variable x in the case-split condition is bound by a quantifier, e.g.,

∀x. (f �− {a 7→ b})
↑

(x) = ...

(ii) The subgoal, which applies the second rewrite rule of a complementary pair, is never considered as a
rippling goal, as the rewrite rule does not preserve the skeleton, e.g. funcapp �− functional(2) in Fig 6.
However, the subgoal can still be considered as a rippling goal if the term in the goal, which unifies with
the variable b in the rewrite rule of the pair, has the shape of F(f(x)), e.g.,

f �− {a 7→ f(a) + 1}
↑

(x) = ...

where the term which unifies with b is f(a) + 1, i.e. F is λx.x+ 1. The resulting subgoal after applying

funcapp �− functional(2) is still rippling-applicable as the skeleton is preserved, which is f(x) + 1
↑

= ....

To address these two problems, we introduce two additional processes. For problem (i), we check if the
case-split condition contains bound variables before applying a case split. If so, we instantiate the bound
variables both in the goal and the embedding hypothesis by Skolemising one bound variable in the goal or the
hypothesis (depending on the binding quantifier), and then instantiate the other variable with the Skolem
constant. In the case of the ∀ quantifier, we Skolemise the bound variable in the goal, then instantiate
the corresponding bound variable in the hypothesis to the Skolem constant. The ∃ quantifier is handled
the other way around. The reason to instantiate both bound variables in the goal and the hypothesis to
the same Skolem constant is that, we wish to maintain the embedding between the goal and the embedding
hypothesis8. For problem (ii), our solution is that, before applying the second rewrite rule of a complementary
pair, substituting the corresponding term a with x for b, i.e. b[a/x]. We developed a case split patch based
on the case analyses critic with the additional two processes. Fig. 7 shows the pseudo code for this patch.

8 Note that we can also keep a copy of the original quantified hypothesis.
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Preconditions

1. Rippling is blocked.

2. There is a complementary pair whose LHS matches the blocked goal.

3. The case-split conditions of both rewrite rules of the matched complementary pair are not provable.

Applying the patch:

Get a matching pair of complementary rewrite rules.
if the complementary condition contains bound variables then

Instantiate the quantifier-bound variables both in the goal and the embedding hypothesis.
end if
Apply a case split on the complementary condition.
Match rewrite rules with the subgoals by checking the case-split condition.
foreach subgoal

if the matched rewrite rule is a wave-rule then
Apply the rewrite rule directly to continue rippling.

else
if the RHS of the rewrite rule preserves the skeleton then

Apply the rewrite rule directly to continue rippling.
else

if the case-split condition is in the shape of X = Y or Y = X where X is a subterm of the skeleton in the LHS
and Y is a subterm of wave-front in the LHS then

Substitute all the occurrences of Y with X in the RHS, i.e., RHS[Y/X]
if the subsequent RHS preserves skeleton then

Apply the rewrite rule directly to continue rippling.
else

Apply the rewrite rule to the matched subgoal, and rippling is terminated.
end if

else
Apply the rewrite rule to the matched subgoal, and rippling is terminated.

end if
end if

end if
end foreach

Fig. 7. Pseudo code of the Case Split patching technique

An example: Consider invariant incomingDef in Fig. 2. The following PO is generated by event Register-
Subs9:

i : s 6= ds

j : ∀x.x ∈ dom(incoming)⇒ x /∈ incoming(x)

· · ·

` ∀x.x ∈ dom (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

⇒ x /∈ (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

(x)

(21)

Rippling is now blocked as no wave-rule is applicable. Case Split is triggered, because:

1. Rippling is blocked.

2. Subterm (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

(x) in the goal matches the LHS of the comple-

mentary pair funcapp �− functional, i.e., f �− {a 7→ b}
↑

(x).

3. Neither x = ds nor x 6= ds is provable.

By unifying the LHS of funcapp �− functional with the matched subterm, f becomes incoming, a becomes

9 The well-definedness predicates such as functional incoming are hidden in · · · of the hypothesis.
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ds, b becomes (incoming(ds) ∪ {s})and x becomes x. The related complementary condition becomes x =
ds ∨ x 6= ds. As x is a bound variable, we instantiate x in the goal and the hypothesis. (21) then becomes:

i : s 6= ds

j : x0 ∈ dom(incoming)⇒ x0 /∈ incoming(x0)

· · ·

` x0 ∈ dom (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

⇒ x0 /∈ (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

(x0)

(22)

The corresponding complementary condition becomes x0 = ds ∨ x0 6= ds. A case split on x0 = ds ∨ x0 6= ds
is then applied to produce the following two subgoals:

i : s 6= ds

j : x0 ∈ dom(incoming)⇒ x0 /∈ incoming(x0)

k : x0 = ds

· · ·

` x0 ∈ dom (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

⇒ x0 /∈ (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

(x0)

(23)

and

i : s 6= ds

j : x0 ∈ dom(incoming)⇒ x0 /∈ incoming(x0)

k : x0 6= ds

· · ·

` x0 ∈ dom (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

⇒ x0 /∈ (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

(x0)

(24)

Subgoal (24) matches funcapp �− functional(1), and (23) matches funcapp �− functional(2).
As funcapp �− functional(1) is a wave-rule, (24) becomes

i : s 6= ds

j : x0 ∈ dom(incoming)⇒ x0 /∈ incoming(x0)

k : x0 6= ds

· · ·

` x0 ∈ dom (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑
⇒ x0 /∈ incoming(x0)

The blocked proof has now been recovered. With the following wave-rules,

dom (A�−B)
↑
 dom(A) ∪ dom(B)

↑
(25)

x ∈ A ∪ B
↑
 x ∈ A ∨ x ∈ B

↑
(26)

P ∨Q
↑
⇒R P ⇒R ∧Q⇒R

↑
(27)
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the fertilised subgoal becomes:

i : s 6= ds

j : x0 ∈ dom(incoming)⇒ x0 /∈ incoming(x0)

k : x0 6= ds

· · ·
` x0 ∈ dom({ds 7→ (incoming(ds) ∪ {s})})⇒ x0 /∈ incoming(x0)

As x0 ∈ dom({ds 7→ (incoming(ds) ∪ {s})}) can be simplified to x0 = ds, this subgoal is then proved by
contradiction.

For subgoal (23), the matched rewrite rule, funcapp �− functional(2), is not a wave-rule. After applying
funcapp �− functional(2), the skeleton of the subsequent goal is not preserved. However, if we substitute ds
for x0 , e.g.,

(incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑

(x0) incoming(x0) ∪ {s}
↑

the skeleton is then recovered. Such substitution is applied when the case-split condition matches the pattern
of X = Y or Y = X, where X is a subterm of the skeleton of LHS and Y is a subterm of the wave-front of
the LHS. The point is to substitute a subterm of the wave-front for a subterm of the skeleton in the hope of
recovering the skeleton. The subgoal now becomes:

i : s 6= ds

j : x0 ∈ dom(incoming)⇒ x0 /∈ incoming(x0)

k : x0 = ds

· · ·

` x0 ∈ dom (incoming �− {ds 7→ (incoming(ds) ∪ {s})})
↑
⇒ x0 /∈ incoming(x0) ∪ {s}

↑

Similarly, with (25), (26), (27) and the following wave-rules 10:

x /∈ (A ∪ B)
↑
 x /∈ A ∧ x /∈ B

↑

P ⇒ (Q ∧R)
↑
 P ⇒Q ∧ P ⇒R

↑

The goal can be fertilised to:

i : s 6= ds

j : x0 ∈ dom(incoming)⇒ x0 /∈ incoming(x0)

k : x0 = ds

· · ·
` x0 ∈ dom(incoming)⇒ x0 /∈ {s}

∧ x0 ∈ dom({ds 7→ (incoming(ds) ∪ {s})})⇒ x0 /∈ incoming(x0) ∪ {s}
which can be easily proved by an automatic theorem prover, and therefore the proof becomes completed.

We have illustrated the use of rippling for INV POs, and we have also presented two proof patches to
recover blocked rippling by rewriting the skeleton or to suggest a case split for the failures of type (i) and (ii).
In the following section, we will present the proof patching technique that aims at conjecturing intermediate
lemmas to recover type (iii) failures.

10 Note that the first wave-rule cannot be further decomposed to elementary wave-rules. It is because the required rewrite
rules, such as x /∈M  ¬(x ∈M), does not preserve the skeleton.
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5. Scheme-based lemma conjecturing for proof patching

The meta-level guidance of rippling can provide useful information to conjecture missing lemmas. Consider
invariant CallersDef and event DialNum for example. The following INV PO is generated:

i : callers = dom((call ; st) � connected)

. . .

` callers = dom( (call �− {s 7→ (connecting 7→ ds)})
↑

; st� connected)

(28)

Rippling becomes blocked immediately. To proceed, a wave-rule of the following shape is expected:

(call �− {s 7→ (connecting 7→ ds))}
↑

; st (call; st · · · )
↑

(29)

where (· · · ) is the term that would appear in the subsequent goal but is unknown to rippling. If the unknown
term is speculated, the missing lemma can be conjectured. To speculate the unknown term, AhLemma adopts
a scheme-based approach. The central idea is to further elaborate the expected shape of wave-rules from
rippling, e.g. (29), by inserting higher-order variables and corresponding parameters, e.g.,

(call �− {s 7→ (connecting 7→ ds)})
↑

; st F1(call; st,F2(st, {s 7→ (connecting 7→ ds)}))
↑

The formulas containing higher-order variables are schemes. Conjectures are generated by feeding the schemes
and a seeding pool to IsaScheme [MRMDB10] where the higher-order variables are instantiated. A useful
lemma is then generated by proving one of the conjectures. In this section, we will explain more details using
(28) as a running example.

5.1. An overall process

The key to AhLemma is to use schemes to capture and constrain possible shapes of a missing lemma. We use
an equational format for each scheme, i.e. LHS = RHS. The LHS is a subterm of the blocked goal which
we wish to rewrite at the next ripple-step. The RHS is what this subterm is expected to be rewritten to.
The generated lemma rewrites the blocked goal from the LHS to the RHS:

LHS  RHS (30)

If LHS is a predicate and is on the top level of a goal, another possible scheme construction format is

RHS⇒ LHS (31)

where ⇒ is object-level implication11. The equational format is more restrictive than (31), because the
equational format constrains the generated rewrite rules to be reversible but (31) does not. That is, it avoids
generating those lemmas which could lead to an unprovable goal12.

The main challenges of conjecturing lemmas with schemes are:

Challenge (i) To construct schemes which are general enough to capture the shapes of missing wave-rules,
but restrictive enough to filter out those that do not advance the proof.

Challenge (ii) To reduce the search space of the possible instantiations of higher-order variables in a scheme
so that instantiation can be terminated in a reasonable amount of time.

To address challenge (i), we choose an empirical approach to summarise the possible shapes of missing
lemmas. Schemes are then constructed with the rippling expectation and the possible shapes of lemmas.
The first step of scheme construction is to choose a subterm from the blocked goal as LHS, which will be
discussed in §5.3. From the rippling expectation, we know that the parts of the skeleton in the LHS will

11 The generated rewrite rule can be used to rewrite the goal from the LHS to the RHS by backward reasoning.
12 With some appropriate heuristics, implication scheme (31) can also avoid generating those undesirable lemmas.
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Preconditions:

1. Rippling is blocked.

Applying the patch:

construct LHS  

construct a list of possible RHSs 

construct a list of schemes by 
combining the LHS with each RHS

construct a seeding pool by analysing LHS

instantiate schemes with the 
seeding pool  using IsaScheme

Process Output

LHS

[ RHS1 ... RHSn ]

Seeding 
Pool

[ Scheme1: LHS = RHS1 
        ...
    Schemen: LHS = RHSn ]

apply one of these wave-rule  and continue rippling if 
the list of the wave-rules is not empty; otherwise fail

[ wave-rule1 
        ...
    wave-rulen ]

Fig. 8. Scheme-based lemma conjecture

move together in the RHS. For example, with a chosen LHS for the blocked goal (28), which is

(call �− {s 7→ (connecting 7→ ds)})
↑

; st (32)

the RHS should contain the subterm call ; st. The goal will then be call ; st · · ·
↑

. For the internal unknown

term in the wave-front, which is the · · · part, we run experiments to collect the possible shapes. These shapes
can be represented by putting higher-order variables inside the wave-front. Take (32) for example: two possible
shapes are:

F1(call; st, {s 7→ (connecting 7→ ds)})
↑

and F1(call; st,F2(st, {s 7→ (connecting 7→ ds)}))
↑

where F1 and F2 are higher-order variables. Note that, the second shape can capture the shape of the first
one if we allow higher-order variables to be instantiated to a projection function, e.g. λx, y.y. However,
this would result in generating undesirable lemmas and increasing the search space for lemma conjecturing.
Therefore, the two shapes are considered to be different. Details of the shapes are discussed in §5.4, and the
candidate operators for instantiation are presented in §5.5.

For challenge (ii), as IsaScheme exhaustively tries all possible combinations, the size of the search space
is directly proportional to the number higher-order variables in the schemes and the number of terms in the
seeding pool. To optimise schemes, the solution has been discussed in challenge (i). For seeding pools, we
introduce heuristics to generate a dynamic seeding pool based on the LHS. With the schemes and heuristics,
IsaScheme can typically finish instantiation and return a list of conjectures within a few seconds. However,
applying the prover to all the conjectures can be time-consuming, as each application can take a few minutes.
Also, for the reason that, using one lemma as a wave-rule is sufficient to unblock rippling, we apply the prover
to conjectures until one lemma is proved. This is implemented by bypassing the proving stage in IsaScheme
with a dummy prover, and then apply the actual prover externally.

In the rest of this section, we will first introduce the heuristics for the whole process of AhLemma,
followed by details of the patching process and the use of these two heuristics. Fig. 8 gives an overall account
of the patching process of AhLemma. Note that we only present the process in this section. The justification
of the effectiveness will be covered in §6. To illustrate the process of AhLemma, we employ PO (28) as a
running example, where appropriate, throughout the discussion of the patching process.
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5.2. Heuristics

We use the following two heuristics to facilitate our scheme-based lemma conjecturing:

Heuristic 5.1 (Function arity). During scheme construction, only consider that the function arity of the
operators to be matched is either binary or unary, and that the higher-order variables to be instantiated are
also binary or unary.

This heuristic is based on our observation that nearly all the operators in Event-B are either binary or unary.
It constrains possible shapes of schemes to reduce the processing time of lemma conjecturing. Details of the
use of this heuristic will be given in §5.3 and §5.4. For ease of presentation, we will use symbol g (or gi) for
a unary function, f (or fi) for a binary function, h (or hi) for a function with an arbitrary arity.

Heuristic 5.2 (Conjecturing lemmas within the context of available hypotheses). Only generate
contextually correct lemmas, by assuming that the required conditions are present or can be inferred from
the available hypotheses by an automatic prover.

This heuristic is to address the problem of generating conditions for lemmas, because most of the missing
lemmas in this domain are conditional, and speculating conditions is very challenging. We use exactly the
same variables and constants from the goal, when constructing schemes. No generalisation is applied to the
conjectures. Hence, the resulting lemma becomes context-dependent, and there is no need to specify the
conditions. We can then use the current proof context to prove the conjectures, and apply the proved lemma
directly to the goal.

5.3. LHS construction

LHS construction includes choosing a wave-front and choosing the operators to be rippled over.

Choice of wave-front: In the case where there are more than one wave-front, we need to check the
relationship among all the wave-fronts in order to pick a wave-front. The relations of wave-fronts can ei-

ther be nested, e.g. f1(f2( f3(a, b)
↑
, c), d)

↑

, or independent, e.g. f1( f2(a, b)
↑
, f3(c, d)

↑
). Nested wave-

fronts might arise when there are two wave-fronts under one operator and one of the wave-fronts is rippled

over this operator. For example, to ripple the wave-front f2(a, b)
↑

in f1( f2(a, b)
↑
, f3(c, d)

↑
) using

f1( f2(X,Y )
↑
, Z)  f4(f1(X,Z), Y )

↑
, a nested wave-front would appear, e.g. f4(f1(a, f3(c, d)

↑
))

↑

.

For nested wave-fronts, we choose the innermost one. Unblocking the innermost one may lead to unblock a
less nested one [IB96]. For the independent wave-fronts, because all of the wave-fronts need to be unblocked,
the choice is not important. Here, we arbitrarily choose the leftmost one. In our running example, we only

have one wave-front: (call �− {s 7→ (connecting 7→ ds)})
↑

.

Choice of operators to be rippled over: Possible candidates are all the ancestor nodes of the chosen
wave-fronts. In the running example (28), all the operators from the wave-front node to top level are (; �
dom =). The more operators to be rippled over are included, the more relevant variables and operators will
be involved which will complicate the conjectured wave-rules. To illustrate, we could conjecture a lemma by
rippling a wave-front to the top of the goal:

(callers = dom( (call�− {s 7→ (connecting 7→ ds)})
↑

; st� connected)) (callers = dom(call ; st� connected))

This lemma could be used to recover rippling, but it is unlikely to prove the lemma with an automatic proof
method, if the automatic proof method cannot prove the blocked goal.

We observe that getting only one operator from and above the parent node is usually sufficient to
conjecture lemmas. One exception is when the operator to be rippled over is either max or min, which are
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1. Given a goal G, with skeleton S.

2. Get the leftmost and innermost (LMIM) wave-front node from G.

3. The choice of the operator to be rippled over depends on the parent node of the LMIM node. If the operator is either
max or min, choose the grandparent node; otherwise choose the parent node.

4. Get the term of the sub-tree of the chosen node to form LHS.

Fig. 9. Constructing the LHS of the scheme

unary operators returning the greatest or least integer from a given integer set. We get both the parent node

and the grandparent node so that a wave-rule can be conjectured, e.g. max( S ∪ R
↑

) > A max(S) > A.

These are given a special treatment as it is often not possible to generate wave-rules to ripple a wave-front
just over either max or min due to a broken skeleton. To illustrate the issue of rippling wave-fronts over max

and min, consider a case where an event changes the set for the greatest element, e.g. max( S ∪ R
↑

). If the

greatest element remains in S, the POs can often be proved automatically. Those require human interaction

are the case where the greatest element is in R. A possible rewrite rule is max( S ∪ R
↑

)  max(R), but

it cannot be a wave-rule as the skeleton is broken. The element to be returned by Hilbert’s choice is no
longer in the skeleton, e.g. max(S ∪ R) /∈ S, which leads to a broken skeleton after rewriting. This can be
a common issue for the Hilbert’s-choice-defined operators. At the time when we did our experiments, these
operator only include max and min. Also, the solution used in Skeleton Rewrite does not work. This is
because the use of max and min does not follow a pattern like relation-based operators, and unfolding their
definitions would bring in Hilbert’s choice. The residual proofs require to instantiate the quantifier x in both
the hypothesis and the goal, which a non-trivial task for automatic provers, especially when there are many
hypotheses. Note that, since max and min are functions from a int set to int, there is not the case when
the parent node of max or min is still max or min. The number of operators to be rippled over is always
either one or two. Details of computing the LHS of schemes is given in Fig. 9.

For the running example, the chosen operator is (;), and the LHS of a scheme is:

(call �− {s 7→ (connecting 7→ ds)})
↑

; st (33)

With the following observation, we can summarise an account of shapes of the LHS.

(i) The arity of the operators is either binary or unary, i.e., f(x, y) or g(x).

(ii) Only one wave-front in the LHS is picked.

(iii) The operators to be rippled over in the LHS are: the operator of the parent node, or operators max
and the operator of the parent node of max, or operators min and the operator of the parent node of
min, i.e., h( ... ↑ ...), h(max( ... ↑ )...) or h(min( ... ↑ )...).

(iv) We observe that the depth of a wave-hole in a wave-front is, in practice, rarely more than two, i.e.,

h(... ...)
↑

, h1(h2(...)...)
↑

.

With (i), (ii) and (iii), an initial version of shapes of the non-wave-front parts of the LHS are:

One operator in the skeleton: g( ... ↑ ), f( ... ↑ , A), f(A, ... ↑ )

Two operators in the skeleton: g(max( ... ↑ )), f(max( ... ↑ ), A), f(A,max( ... ↑ )), g(min( ... ↑ ))

f(min( ... ↑ ), A), f(A,min( ... ↑ ))

By considering max, min and the parent node operator g as one operator, e.g. λx.g(max(x)), we can

simplify the shapes with max or min, e.g. g(max( ... ↑ )) becomes g( ... ↑ ). Thus, the shapes of the non-
wave-front parts of LHS are:

g( ... ↑ ), f( ... ↑ , A), f(A, ... ↑ )
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1. With a chosen LHS, match this LHS with the list of shapes of LHS in Appendix A.

2. For the matched shapes of the LHS, get the possible shapes of the RHS from the lists of shapes of RHS in Appendix
A.

3. Construct the RHS with the RHS shapes by instantiating the variables from the LHS.

Fig. 10. Constructing the RHS of the scheme

Similarly, with (i) and (iv), we can have the following possible shapes of wave-front for the LHS:

Depth 1 : f(H)
↑
, f(H,X)

↑
, f(X,H)

↑

Depth 2 : f1(f2(H,X), Y )
↑
, f1(f2(X,H), Y )

↑
, f1(Y, f2(H,X))

↑
, f1(Y, f2(X,H))

↑

By permuting the shapes of wave-fronts and the shapes of the non-wave-front parts, we have the possible
shapes of the LHS, which can be found in Appendix A.

5.4. RHS construction

For the RHS, we summarise the list of possible shapes by empirical experiments. The list of shapes can be
found in Appendix A. Fig. 10 describes an algorithm for conjecturing the RHS of the scheme. To illustrate,
consider PO (28). The LHS of the scheme is:

(call �− {s 7→ (connecting 7→ ds))}
↑

; st

which matches shape f1( f2(H,X)
↑
, Y ). The corresponding RHSs are:

f1(H,Y ), F1(f1(H,Y ), X)
↑

, F1(f1(H,Y ),F2(X,Y ))
↑

, F1(f1(H,Y ),F2(H))
↑

,

F1(f1(H,Y ),F2(X,H))
↑

and F1(f1(H,Y ),F2(F3(H,X)))
↑

.

where f1 =;, f2 = �−, H = call, X = {s 7→ (connecting 7→ ds))}, Y = st and Fi is a higher-order variable.
By combining the LHS and one of these possible RHSs, we get the following schemes:

(call �− {s 7→ (connecting 7→ ds)})
↑

; st = call ; st

(call �− {s 7→ (connecting 7→ ds)})
↑

; st = F1(call ; st, {s 7→ (connecting 7→ ds)}
↑

(call �− {s 7→ (connecting 7→ ds)})
↑

; st = F1(call ; st,F2({s 7→ (connecting 7→ ds)}, st))
↑

(call �− {s 7→ (connecting 7→ ds)})
↑

; st = F1(call ; st,F2(call))
↑

(call �− {s 7→ (connecting 7→ ds)})
↑

; st = F1(call ; st,F2({s 7→ (connecting 7→ ds))}, call))
↑
,

(call �− {s 7→ (connecting 7→ ds)})
↑

; st = F1(call ; st,F2(F3(call, {s 7→ (connecting 7→ ds)})))
↑

5.5. Instantiation using a dynamic seeding pool

We want to dynamically select a set of operators to instantiate higher-order variables in the constructed
schemes. We run experiments to observe how operators change from the LHS to those on the RHS. Heuristics
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Table 3. Table of correspondences

Hierarchically-defined operators �− y {dom , �−, ∪}

Correspondences for relation and set operators {�, �} y ∩, {�−, �−} y \

Correspondences for duality and complementary operators ∩ y ∪, ∈y/∈, � y �−, � y �−, ⊂y6⊂,
⊆y6⊆, ∪ y ∩, /∈y∈, �− y �, �− y �,
6⊂y⊂, 6⊆y⊆

Correspondences for interval and cardinality .. y {∪ , \, λx.{x}}, card y {+, −}

are created for those operators which are relevant to the operators on the LHS. We introduce some definitions
of correspondences of operators together with some observed patterns before discussing the heuristics for the
construction of the seeding pool. For ease of presentation, we introduce the symbol y. The symbol is used
as follows:

{A1, ..., An}y {B1, ..., Bn}
This reads as: if any operation in {A1, ..., An} appears in the LHS, then add all operators in {B1, ..., Bn} to
the seeding pool. For singleton sets we omit the braces, e.g. A1 y B1.

Observation I: Operators which appear on one side of wave-rules also appear on the other side.

Many distributive and associative rules follow this pattern, e.g. A∪ (B ∩ C)
↑
 (A ∪ B) ∩ (A ∪ C)

↑
.

This observation suggests to include the operators which appear in the LHS in the seeding pool.

Observation II : Operator �− is hierarchically-defined. For example, �− is defined using dom, ∪ and �−.
We include these operators in the RHS when �− is in the LHS.

An operator is considered to be hierarchically-defined only if it is defined by other operators, it is not
a predicate, and the definition does not include any datatype constructor such as set comprehension. Row
Hierarchically-defined operators of Table 3 shows the hierarchically-defined operators together with those
operators by which they are defined.

Observation III: Relation operators correspond to related set operators. Take � and ∩ for example: they
have similar functionality. The difference is that, ∩ applies to both elements in a pair, but � only applies to
the first element of a pair. Therefore, when a relation-projection operator ranges over a relation operator in

the LHS, the corresponding set operator might appear in the RHS, e.g. dom (B �A)
↑
 dom(A) ∩ B

↑
.

Row Correspondences for relation and set operators of Table 3 shows the correspondence between opera-
tors over relations and sets. When a relation-projection operator dom or ran ranges over a relation operators
in the LHS, we add the corresponding set operators to the seeding pool.

Observation IV: When rippling a wave-front over a predicate operator, predicate operators ∧ and ∨ could

appear in the wave-front of the RHS, e.g. x ∈ (A ∪ B)
↑
 x ∈ A ∨ x ∈ B

↑
.

Observation V: There are pairs of duality operators and complementary operators in Event-B.
An example of duality operators are ∩ and ∪. A complementary operators pair follows either F1(F2(A,B), B) =

∅ or F1(A,B) ∨ F2(A,B). In Event-B, these pairs are: ∈ and /∈, ⊂ and 6⊂, ⊆ and 6⊆, � and �−, � and �−.
We observe that, if a complementary or duality operator appears in a wave-front of LHS, and the parent

operator of the wave-front is a negation-related operator, then it is likely that the other complementary or

duality operators appear in the RHS. For instance: A \ (B ∪ C)
↑
 (A \B) ∩ (A \ C)

↑
. Row Corre-

spondences for duality and complementary operators of Table 3 shows the correspondences for duality and
complementary operators.

Observation VI: Additional operators could appear in the RHS, when rippling a wave-front over the inter-
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1. Add the operators from the LHS to the seeding pool, except for those operators in subterms of atoms (Observation I).

2. Add the corresponding definitional operators to the seeding pool if the current seeding pool contain the operators
which are defined hierarchically (Observation II).

3. If the direct parent operator of the wave-front is either dom or ran, then add the corresponding operators between
relations and sets by checking the current seeding pool (Observation III).

4. If LHS is a predicate, add ∧ and ∨ to the seeding pool (Observation IV).

5. If the direct parent operator of the wave-front is a negation-related operator, add the related complementary or duality
operators by checking the operators in the current seeding pool (Observation V).

6. Add the corresponding operators to the seeding pool if the current seeding pool contains the interval operator or the
cardinality operator (Observation VI).

Fig. 11. Heuristics for dynamic seeding pool

val operator (..)13 or the cardinality operator (card) in the LHS. The similarity of interval and cardinality
is that they both are operators which convert between sets and integers. The corresponding operations are
shown in row Correspondences for interval and cardinality of Table 3. An example of a wave-rule for this

observation is: i .. (j + 1)
↑
 (i .. j) ∪ {j + 1}

↑
14.

When collecting operators from the LHS, we do not investigate the wave-hole and its subterm. For ease of
presentation, we call these atoms. From all the observations and heuristics discussed, we build the heuristics
shown in Fig. 11 to dynamically select operators for the seeding pool. To illustrate the process, consider the
LHS (33):

(call �− {s 7→ (connecting 7→ ds)})
↑

; st

The first step is to include all the non-atom operators to setup an initial seeding pool, which is {�−, ;}. For
the remaining steps, we check the operators in the seeding pool instead of the operators from the LHS. In the
second step, the definitional operators are added as �− is presented. Now the pool is {�−, ;, dom, �−, ∪}.
For the third and forth steps, as the operator outside the wave-front is neither ran nor dom, and the type of
the LHS is not a predicate, no operator is added. After adding the operators for complementary or duality
pairs in the fifth step, the pool becomes {�−, ;, dom, �−, ∪, �, ∩}. No extra operator would be
added in step 6, as there is neither interval nor cardinality in the pool. Therefore, the pool has now been
constructed.

With this pool, we send the constructed schemes and the seeding pool to IsaScheme so that the higher-
order variables of the schemes can be instantiated. A useful intermediate lemma is proved and returned
within 387 seconds15:

(call �− {s 7→ (connecting 7→ ds)})
↑

; st call; st�− ({s 7→ (connecting 7→ ds)} ; st)
↑

This wave-rule is instantiated from the scheme:

(call �− {s 7→ (connecting 7→ ds)})
↑

; st = F1(call; st,F2(st, {s 7→ (connecting 7→ ds)}))
↑

where F1 = �− and F2 = ;. Note that this lemma is context-dependent. The following condition should hold
in the current proof context:

dom({s 7→ (connecting 7→ ds)}) = dom({s 7→ (connecting 7→ ds)} ; st)

13 m .. n =̂ {i|m ≤ i ∧ i ≤ n}
14 This wave-rule is conditional which assumes that j >= i
15 CPU: Intel(R) Core(TM) i5 @ 2.4GHz, Memory: 8GB OS: OSX 10.9.2. Note that AhLemma returns a list of conjectures in
few seconds. However, proving a conjecture using Sledgehammer and Axe is much slower, i.e. in several minutes.
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Rippling can proceed, but the remaining proof steps require AhLemma to suggest another wave-rule, i.e.

call; st�− ({s 7→ (connecting 7→ ds)} ; st)
↑
� connected  call; st� connected

Strong fertilisation can then be applied to complete the proof.

6. Evaluation

We implemented POPPA as a proof technique in IsaPlanner [Dix05, DF03], which is a proof planning tool
for Isabelle [Pau94]. The advantages of developing POPPA in IsaPlanner are that rippling is currently im-
plemented in IsaPlanner, and IsaScheme can be communicated directly within the Isabelle framework. With
the Isabelle for Rodin plugin [Sch12], users can export POs from Rodin to Isabelle. However, some rewrite
rules needs to be applied in order to make POPPA applicable. This is because the exported POs in Isabelle
contain Well-Definedness (WD) predicates which are predicates to ensure soundness of the translation. For
example, an INV PO in Rodin is:

a÷ b = c, · · · ` (a+ e)
↑
÷ b = (c+ d)

↑

In Isabelle it becomes:

b 6= 0 ∧ a÷ b = c, · · · ` b 6= 0⇒ (a+ e)÷ b = (c+ d)

The existence of WD predicates may break the embedded relation between the goal and the embedded
invariant. We refer to [Lin15] for more details of eliminating WD predicates with rewrite rules.

To evaluate POPPA, we prepared an evaluation set that is disjoint from the development set and is
drawn from a diverse set of case studies available. This evaluation set consists of 86 INV POs. All these INV
POs require interactive proofs in Rodin, and none of them can be proved with any automatic proof method
in Isabelle, such as Sledgehammer [BP13] and Axe [Sch12]. These INV POs are chosen from 12 case studies
developed by various developers and were from several areas, including academic algorithms, aeronautics
and space, networks, transportation and business. Note that the development of these case studies is third
party work, and not the result of the work undertaken by the current authors. All the case studies are correct
and complete, so all the POs of these case studies should be provable. The hypotheses we wish to verify are:

1. The guidance of rippling is an effective proof plan for Event-B INV POs, and the use of the guidance can
significantly improve the proof automation.

2. AhLemma, Skeleton Rewrite and Case Split often recover blocked proof attempts and lead to the success
of rippling.

For ease of presentation, we abbreviate the AhLemma patch as AL, the case split patch as CS and the
skeleton rewrite patch as SR. The discussion for the hypotheses above is based on the following data:

• The results of the final proof, i.e. has a PO been proved.

• The results of applying rippling, i.e. is fertilisation applied to the goal.

• The successful application of proof patches, i.e. is a proof patch triggered and successfully applied.

The data is collected by running experiments with the 86 POs using different configurations for POPPA.
The choice of the configurations follows the single factor experimental design. V1 enables all patches. V2,
V3 and V4 enable only one patch respectively. V0 disables all patches. The details of the configurations
and overall results are shown in Table 4.

6.1. The effectiveness of the rippling guidance

To analyse the effectiveness of the rippling guidance, we focus on the results of V1 in Table 4. 56 out of 86
POs are fertilised. Being fertilised indicates successful applications of rippling guidance to rewrite towards
the embedded hypothesis. When fertilised, 44 of them are proved automatically. This suggests that, for the
44 POs, the major proof difficulties have been overcome with the rippling guidance. The automatic proof
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Table 4. Configurations of rippling with various combinations of proof patches & their overall results. Column If X indicates
whether the X technique is enabled. Column Fertilised shows the number of the INV POs to which fertilisation was successfully
applied. Columns AL, CS and SR show the number of INV POs which each patch is successfully applied.

Configuration If AL If CS If SR Proved Fertilised Not fertilised AL CS SR

V0 N N N 0 0 86 0 0 0

V1 Y Y Y 44 56 30 58 28 6

V2 N Y Y 11 15 71 0 28 3

V3 Y N Y 22 30 56 48 0 6

V4 Y Y N 42 53 33 57 28 0

Table 5. Details of the usage of proof patches in V1. 86 POs are divided to two groups by ‘whether fertilised’. They are further
categorised by ‘which proof patches have been successfully applied’.

Fertilised Only AL Only CS Only SR AL&CS AL&SR Rippling only

Y (56) 27 15 0 11 3 0

N (30) 14 1 1 1 2 11

methods in Isabelle, which were not able to prove the original goal, now can prove the simplified subgoals.
For the remaining 12 POs, rippling guidance is effective but the proof fails at a later point. Most of the
subgoals of these POs require case splits or instantiations of quantifiers in some non-embedded hypotheses.
These types of proof steps are out of scope for rippling.

6.2. The effectiveness of the proof patches

We assess the effectiveness of our proof patches by checking whether or not they are able to recover rippling
and lead to fertilisation. The results of V0 in Table 4 show that, with rippling only, all the POs are blocked.
When all proof patches are enabled in V1, 56 of them are recovered and fertilised. Further details are given
in Table. 5. By observing the number of POs which each patch applies to, AL turns out to be the most
applicable patch while SR is the least. No PO requires both CS and SR. An explanation is that CS can
only be applicable for the case where an invariant contains function application, but function application
is less likely to be used in those invariants which constrains types of variables to be a relation-based type.
For the 30 unfertilised POs, proof patches fail to recover rippling at some points. By comparing the number
of fertilised POs in V2, V3 and V4 in Table 4 where each patch is disabled, AL is again shown to be the
most applicable patch, followed by CS, and SR is the least. This is consistent with the observation made
from Table. 5. Moreover, we observe that the usage of each patch varies in different degrees when different
patches are disabled. The usage of CS remains the same no matter whether AL and SR are disabled or not.
In contrast, the usage of AL is affected by disabling either patch.

7. Related Work

7.1. Theory Formation for Lemma Discovery

To our knowledge, AhLemma is the first attempt to use theory exploration to develop a proof patch. The
development of AhLemma is inspired by the lemma calculation and lemma speculation proof critics [IB96].
Both lemma calculation and lemma speculation were originally developed as proof patches for rippling in
inductive theorem proving:

• The lemma calculation critic was developed for equation-based goals to which weak fertilisation is ap-
plicable. This critic eagerly applies weak fertilisation so that a lemma can be generated by generalising
the subsequent goal of the application of weak fertilisation. It has been successful in inductive theories,
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as the cut rule is inapplicable [Het16] and these generated lemmas can often be proved by induction.
However, in the case when the cut rule is not necessary, the proof difficulties of the produced lemmas
are almost the same as the original goals. Compared to the heuristic of eager fertilisation of this critic,
the eager rippling heuristic (§3.2) in POPPA works in the opposite way. It postpones the application of
weak fertilisation until both LHS and RHS are fully rippled. Although lemma calculation does always
produce the conjectures which can recover proofs, these conjectures are not likely to be proved with the
same proof methods which failed to prove the original goals.

• Lemma speculation conjectures lemmas with higher-order variables based on the known possible shapes
from the skeleton preservation property. Here, higher-order variables are placed to represent the unknown
term structures in the wave-front. Both AhLemma and lemma speculation conjecture lemmas with higher-
order variables based on the known possible shapes from the skeleton preservation property. However, the
approaches of higher-order variables instantiation are different. Lemma speculation forms a rippling step
with the conjectured schematic lemma, and then relies on the subsequent ripple-steps or the proofs of the
conjectured lemmas to instantiates those variables by higher-order unification. POPPA instantiates the
higher-order variables using theory exploration and proves the lemma before applying it. One limitation
of lemma speculation is that, when it forms the last ripple-step before fertilisation, and no subsequent
ripple-step is available for unification, the conjectured lemma becomes unspecified. Take the following
goal for example:

rev (h @ concat l)
↑

= . . .

Lemma speculation cannot conjecture the following wave-rule, while POPPA can:

rev (X @ Y )
↑
 rev X @ rev Y

↑

Apart from the lemma speculation and lemma calculation proof critics, there are lemma discovery tech-
niques which have been implemented in some systems to suggest lemmas in the middle of proofs. Example
of these systems are Hipster [JRSC14] and ACL2(ml) [HKJM13]. Hipster is inspired by a theory exploration
system called IsaCoSy [JDB11], which synthesises conjectures about recursively defined types and functions.
Hipster features lemma discovery using theory exploration in Isabelle/HOL.

The traditional uses of theory exploration systems for lemma discovery are in a bottom-up/eager approach
which tries theory exploration to produce potentially interesting lemmas before starting a proof. AhLemma
works in a top-down/lazy approach which generates lemmas from the point when proof attempts fail.

Hipster take a strategy to work with both approaches. It takes operations as inputs and translates Is-
abelle/HOL theories into Haskell, and then generates equational conjectures containing the given operations,
by testing and evaluating the Haskell program. These conjectures are then exported back to Isabelle/HOL
for proofs and filtering. The filtering is with respect to the complexity of proofs. Two configurable proof
methods with different proving capabilities, which are called routine reasoning and difficult reasoning, are
used for this purpose of filtering. Hipster returns those conjectures that are only provable by the difficult
reasoning but not the routine reasoning.

ACL2(ml) takes an analogical approach to construct equation-based lemmas. ACL2(ml) can synthesize
analogous lemmas for the current goal from a given pair of an example lemma and an example theorem where
the theorem has been proved using the lemma. ACL2(ml) uses statistical machine-learning techniques to
generate the information of similarity of term structures between the current goal and the example theorem.
The desired lemmas are then constructed by analogically mutating the example lemma using the information
of similarity.

Hipster, ACL2(ml) and AhLemma produce equational lemmas. Hipster constrains lemmas by proof dif-
ficulties. It filters out lemmas which can be proved by the less powerful proof method. The constraints of
ACL2(ml) mainly come from the example theorem and the example. Both Hipster and ACL2(ml) are in-
dependent of rippling, but the scheme approach used in AhLemma is more suitable as a proof patch for
rippling.
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7.2. Automatic Provers in Rodin

Rodin [Abr07, ABH+10, BH07] has a built-in automatic prover for proof automation support, called New
PP [Eve]. It also has integrated provers from Atelier B, called PP and ML [Eve]. More recently, two more
Rodin proof plugins, called a SMT-solver plugin [DFGV12] and the Isabelle for Rodin plugin [Sch12], were
developed. The SMT solver plugin provides an interface to use external SMT-solvers. The Isabelle for Rodin
plugin exports POs to Isabelle, and then proves the POs using an automatic proof method developed in
Isabelle, called Axe. Axe involves the proof techniques such as simplifiers, classical reasoners and SMT
solvers.

All these automatic provers only work at the object-logic level. An example of this approach is unfolding
definitions to primitive operations for proofs. POPPA works both at the meta-level and the object-logic level.
Using meta-level guidance from rippling, POPPA can automate those INV POs which previously could only
be proved interactively. Note that we only look at those interactively proved INV POs in this work. POPPA
uses automatic proof methods that work at the object-logic level internally, e.g. Axe, and these automatic
proof methods can be easily changed in POPPA. Therefore, we do not consider POPPA as a replacement for
the automatic provers which work at the object-logic level, but as a complementary tool to work with them.
That is, combining POPPA with the automatic provers working at the object-logic level, more POs can be
automated. For example, none of the INV POs in the evaluation set can be automated by Axe initially. With
POPPA, which is configured with Axe internally, the automation of those has been considerably improved.

When proofs fail in POPPA, the failed proof information can also be helpful for users to analyse failures.
This is because, using the meta-level guidance from rippling, each rewrite step and patching step in POPPA
has a clear purpose, e.g. moving wave-fronts outwards. Users can more easily understand what the current
proof progress is.

8. Future work

POPPA has been developed for Event-B invariant proofs, but it can also be applied to POs in other formal
methods, as long as the POs follow the pattern of the step case of inductive proofs, e.g. invariant proofs
in B [Abr96] and TLA+ [Lam02], and feasibility proofs in Z [WD96] and VDM [Jon90]. To illustrate, a
feasibility proof in Z is given as below:

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

...

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

...

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

...

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

This PO is from a Z version of the running example. More details can be found in future work of [Lin15]
and [GL17]. Initially, there is no embedded hypothesis. By applying the one-point-rule [WD96] four times,
i.e.,

∃x.(x ∈ a) ∧ p ∧ (x = t)

t ∈ a ∧ p[t/x]

∃ quantifiers are eliminated, and POPPA becomes applicable to the subsequent PO, which is:
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9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

...

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

...

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 2 P DIGITSEQ ^

call [ {(s? 7! (seize 7! NULL))}
"
2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^

incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^ NULL 2 Subs ^

call [ {(s? 7! (seize 7! NULL))}
"
2 Subs 7! STATUS ⇥ Subs ^

dom call [ {(s? 7! (seize 7! NULL))}
"
✓ Subs ^

Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^

Callers = dom( call [ {(s? 7! (seize 7! NULL))}
"

o
9 st B Connected) ^

(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Callers 2 P DIGITSEQ ^ Subs 22 DIGITSEQ ^

call [ {(s? 7! (seize 7! NULL))}
"
2 P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ)) ^

incoming 2 P(DIGITSEQ ⇥ P DIGITSEQ)

2

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 2 P DIGITSEQ ^

call [ {(s? 7! (seize 7! NULL))}
"
2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^

incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^ NULL 2 Subs ^

call [ {(s? 7! (seize 7! NULL))}
"
2 Subs 7! STATUS ⇥ Subs ^

dom call [ {(s? 7! (seize 7! NULL))}
"
✓ Subs ^

Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^

Callers = dom( call [ {(s? 7! (seize 7! NULL))}
"

o
9 st B Connected) ^

(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Callers 2 P DIGITSEQ ^ Subs 22 DIGITSEQ ^

call [ {(s? 7! (seize 7! NULL))}
"
2 P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ)) ^

incoming 2 P(DIGITSEQ ⇥ P DIGITSEQ)

2

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

callers null

9 x : a • p ^ x = t

t 2 a ^ p[t/x ]

Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 2 P DIGITSEQ ^
NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^ incoming 2 Subs ! P Subs ^
Callers = dom(call o

9 st B Connected) ^
(8 x : DIGITSEQ | x 2 dom incoming • x /2 incomingx ) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs

`
(9Callers 0 : P DIGITSEQ ; Subs 0 : P DIGITSEQ ;

call 0 : P(DIGITSEQ ⇥ (STATUS ⇥ DIGITSEQ));

incoming 0 : P(DIGITSEQ ⇥ P DIGITSEQ) •
Subs 2 P DIGITSEQ ^ call 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 2 DIGITSEQ 7! P DIGITSEQ ^
Callers 2 P DIGITSEQ ^ NULL 2 Subs ^ call 2 Subs 7! STATUS ⇥ Subs ^
dom call ✓ Subs ^ Callers 2 P Subs ^
incoming 2 Subs ! P Subs ^ Callers = dom(call o

9 st B Connected) ^
(8 x 0 : DIGITSEQ | x 0 2 dom incoming • x 0 /2 incomingx 0) ^
Subs 0 2 P DIGITSEQ ^
call 0 2 DIGITSEQ 7! STATUS ⇥ DIGITSEQ ^
incoming 0 2 DIGITSEQ 7! P DIGITSEQ ^ Callers 0 2 P DIGITSEQ ^ NULL 2 Subs 0 ^
call 0 2 Subs 0 7! STATUS ⇥ Subs 0 ^
dom call 0 ✓ Subs 0 ^
Callers 0 2 P Subs 0 ^ incoming 0 2 Subs 0 ! P Subs 0 ^
Callers 0 = dom(call 0 o

9 st B Connected) ^
(8 x 1 : DIGITSEQ | x 1 2 dom incoming 0 • x 1 /2 incoming 0x 1) ^
s? 2 DIGITSEQ ^ s? /2 dom call ^ s? 2 Subs ^
Subs 0 = Subs ^ incoming 0 = incoming ^ Callers 0 = Callers ^
call 0 = call [ {(s? 7! (seize 7! NULL))}

1

In the future we would like to improve usability of POPPA. One approach is to integrate POPPA as a
Rodin plugin so that users can launch Isabelle as a background process. An alternative approach is to re-
implement rippling and the functionalities of POPPA in a graph-based proof strategy tool with a theorem
prover independent framework, called Tinker [GKL13, GL17]. Tinker has been integrated with theorem
provers, such as Isabelle and ProofPower [AJ 1]. An experimental Rodin integration has also been reported
in [LLG16].

9. Conclusion

We have illustrated that invariant proofs in Event-B can be considered as inductive proofs. A significant
proportion of the interactively proved invariant proofs belongs to the step case of inductive proofs. They follow
a pattern that the goal is syntactically similar to one of the hypotheses and every part of that hypothesis
appears as a sub-expression in the goal. We developed a proof technique, called POPPA, by combining an
automated theorem proving technique for inductive proofs, called rippling, with three proof patches which
we developed to recover proofs when rippling is blocked. Rippling works by guiding the rewriting of the goal
towards the structurally similar hypothesis. The Skeleton Rewrite patch rewrites the goal and the hypothesis
by unfolding definitions of relation operators. The Case Split patch suggests case splits. The AhLemma patch
discovers missing lemmas. The novelty of AhLemma is the use of a scheme-based theory exploration system
with domain specific heuristics to synthesis a lemma to recover failed proof attempts.

We evaluated POPPA using a set of 86 interactively proved invariant proof obligations from various
Event-B case studies. None of them can be proved, so far, by automatic proof methods in Isabelle or Rodin.
56 out of 86 proof obligations were simplified to the point where the structurally similar hypothesis can be
applied, and 44 of them were proved automated. POPPA is mainly targeted for the case when inexperienced
users get stuck in Event-B invariant proofs, in particular, for the scenario when a missing lemma is needed.
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A. Possible Shapes in Schemes

Possible shapes of the LHS of the constructed schemes:

Depth 1:

g1( g2(H)
↑

), f( g(H)
↑
, A), f(A, g(H)

↑
), g( f(H,X)

↑
), f1( f2(H,X)

↑
, A), f1(A, f2(H,X)

↑
)

g( f(X,H)
↑

), f1( f2(X,H)
↑
, Z), f1(A, f2(X,H)

↑
)

Depth 2:

g( f1(f2(H,X), Y )
↑

), f1( f2(f3(H,X), Y )
↑
, A), f1(A, f2(f3(H,X), Y )

↑
),

g( f1(f2(X,H), Y )
↑

), f1( f2(f3(X,H), Y )
↑
, A), f1(A, f2(f3(X,H), Y )

↑
),

g( f1(Y, f2(H,X))
↑

), f1( f2(Y, f3(H,X))
↑
, A), f1(A, f2(Y, f3(H,X))

↑
),

g( f1(Y, f2(X,H))
↑

), f1( f2(Y, f3(X,H))
↑
, A), f1(A, f2(Y, f3(X,H))

↑
)

Possible shapes of the RHS for each LHS shape of depth one:

LHS RHS

g1( g2(H)
↑

) g1(H), G1(g1(H))
↑

f( g(H)
↑
, A) f(H,A), G1(f(H,A))

↑

f(A, g(H)
↑

) f(A,H), G1(f(A,H))
↑

g( f(H,X)
↑

) g(H), F1(g(H), X)
↑

, F1(g(H),G1(X))
↑

, F1(g(H),G1(F2(H,X)))
↑

f1( f2(H,X)
↑
, A) f1(H,A), F1(f1(H,A), X)

↑
, F1(f1(H,A),F2(X,A))

↑
, F1(f1(H,A),G1(H))

↑
,

F1(f1(H,A),F2(X,H))
↑

, F1(f1(H,A),G1(F2(H,X)))
↑

f1(A, f2(H,X)
↑

) f1(A,H), F1(f(A,H), X)
↑

, F1(f1(A,H),F2(A,X))
↑

F1(f1(A,H),F2(H))
↑

, F1(f1(A,H),F2(X,H))
↑

, F1(f1(A,H),G1(F2(H,X)))
↑

g( f(X,H)
↑

) g(H), F1(X, g(H)
↑

, F1(F2(X), g(H))
↑

, F1(G1(F2(X,H)), g(H))
↑

f1( f2(X,H)
↑
, A) f1(H,A), F1(X, f1(H,A))

↑
, F1(F2(X,A), f1(H,A))

↑
,

F1(G1(H), f1(H,A))
↑

, F1(F2(H,X), f1(H,A))
↑

, F1(G1(F2(X,H)), f1(H,A))
↑

f(A, g(X,H)
↑

) f(A,H), F1(X, f(A,H))
↑

, F1(F2(A,X), f(A,H))
↑

,

F1(f(A,H),G1(H))
↑

, F1(F2(H,X), f(A,H))
↑

, F2(F3(H,X),G1(f(A,H))
↑
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Possible shapes of the RHS for each LHS shape of depth two:

LHS RHS

g( f1(f2(H,X), Y )
↑

) g(H), F1(F2(g(H), X), Y )
↑

f1( f2(f3(H,X), Y )
↑
, A) f1(H,A), F1(F2(f1(H,A), X), Y )

↑
, F1(F2(f1(H,A),F3(X,A)),F4(Y,A))

↑
,

F1(F2(f1(H,A), X),F3(Y,A))
↑

, F1(F2(f1(H,A),F3(X,A)), Y )
↑

f1(A, f2(f3(H,X), Y )
↑

) f1(A,H), F1(F2(f1(A,H), X), Y )
↑

, F1(F2(f1(A,H),F3(A,X)),F4(A, Y ))
↑

,

F1(F2(f1(A,H), X),F3(A, Y ))
↑

, F1(F2(f1(A,H),F3(A,X)), Y )
↑

g( f1(f2(X,H), Y )
↑

) g(H), F1(F2(X, g(H)), Y )
↑

f1( f2(f3(X,H), Y )
↑
, A) f1(H,A), F1(F2(X, f1(H,A)), Y )

↑
, F1(F2(F3(X,A), f1(H,A)),F4(Y,A))

↑
,

F1(F2(F3(X,A), f1(H,A)), Y )
↑

, F1(F2(X, f1(H,A)),F3(Y,A))
↑

f1(A, f2(f3(X,H), Y )
↑

) f1(A,H), F1(F2(X, f1(A,H)), Y )
↑

, F1(F2(F3(A,X), f1(A,H)),F4(A, Y ))
↑

,

F1(F2(A,X), f1(A,H)),F3(A, Y ))
↑

, F1(F2(A,X), f1(A,H)),F3(A, Y ))
↑

g( f1(Y, f2(H,X))
↑

) g(H), F1(Y,F2(g(H), X))
↑

f1( f2(Y, f3(H,X))
↑
, A) f1(H,A), F1(Y,F2(f1(H,A), X))

↑
, F1(F3(Y,A),F2(f1(H,A),F4(X,A))

↑
,

F1((Y,A),F2(f1(H,A),F3(X,A))
↑

, F1((Y,A),F2(f1(H,A),F3(X,A))
↑

f1(A, f2(Y, f3(H,X))
↑

) f1(A,H), F1(Y,F2(f1(A,H), X)))
↑

, F1(F3(A, Y ),F2(f1(A,H),F4(A,X)))
↑

,

F1(F3(A, Y ),F2(f1(A,H), (A,X)))
↑

, F1((A, Y ),F2(f1(A,H),F3(A,X)))
↑

g( f1(Y, f2(X,H))
↑

) g(H), F1(Y,F2(X, g(H)))
↑

f1( f1(Y, f2(X,H))
↑
, A) f1(H,A), F1(Y,F2(X, f1(H,A)))

↑
, F1(F3(Y,A),F2(F4(X,A), f1(H,A)))

↑
,

F1(F3(Y,A),F2(X, f1(H,A)))
↑

, F1(Y,F2(F3(X,A), f1(H,A)))
↑

f1(A, f2(Y, f3(X,H))
↑

) f1(A,H), F1(Y,F2(X, f1(A,H)))
↑

, F1(F3(A, Y ),F2(F4(A,X), f1(A,H)))
↑

,

F1(Y,F2(F3(A,X), f1(A,H)))
↑

, F1(F3(A, Y ),F2(X, f1(A,H)))
↑
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B. A formal definition of rippling

All the concepts we will define here are meta-level, i.e., they are syntactic properties of mathematical ex-
pressions, not of the mathematical objects that those expressions denote, such as numbers, arrays or truth
values. To manipulate such syntactic expressions, it will be easier to represent them in a LISP-like syntax,
i.e., as lists. So f(a, b), for instance, will be represented as [f, a, b]. A Backus-Naur Form grammar of such
format is given as below:

Definition B.1 (Expressions).

Exp ::= V ar
∣∣ List

List ::= [ Fun ]
∣∣ [ Fun , Arg ]

Arg ::= Exp
∣∣ Exp , Arg

where V ar is the type of variables and Fun the type of functors.

We will need a method of indicating particular sub-expressions within a larger expression. This done by
defining a Redex, which is a list of natural numbers, which successively tell you which branch to take from
the root of the parse tree of the larger expression to the root of its sub-expression.

Definition B.2 (Redex). redex(R,E) returns the sub-expression at redex R in expression E.

redex : List(N)× Exp 7→ Exp

redex([ ], E) ::= E

redex([H|T ], E) ::= redex(T, nth(H,E))

where N is the type of natural numbers and nth(N,L) returns the N th element of list L, where the initial
element of L is called the 0th. nth is a standard function in the theory of lists, so will not be defined here.

To illustrate, considering the following PO:

· · · , finite(dom(f)) ` finite(dom( r �− f
↑

)) (34)

The expression occurring at the 1st element of the 1st element is:

redex([1, 1], [finite, [dom, [�−, [{}, r]f ]]]] = [�−, [{}, r]f ]]

To define embedding we will need a function sym at that, given an expression and a redex, returns the root
of the sub-expression at that redex.

Definition B.3 (Symbol At Redex).

sym at : List(N)× Exp 7→ Fun ∪ V ar

sym at(R,E) ::=

{
redex(R,E) if redex(R,E) ∈ V ar ∪ Fun
nth(0, redex(R,E)) otherwise

For instance,

sym at([1, 1], [finite, [(), [�−, [{}, r]f ]]]] = �−
since this is the dominant function of the sub-expression at [1, 1].

The aim of rippling is to rewrite the goal until the given appears within it as a sub-expression. We will
use the terminology E v E′ to assert that E is a sub-expression of E′.

Definition B.4 (Sub-Expression).

v : Exp× Exp 7→ bool

E v E′ ::= ∃R : List(N). redex(R,E′) ≡ E
where ≡ is syntactic identity.
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We will use the terminology E ↪→M E′ to assert that E is embedded in E′ with mapping M , where M maps
each redex in E to a redex in E′.

Definition B.5 (Embedding).

↪→� : Exp× Exp× (List(N) 7→ List(N)) 7→ bool

E ↪→M E′ ::= ∀R : List(N). sym at(R,E) ≡ sym at(M(R), E′) ∧
∀R1, R2 : List(N). redex(R1, E) v redex(R2, E)

=⇒ redex(M(R1), E′) v redex(M(R2), E′) ∧
E 6v E′

For instance, based on PO (34) above, the embedding is:

finite(dom(f)) ↪→M finite(dom( r �− f
↑

)) (35)

where M is defined as

Source Redex Target Redex
[ ] [ ]
[1] [1]
[1, 1] [1, 1, 2]

We assume, throughout the discussion, that E ↪→M E′. Many of the functions defined below are partial and
are undefined when this assumption does not hold. A redex R′ in the target expression E′ is a wave-front if
it is not the image of any redex R in the source E under the mapping M . Otherwise, it is in the skeleton.
We represent this as the predicate wf(R′, E,E′,M).

Definition B.6 (Wave-Fronts).

wf : List(N)× Exp× Exp× (List(N) 7→ List(N)) 7→ bool

wf(R′, E,E′,M) ::= ¬∃R : List(N). M(R) = R′

∧redex(R,E) v E ∧ redex(R′, E′) v E′

For instance, in (35), wf([1], finite(dom(f)), finite(dom({r} �− f)),m) for the m defined above.
Wave-fronts at redex R′ are attached to the redex R of the source expression E that is mapped to the

first skeleton redex below R′.

Definition B.7 (Wave-Front Attachment).

attach : List(N)× Exp× Exp× (List(N) 7→ List(N)) 7→ List(N)

attach(R′, E,E′,M)

=

{
Min R : List(N).

redex(M(R), E′) v redex(R′, E′) if wf(R′, E,E′,M)
undef otherwise

where Min is a new second-order function, defined as:

Min L : List(τ). P (L) ∧ (∀L′P (L′) =⇒ length(L′) ≥ length(L))

where we assume that length need not be defined as it is part of the standard background theory of lists.

For instance, attach([2], x, [f, a, [g, b, x]],m) = [0], i.e., the redex for g attaches to x. Note that attach returns
undef for any redex which does not contain any skeleton to attach to.

To calculate the height of a redex R in an expression we can subtract its length from the depth of the
whole expression E.
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Definition B.8 (Height).

height : List(N)× Exp 7→ N
height(R,E) ::= depth(E)− length(R)

depth : Exp 7→ N
depth(E) ::= Max R : List(N). redex(R,E) v E

where Max is a new second-order function, defined as:

Max L : List(τ). P (L) ∧ (∀L′P (L′) =⇒ length(L) ≥ length(L′))

We are now in a position to define the measure as a list, whose length is the depth of the skeleton, where
the ith element is the size of the set of redexes of wave-fronts at height i.

Definition B.9 (Termination Measure).

meas(E,E′,M) ::=

depth(E)⊙
i=1

|{R | ∃R : List(N). wf(R′, E,E′,M)

∧attach(R′, E,E′,M) = R ∧ height(R,E) = i}|
where

⊙n
i=1 f(i) = [f(1), . . . , f(n)].

We can define a lexicographic, well-founded order, �, on these measures as follows.

Definition B.10 (Well-Founded Order). Note that since skeletons are preserved by rippling, all mea-
sures in a ripple sequence have the same length. � is undefined if the measures are different lengths.

≺ : List(N)× List(N) 7→ bool

[ ] � [ ] = ⊥

[H1|T1] � [H2|T2] =

{
> if H1 > H2

T1 � T2 otherwise

For instance, [1, 1, 0] � [0, 2, 0] and [0, 2, 0] � [0, 0, 3].


