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Abstract

In this paper, exact solutions to the problem of acoustic scattering by elastic spherical symmetric scatterers
are developed. The scatterer may consist of an arbitrary number of fluid and solid layers, and scattering
with single Neumann conditions (replacing Neumann-to-Neumann conditions) is added. The solution is
obtained by separation of variables, resulting in an infinite series which must be truncated for numerical
evaluation. The implemented numerical solution is exact in the sense that numerical error is solely due
to round-off errors, which will be shown using the symbolic toolbox in MATLAB. A system of benchmark
problems is proposed for future reference. Numerical examples are presented, including comparisons with
reference solutions, far-field patterns and near-field plots of the benchmark problems, and time-dependent
solutions obtained by Fourier transformation.
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1. Introduction

Acoustic scattering by elastic objects is a continuing area of study. Most phenomena in the scattering
process can be adequately described by linear elasticity theory, and by further restricting the analysis to
homogeneous, isotropic bodies of simple geometries, the mathematical formalism becomes simple enough to
be handled by conventional analytic methods.

The problems fall into mainly three categories: scattering of acoustic waves from elastic objects, scatter-
ing of elastic waves from fluid-filled cavities and solid inclusions, and inverse scattering, i.e., obtaining proper-
ties of a scattering object from the remotely sensed field. In the first category, the classical problems include
scattering by spheres and infinite cylinders: fluid spheres [1], solid spheres and cylinders [2, 3, 4, 5, 6, 7], and
spherical and cylindrical shells with various combinations of material properties [8, 9, 10, 11, 12, 13, 14, 15].
Much of the work in this field up to around 1980, is summarized in Flax et al. [16].

The surrounding medium is usually considered to be a lossless fluid, but viscous fluids [17] and viscoelastic
media and materials [18] are also considered.

The acoustic illumination is often taken to be a plane wave which is relevant for far-field sources, otherwise
point sources are applied in the near-field. For the infinite cylinder, the incident field is in most cases applied
normal to the cylinder, but obliquely incident fields are also considered [19, 20]. More recently, the problem
of scattering of beams has received much attention [21, 22].

Solutions to some non-symmetric problems are also given; e.g. partially fluid filled spheres [23], spheres
with eccentric cavities [18], and open spheres with internal point sources [24].

The studies mentioned above consider a single object in the free field. It is also of interest to study
interactions between objects, and between an object and a boundary. The problem of multiple scattering is
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studied in e.g. [25] for two elastic spheres, and in [26] for many fluid spheres, while the scattering by objects
close to boundaries, and by partially buried objects is adressed in [27].

Applications of the theory are numerous, and include scattering from marine life [1, 28, 29], various
aspects of sonar, nondestructive testing, seismology, detection of buried objects [30], medical imaging [31],
determination of material properties by inverse scattering [32], and acoustic cloaking. Acoustic cloaking,
i.e., making an object acoustically ’invisible’, requires acoustic metamaterials and is difficult to realize in
practice, but reducing the backcattering strength of an object is an important issue, and can be realized
either passively by coating or actively as suggested in e.g. [33]. A recent area of research is noise control
in aerospace- and automotive engineering, where sound transmission through cylindrical shells constructed
from new composite materials [34] and functionally graded materials [20] are studied in order to reduce noise
level inside the cabin. The latter problem requires a full 3D solution.

The method referred to as classical scattering theory starts with the linearized elasto-dynamic equation of
motion (also called Naviers equation). For the intended applications, nonlinear effects are negligible, which
justifies the use of the linear approximation. For a certain class of coordinate systems, the field can be
expressed in terms of three scalar potentials, which satisfy scalar Helmholtz equations, and admit solutions
in the form of infinite series, termed normal modes or partial waves. The formal series expansions contain all
the physical features of the solution, i.e., the reflected, transmitted and circumferential (or creeping) waves.
The most general problems on finite scatterers in free space are scattering by the spherical shells which
requires all three potentials and give solutions in terms of double sums. However, assuming axisymmetric
illumination there is no loss of generality in aligning the coordinate axis of the sphere with the axis of the
incident field, resulting in an axisymmetric problem. This results in a single infinite series which is much
more computational efficient than the general case. This is the approach taken here.

As the solution is in the form of an infinite series, it needs to be truncated at some point. The summation
is terminated when the relative magnitude of the last term is less than some prescribed tolerance, such that
no computational parameters are introduced if this tolerance is chosen to be the precision used in the
calculations (typically double precision). It is shown, by using symbolic precision in MATLAB, that the
computational errors in the implementation are due to round-off errors. This is a natural definition of a
computational exact solution.

The work reviewed above solves a host of different problems, and several reference solutions are available,
with complexity up to three layers. What the present work provides is the explicit solution for a fully general
multilayered sphere, and with corresponding analysis of the computational residual errors. This allows easy
design and modeling of reference solutions for the purpose of validating numerical methods. More specific,
the model solves the problem of scattering by an incident plane wave, or wave from a point source, by
spherical objects consisting of an arbitrary number of layers. Any combinations of fluid and solid layers can
be handled, and the special cases of replacing the Neumann-to-Neumann condition by a single Neumann
condition is also included.

An early work on scattering from multilayered spheres and infinite cylinders is Jenserud and Tollefsen [35].
The method employed here is referred to as the global matrix method [36], and is a systematic way of
assembling local solutions for the individual layers into a global matrix for the total problem. The present
work uses the same approach, and builds mainly upon the work of Chang and Demkowicz [13], which is
generalized to multilayered spherical objects.

2. Governing equations

In this section the governing equations for the problem at hand will be presented. In [37, pp. 13-
14] Ihlenburg briefly derives the governing equations for the acoustic-structure interaction problem. As the
physical problem of interest is a time dependent problem, it is natural to first present the governing equations
in the time-domain before presenting the corresponding equations in the frequency domain (obtained by
Fourier transformation). It is noted right away that the fields described in this paper (both in the time-
domain and frequency-domain) are all perturbation fields.
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Outermost (unbounded) fluid domain with parameters ρf,1, cf,1

First solid domain with parameters ρs,1, E1, ν1, R0,1, R1,1

Second fluid domain with parameters ρf,2, cf,2

Second solid domain with parameters ρs,2, E2, ν2, R0,2, R1,2

Third fluid domain with parameters ρf,3, c3

Third solid domain with parameters ρs,M , EM , νM , R0,M , R1,M

Innermost fluid domain with parameters ρf,M+1, cf,M+1

Figure 1: A model with M = 3 steel shells with different thicknesses (clip view), illustrating the distribution of the physical
parameters over the different domains.

2.1. Governing equations in the time domain

Einstein’s summation convention will be used throughout this work, such that repeated indices in prod-
ucts imply summation. For example, any vector x ∈ R3 can be expressed as

x =



x1

x2

x3


 =

3∑

i=1

xiei = xiei, (1)

where ei ∈ R3 is the standard basis vectors in a three dimensional Euclidean space.
Let ŭ = ŭiei be the time-dependent displacement field in a given solid domain, and σ̆ the corresponding

stress tensor (see Appendix B for details). Each of the components depend on the spatial variable x and the
time variable t, such that ŭ = ŭ(x, t). The solid domain is then governed by Navier’s equation of motion [15]
(derived from Newton’s second law)

G∇2ŭ+

(
K +

G

3

)
∇(∇ · ŭ) = ρs

∂2ŭ

∂t2
, (2)

which is equivalent to [38, p. 223]
∂σ̆ij
∂xj

= ρs
∂2ŭi
∂t2

, i = 1, 2, 3. (3)

The bulk modulus, K, and the shear modulus, G, can be defined by the Young’s modulus, E, and Poisson’s
ratio, ν, as

K =
E

3(1− 2ν)
and G =

E

2(1 + ν)
. (4)

Correspondingly, denote by p̆ the time-dependent scattered pressure field in a given fluid domain, which
is governed by the wave equation

∇2p̆ =
1

c2f

∂2p̆

∂t2
. (5)
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2.2. Governing equations in the frequency domain

The dimension of the governing equations may be reduced by one using a frequency-time Fourier2 pair [40,
p. 71]

Ψ(x, ω) =
(
F Ψ̆(x, ·)

)
(ω) =

∫ ∞

−∞
Ψ̆(x, t)eiωt dt (6)

Ψ̆(x, t) =
(
F−1 Ψ(x, ·)

)
(t) =

1

2π

∫ ∞

−∞
Ψ(x, ω)e−iωt dω (7)

where Ψ represents the scattered pressure field p or the displacement field u. The frequency f and the
angular frequency ω is related by ω = 2πf , and the angular wave number is given by k = ω/cf .

Consider first the scattered pressure. By differentiating Eq. (7) twice with respect to time, such that

∂2

∂t2
p̆(x, t) = −ω2p̆(x, t), (8)

the following is obtained (using Eq. (5))

∇2p(x, ω) + k2p(x, ω) =

∫ ∞

−∞
∇2p̆(x, t)eiωt dt+

∫ ∞

−∞
k2p̆(x, t)eiωt dt

=

∫ ∞

−∞

[
∇2p̆(x, t)− 1

c2f

∂2

∂t2
p̆(x, t)

]
eiωt dt = 0.

That is, p(x, ω) satisfies the Helmholtz equation

∇2p+ k2p = 0. (9)

A corresponding argument shows that the displacement field u(x, ω) satisfies

G∇2u+

(
K +

G

3

)
∇(∇ · u) + ρsω

2u = 0. (10)

The scattered pressure, p, must in addition to the Helmholtz equation satisfy the Sommerfeld radiation
condition for the outermost fluid layer [42]

∂p(x, ω)

∂r
− ikp(x, ω) = o

(
r−1
)

r = |x| (11)

as r →∞ uniformly in x̂ = x
r .

The coupling conditions (Neumann-to-Neumann) between the solid and the fluid boundaries are given
by [37, pp. 13-14]

ρfω
2uini −

∂ptot

∂n
= 0 (12)

σijninj + ptot = 0 (13)

where n is the normal vector at the surface, and p̆tot is the total pressure3 (scattered pressure with the
incident pressure field added for the outermost fluid). In addition, since the fluid is assumed to be ideal,

2The sign convention in the Fourier transform differs from the classical Fourier transform [39], but agrees with most literature
on the subject, for example [15, 37, 40, 41].

3Since only perturbation fields are considered, ptot does not include the static background pressure (and does therefore not
represent the physical total pressure field).
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there is no tangential traction at the surfaces. For spherical symmetric objects n = er, such that the
coupling equations reduces to

ρfω
2ur −

∂ptot

∂r
= 0 (14)

σrr + ptot = 0 (15)

in the spherical coordinate system (see Appendix A). The tangential traction free boundary conditions
becomes [13, p. 15]

σrϑ = 0 (16)

σrϕ = 0. (17)

3. General solution in the solid domain

It turns out that Navier’s equation can be reduced to a set of Helmholtz equations. Since the fluid
domain also is governed by the Helmholtz equation, both solid and fluid domains share the same fundamental
solutions, and it thus suffices to present the general solution in the solid domain.

3.1. Lamé solution

Fender [15] shows that the solution of Eq. (10) can be written in terms of a scalar potential φ and a
vector potential ψ as follows

u = ∇φ+∇×ψ. (18)

Such a solution of Navier’s equation is called a Lamé solution. The potentials φ and ψ satisfy the scalar
and vector Helmholtz equation, respectively. That is,

∇2φ+ a2φ = 0 (19)

∇2ψ + b2ψ = 0 (20)

where

a =
ω

cs,1
, b =

ω

cs,2
, cs,1 =

√
3K + 4G

3ρs
, cs,2 =

√
G

ρs
. (21)

Here, the parameters cs,1 and cs,2 are the longitudinal and transverse (elastic) wave velocities, respectively,
and a and b are the corresponding angular wave numbers in the solid.

Throughout this work, axisymmetry around the x3-axis is assumed. Assuming symmetry around this
particular axis causes no loss of generality, as both the incident wave and the spherical shell share this
symmetry property (a simple orthogonal transformation restores the generality of axisymmetry about an
arbitrary axis). In the spherical coordinate system, the pressure p and the displacement u are then inde-
pendent of the azimuth angle ϕ in the fluid and solid domains, respectively. Moreover, the solid component
in the azimuth angle direction is zero, uϕ = 0. This is a result of the axisymmetry of the problem.

3.2. Series representation using separation of variables

Using these assumptions Fender [15] shows that ψ = ψϕeϕ, such that when Eqs. (19) and (20) are
expanded in terms of spherical coordinates, the following is obtained (using Eqs. (A.22) and (A.24))

∂

∂r

(
r2 ∂φ

∂r

)
+

1

sinϑ

∂

∂ϑ

(
sinϑ

∂φ

∂ϑ

)
+ (ar)2φ = 0 (22)

∂

∂r

(
r2 ∂ψϕ

∂r

)
+

1

sinϑ

∂

∂ϑ

(
sinϑ

∂ψϕ
∂ϑ

)
+

[
(br)2 − 1

sin2 ϑ

]
ψϕ = 0. (23)
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Using separation of variables, each of these equations can be reduced to a couple of spherical Bessel and Leg-
endre equations, with the associate Legendre polynomials of zero and first order (described in Appendix C.1)
and spherical Bessel functions (described in Appendix C.2) as solutions. More explicitly,

φ(r, ϑ) =
∞∑

n=0

Pn(cosϑ)
[
A(1)
n jn(ar) +A(2)

n yn(ar)
]

(24)

ψϕ(r, ϑ) =
∞∑

n=0

P1
n(cosϑ)

[
B(1)
n jn(br) +B(2)

n yn(br)
]

(25)

where the coefficients A
(i)
n , B

(i)
n ∈ C, i = 1, 2, are chosen such that the boundary conditions are satisfied.

By using Eq. (C.6) these functions and their partial derivatives will have their ϑ-dependency contained
in functions of the form (the ones relevant for this work are listed in Eq. (C.8))

Q(j)
n (ϑ) =

dj

dϑj
Pn(cosϑ). (26)

That is, there is no need for the associated Legendre polynomials.

For ease of notation, the function Z
(i)
n (ζ), i = 1, 2, is introduced (as in [13, 14]), where

Z(1)
n (ζ) = jn(ζ), Z(2)

n (ζ) = yn(ζ). (27)

Moreover, the notation ξ = ξ(r) = ar and η = η(r) = br is used for convenience. Using the Einstein
summation convention, Eqs. (24) and (25) may now be rewritten as

φ(r, ϑ) =

∞∑

n=0

Q(0)
n (ϑ)A(i)

n Z(i)
n (ξ) (28)

ψϕ(r, ϑ) =

∞∑

n=0

Q(1)
n (ϑ)B(i)

n Z(i)
n (η). (29)

3.3. Expressions for the displacement and stress field

By expanding Eq. (18) in spherical coordinates (using Eqs. (A.21) and (A.25)) yields

u = ∇φ+∇×ψ =
∂φ

∂r
er +

1

r

∂φ

∂ϑ
eϑ +

1

r sinϑ

∂

∂ϑ
(ψϕ sinϑ)er −

1

r

∂

∂r
(rψϕ)eϑ (30)

such that

ur =
∂φ

∂r
+

1

r

∂ψϕ
∂ϑ

+
1

r
ψϕ cotϑ (31)

and

uϑ =
1

r

∂φ

∂ϑ
− ∂ψϕ

∂r
− 1

r
ψϕ. (32)

Insertion of Eqs. (28) and (29) (using Eqs. (C.4), (C.6) and (C.27)) yields

ur =
1

r

∞∑

n=0

Q(0)
n (ϑ)

[
A(i)
n S

(i)
1,n(ξ) +B(i)

n T
(i)
1,n(η)

]
(33)

and

uϑ =
1

r

∞∑

n=0

Q(1)
n (ϑ)

[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]
(34)
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where

S
(i)
1,n(ξ) = ξ

d

dξ
Z(i)
n (ξ) = nZ(i)

n (ξ)− ξZ(i)
n+1(ξ)

T
(i)
1,n(η) = −n(n+ 1)Z(i)

n (η)

S
(i)
2,n(ξ) = Z(i)

n (ξ)

T
(i)
2,n(η) = −Z(i)

n (η)− η d

dη
Z(i)
n (η) = −(n+ 1)Z(i)

n (η) + ηZ
(i)
n+1(η).

To compute the stresses defined in Appendix A, the partial derivatives of the displacement field in the
spherical coordinate system are needed. These derivatives are found to be (using Eqs. (C.14), (C.26)
and (C.27))

∂ur

∂r
=

1

r2

∞∑

n=0

Q(0)
n (ϑ)

[
A(i)
n S

(i)
3,n(ξ) +B(i)

n T
(i)
3,n(η)

]
(35)

∂uϑ
∂r

=
1

r2

∞∑

n=0

Q(1)
n (ϑ)

[
A(i)
n S

(i)
4,n(ξ) +B(i)

n T
(i)
4,n(η)

]
(36)

∂ur

∂ϑ
=

1

r

∞∑

n=0

Q(1)
n (ϑ)

[
A(i)
n S

(i)
1,n(ξ) +B(i)

n T
(i)
1,n(η)

]
(37)

∂uϑ
∂ϑ

=
1

r

∞∑

n=0

Q(2)
n (ϑ)

[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]
(38)

where

S
(i)
3,n(ξ) = ξ

d

dξ
S

(i)
1,n(ξ)− S(i)

1,n(ξ) = (n2 − ξ2 − n)Z(i)
n (ξ) + 2ξZ

(i)
n+1(ξ)

T
(i)
3,n(η) = η

d

dη
T

(i)
1,n(η)− T (i)

1,n(η) = −n(n+ 1)
[
(n− 1)Z(i)

n (η)− ηZ(i)
n+1(η)

]

S
(i)
4,n(ξ) = ξ

d

dξ
Z(i)
n (ξ)− Z(i)

n (ξ) = (n− 1)Z(i)
n (ξ)− ξZ(i)

n+1(ξ)

T
(i)
4,n(η) = η

d

dη
T

(i)
2,n(η)− T (i)

2,n(η) = (η2 − n2 + 1)Z(i)
n (η)− ηZ(i)

n+1(η).

Using Eqs. (B.8) and (B.9), and the relation4

1

2

(
b

a

)2

=
2

3
+
K

2G
(39)

4This relation is obtained by inserting the definition of the angular wave numbers a and b (Eq. (21)) into the left hand side.
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the following formulas for the stress field components are obtained5

σrr =
2G

r2

∞∑

n=0

Q(0)
n (ϑ)

[
A(i)
n S

(i)
5,n(ξ) +B(i)

n T
(i)
5,n(η)

]
(40)

σϑϑ =
2G

r2

∞∑

n=0

{
Q(0)
n (ϑ)

[
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

]
+Q(2)

n (ϑ)
[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}
(41)

σϕϕ =
2G

r2

∞∑

n=0

{
Q(0)
n (ϑ)

[
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

]
+Q(1)

n (ϑ) cot(ϑ)
[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}
(42)

σϑϕ = 0 (43)

σrϕ = 0 (44)

σrϑ =
2G

r2

∞∑

n=0

Q(1)
n (ϑ)

[
A(i)
n S

(i)
7,n(ξ) +B(i)

n T
(i)
7,n(η)

]
(45)

where

S
(i)
5,n(ξ) =

1

2G

[(
K +

4G

3

)
S

(i)
3,n(ξ)−

(
K − 2G

3

)
n(n+ 1)Z(i)

n (ξ) + 2

(
K − 2G

3

)
S

(i)
1,n(ξ)

]

=

[
n2 − n− 1

2

(
b

a

)2

ξ2

]
Z(i)
n (ξ) + 2ξZ

(i)
n+1(ξ)

T
(i)
5,n(η) =

1

2G

[(
K +

4G

3

)
T

(i)
3,n(η)−

(
K − 2G

3

)
n(n+ 1)T

(i)
2,n(η) + 2

(
K − 2G

3

)
T

(i)
1,n(η)

]

= −n(n+ 1)
[
(n− 1)Z(i)

n (η)− ηZ(i)
n+1(η)

]

S
(i)
6,n(ξ) = −

(
K

2G
− 1

3

)
n(n+ 1)S

(i)
2,n(ξ) +

(
1

3
+
K

G

)
S

(i)
1,n(ξ) +

(
K

2G
− 1

3

)
S

(i)
3,n(ξ)

=

[
n− 1

2

(
b

a

)2

ξ2 + ξ2

]
Z(i)
n (ξ)− ξZ(i)

n+1(ξ)

T
(i)
6,n(η) = −

(
K

2G
− 1

3

)
n(n+ 1)T

(i)
2,n(η) +

(
1

3
+
K

G

)
T

(i)
1,n(η) +

(
K

2G
− 1

3

)
T

(i)
3,n(η)

= −n(n+ 1)Z(i)
n (η)

S
(i)
7,n(ξ) =

1

2

[
S

(i)
1,n(ξ) + S

(i)
4,n(ξ)− S(i)

2,n(ξ)
]

= (n− 1)Z(i)
n (ξ)− ξZ(i)

n+1(ξ)

T
(i)
7,n(η) =

1

2

[
T

(i)
1,n(η) + T

(i)
4,n(η)− T (i)

2,n(η)
]

= −
(
n2 − 1− 1

2
η2

)
Z(i)
n (η)− ηZ(i)

n+1(ξ).

(46)

5One can save some work by observing the similarities between σϑϑ and σϕϕ

σϑϑ =
2

r

(
K +

G

3

)
ur +

(
K − 2G

3

)
∂ur

∂r
+

3K − 2G

3r

(
uϑ cotϑ+

∂uϑ

∂ϑ

)
+

2G

r

∂uϑ

∂ϑ

σϕϕ =
2

r

(
K +

G

3

)
ur +

(
K − 2G

3

)
∂ur

∂r
+

3K − 2G

3r

(
uϑ cotϑ+

∂uϑ

∂ϑ

)
+

2G

r
uϑ cotϑ.
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3.4. Validation of the displacement and stress formulas

The correctness of the formulas may be controlled by considering Navier’s equation (Eq. (10)) in spherical
coordinates. The three components of Navier’s equation in spherical coordinates are given in Eqs. (B.10)
to (B.12), the last of which is automatically satisfied due to the symmetry assumptions. The first two
equations simplify to

∂σrr

∂r
+

1

r

∂σrϑ

∂ϑ
+

1

r
(2σrr − σϑϑ − σϕϕ + σrϑ cotϑ) + ω2ρsur = 0 (47)

∂σrϑ

∂r
+

1

r

∂σϑϑ
∂ϑ

+
1

r
[(σϑϑ − σϕϕ) cotϑ+ 3σrϑ] + ω2ρsuϑ = 0. (48)

Differentiation of the stress field components yields

∂σrr

∂r
=

2G

r3

∞∑

n=0

Q(0)
n (ϑ)

[
A(i)
n S

(i)
8,n(ξ) +B(i)

n T
(i)
8,n(η)

]

∂σϑϑ
∂ϑ

=
2G

r2

∞∑

n=0

{
Q(1)
n (ϑ)

[
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

]
+Q(3)

n (ϑ)
[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}

∂σrϑ

∂r
=

2G

r3

∞∑

n=0

Q(1)
n (ϑ)

[
A(i)
n S

(i)
9,n(ξ) +B(i)

n T
(i)
9,n(η)

]

∂σrϑ

∂ϑ
=

2G

r2

∞∑

n=0

Q(2)
n (ϑ)

[
A(i)
n S

(i)
7,n(ξ) +B(i)

n T
(i)
7,n(η)

]

where

S
(i)
8,n(ξ) = −2S

(i)
5,n(ξ) + ξ

d

dξ
S

(i)
5,n(ξ)

=

[
n3 − 3n2 + 2n− n

2

(
b

a

)2

ξ2 + 2ξ2

]
Z(i)
n (ξ) +

[
−n2 − n− 6 +

1

2

(
b

a

)2

ξ2

]
ξZ

(i)
n+1(ξ)

T
(i)
8,n(η) = −2T

(i)
5,n(η) + η

d

dη
T

(i)
5,n(η)

= n(n+ 1)
[(
−n2 + 3n− 2 + η2

)
Z(i)
n (η)− 4ηZ

(i)
n+1(η)

]

S
(i)
9,n(ξ) = −2S

(i)
7,n(ξ) + ξ

d

dξ
S

(i)
7,n(ξ)

=
[
n2 − 3n+ 2− ξ2

]
Z(i)
n (ξ) + 4ξZ

(i)
n+1(ξ)

T
(i)
9,n(η) = −2T

(i)
7,n(η) + η

d

dη
T

(i)
7,n(η)

=
(
−n3 + 2n2 + n− 2 +

n

2
η2 − η2

)
Z(i)
n (η) +

(
n2 + n+ 2− 1

2
η2

)
ηZ

(i)
n+1(η).

Inserting these expressions (alongside the stress components in Eqs. (40) to (45)) into Eqs. (47) and (48)
and using Eqs. (C.14) and (C.15), and observing that

∂σϑϑ
∂ϑ

+ (σϑϑ − σϕϕ) cotϑ =
2G

r2

∞∑

n=0

Q(1)
n (ϑ)

{
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

+
(
−n2 − n+ 1

)[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}
,

the left hand side of Eq. (47) and Eq. (48) are indeed equal to zero.
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Outermost (unbounded) fluid domain with coefficients C
(1)
1,n

First solid domain with coefficients A
(i)
1,n and B

(i)
1,n, i = 1, 2

Second fluid domain with coefficients C
(i)
2,n, i = 1, 2

Second solid domain with coefficients A
(i)
2,n and B

(i)
2,n, i = 1, 2

Third fluid domain with coefficients C
(i)
3,n, i = 1, 2

Third solid domain with coefficients A
(i)
3,n and B

(i)
3,n, i = 1, 2

Innermost fluid domain with coefficients C
(1)
M+1,n

Figure 2: A model with M = 3 steel shells with different thicknesses (clip view), illustrating the distribution of the coefficients

A
(i)
m,n, B

(i)
m,n and C

(i)
m,n over the different domains.

4. Establishing constraints from boundary conditions

As the solution is represented as an infinite sum, the coefficients A
(i)
m,n, B

(i)
m,n and C

(i)
m,n (coefficients from

the fluid domains described below) must be computed for each n (see Figure 2). By enforcing the boundary
conditions in Eqs. (14) and (15) at each surface, constraints are developed to establish expressions for these
coefficients.

4.1. Notation for the solution in layered domains

For the mth solid shell the displacement field from Eqs. (33) and (34) is written as

um = ur,mer + uϑ,meϑ (49)

where

ur,m(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)ur,m,n(r) (50)

uϑ,m(r, ϑ) =

∞∑

n=0

Q(1)
n (ϑ)uϑ,m,n(r) (51)

and

ur,m,n(r) =
1

r

[
A(i)
m,nS

(i)
1,n(amr) +B(i)

m,nT
(i)
1,n(bmr)

]
(52)

uϑ,m,n(r) =
1

r

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]
. (53)
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Corresponding expressions for the stress field in Eq. (46) are obtained as

σrr,m(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)σrr,m,n(r) (54)

σϑϑ,m(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)σ

(1)
ϑϑ,m,n(r) +Q(2)

n (ϑ)σ
(2)
ϑϑ,m,n(r) (55)

σϕϕ,m(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)σ(1)

ϕϕ,m,n(r) +Q(1)
n (ϑ) cot(ϑ)σ(2)

ϕϕ,m,n(r) (56)

σrϕ,m(r, ϑ) = 0 (57)

σϑϕ,m(r, ϑ) = 0 (58)

σrϑ,m(r, ϑ) =
∞∑

n=0

Q(1)
n (ϑ)σrϑ,m,n(r) (59)

where

σrr,m,n(r) =
2Gm
r2

[
A(i)
m,nS

(i)
5,n(amr) +B(i)

m,nT
(i)
5,n(bmr)

]

σ
(1)
ϑϑ,m,n(r) =

2Gm
r2

[
A(i)
m,nS

(i)
6,n(amr) +B(i)

m,nT
(i)
6,n(bmr)

]

σ
(2)
ϑϑ,m,n(r) =

2Gm
r2

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]

σ(1)
ϕϕ,m,n(r) =

2Gm
r2

[
A(i)
m,nS

(i)
6,n(amr) +B(i)

m,nT
(i)
6,n(bmr)

]

σ(2)
ϕϕ,m,n(r) =

2Gm
r2

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]

σrϑ,m,n(r) =
2Gm
r2

[
A(i)
m,nS

(i)
7,n(amr) +B(i)

m,nT
(i)
7,n(bmr)

]
.

The solution to the Helmholtz equation in the mth fluid domain (for 2 6 m 6M) has the same general
form as φ in Eq. (28)

pm(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)C(i)

m,nZ
(i)
n (kmr) (60)

where the coefficients C
(i)
m,n ∈ C are chosen such that the boundary conditions are satisfied. As the spherical

Hankel functions of first and second kind (described in Appendix C.2) are linear combinations of the spherical
Bessel functions of first and second kind, the general solution can be written in terms of these functions.
For the outer (unbounded) fluid the Hankel function of the second kind is eliminated due to the Sommerfeld
radiation condition in Eq. (11) [37, p. 26]. Thus, for the outermost fluid, the scattered pressure field is given
by

p1(r, ϑ) =

∞∑

n=0

Q(0)
n (ϑ)C

(1)
1,nh(1)

n (k1r). (61)

Moreover, it is required that the pressure in the innermost fluid domain is bounded [15, p. 10]. Hence, the

coefficients C
(2)
M+1,n must be set to zero as the spherical Bessel function of second kind is unbounded at the

origin. The pressure in the innermost fluid is therefore given by (cf. [15, p. 10])

pM+1(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)C

(1)
M+1,njn(kM+1r). (62)
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The total pressure in the mth fluid domain shall be denoted by

ptot,m =

{
p1 + pinc m = 1

pm otherwise
(63)

where pinc is the incident wave.

If the coefficients A
(i)
m,n, B

(i)
m,n and C

(i)
m,n can be determined, the solution is fully determined in all domains.

Hence, a system of equations will be developed to find these coefficients. Indeed, at the boundaries (at a fixed
radius) the series can all be written in terms of the Legendre functions Pn(cosϑ), such that the resulting
coefficients can be compared for each n. A term in the solution is often referred to as a mode, such that the
resulting constraints from the boundary conditions form a set of modal equations. The terminology comes
from the vibration analysis [13], where each of these modes represent vibration modes. For example, ur,m,n

is refered to be the radial displacement in the mth solid domain in the nth mode.

4.2. Tangential traction conditions

Eq. (17) is automatically fulfilled due to the axisymmetric assumption. For the mth shell, evaluating
Eq. (16) at both the inner and outer radius, yields two equations

σrϑ,m,n(Rj,m, ϑ) = 0, j = 0, 1. (64)

As Q
(1)
0 (ϑ) = 0, these equations are automatically satisfied for n = 0. In addition, since T

(i)
1,0(η) = 0 and

T
(i)
6,0(η) = 0, the coefficients B

(i)
m,0 are redundant (which is convenient, as two constraints are lost in this

case).

Denote by H
(1)
m,n, m = 1, . . . ,M , the eigenfrequency matrix6 [13, p. 17] of the mth shell

H(1)
m,n =




S
(1)
5,n(amR0,m) S

(2)
5,n(amR0,m) T

(1)
5,n(bmR0,m) T

(2)
5,n(bmR0,m)

S
(1)
7,n(amR0,m) S

(2)
7,n(amR0,m) T

(1)
7,n(bmR0,m) T

(2)
7,n(bmR0,m)

S
(1)
7,n(amR1,m) S

(2)
7,n(amR1,m) T

(1)
7,n(bmR1,m) T

(2)
7,n(bmR1,m)

S
(1)
5,n(amR1,m) S

(2)
5,n(amR1,m) T

(1)
5,n(bmR1,m) T

(2)
5,n(bmR1,m)


, (65)

for n > 0, and

H
(1)
m,0 =

[
S

(1)
5,0(amR0,m) S

(2)
5,0(amR0,m)

S
(1)
5,0(amR1,m) S

(2)
5,0(amR1,m)

]
, (66)

for n = 0. From Eqs. (54) and (59) one observes that the first and the last row of H
(1)
m,n correspond to

σrr,m,n(r) at r = R0,m and r = R1,m, respectively, and the second and third row (for n > 0) correspond to

σrϑ,m,n(r) at r = R0,m and r = R1,m, respectively. The notation H
(1)
ij,m,n, will be used for the elements of

the matrices H
(1)
m,n.

For n > 0, the two conditions in Eq. (64) may be written as

H
(1)
21,m,nA

(1)
m,n +H

(1)
22,m,nA

(2)
m,n +H

(1)
23,m,nB

(1)
m,n +H

(1)
24,nB

(2)
m,n = 0 (67)

H
(1)
31,m,nA

(1)
m,n +H

(1)
32,m,nA

(2)
m,n +H

(1)
33,m,nB

(1)
m,n +H

(1)
34,m,nB

(2)
m,n = 0. (68)

This gives (for each n) 2M equations in terms of the 6M unknown coefficients A
(i)
m,n, B

(i)
m,n and C

(i)
m,n, i = 1, 2.

Thus, an additional 4M equations are needed to determine these coefficients. These equations come from
the coupling conditions in Eqs. (14) and (15) (displacement condition and pressure condition, respectively)
which are applied at the outer and inner radius of each shell. The outermost and innermost fluid domains
will have to be considered separately.

6As illustrated in [13], the matrix H
(1)
m,n represent the modal characteristic equations of the mth shell. That is, the

eigenfrequencies of each shell can be found by solving detH
(1)
m,n = 0 in terms of the frequency.
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4.3. Displacement and pressure condition in intermediate fluid layers

Consider the mth fluid domain, with 2 6 m 6M , where the pressure field is given by Eq. (60). Inserting
Eqs. (50) and (60) into the displacement condition in Eq. (14) at r = R1,m−1, R0,m, yields

ρf,mω
2

Rj,m−j

[
A

(i)
m−j,nS

(i)
1,n(am−jRj,m−j) +B

(i)
m−j,nT

(i)
1,n(bm−jRj,m−j)

]

− km
[
C(1)
m,nj′n(kmRj,m−j) + C(2)

m,ny
′
n(kmRj,m−j)

]
= 0

which yield the relation

H
(4,j)
1,m−j,nA

(1)
m−j,n +H

(4,j)
2,m−j,nA

(2)
m−j,n +H

(4,j)
3,m−j,nB

(1)
m−1,n +H

(4,j)
4,m−j,nB

(2)
m−1,n +H

(3,j)
i,m,nC

(i)
m,n = 0, (69)

for j = 0, 1, where

H
(4,j)
1,m,n = S

(1)
1,n(amRj,m), H

(4,j)
2,m,n = S

(2)
1,n(amRj,m),

H
(4,j)
3,m,n = T

(1)
1,n(bmRj,m), H

(4,j)
4,m,n = T

(2)
1,n(bmRj,m),

(70)

and (using Eq. (C.27) to rewrite the derivative of the Bessel functions)

H
(3,j)
i,m,n = − 1

ρf,mω2

[
nZ(i)

n (ζ)− ζZ(i)
n+1(ζ)

]∣∣∣
ζ=kmRj,m−j

. (71)

Correspondingly, inserting Eqs. (54) and (62) into Eq. (15) at r = R1,m−1, R0,m yields

2Gm−j
R2
j,m−j

[
A

(i)
m−j,nS

(i)
5,n(am−jRj,m−j) +B

(i)
m−j,nT

(i)
5,n(bm−jRj,m−j)

]
+ C(i)

m,nZ
(i)
n (kmRj,m−j) = 0

which can be rewritten as

H
(1)
11,m−j,nA

(1)
m−j,n +H

(1)
12,m−j,nA

(2)
m−j,n +H

(1)
13,m−j,nB

(1)
m−j,n +H

(1)
14,m−j,nB

(2)
m−j,n +H

(2,j)
i,m,nC

(i)
m,n = 0 (72)

where

H
(2,j)
i,m,n =

R2
j,m−j

2Gm−j
Z(i)
n (kmRj,m−j). (73)

4.4. Displacement and pressure condition in the outermost fluid

It is assumed that the incident wave, pinc(x, ω), and its normal derivative at the outermost solid surface
can be written on the form

pinc

∣∣∣
r=R0,1

=
∞∑

n=0

F (1)
n Pn(cosϑ),

∂pinc

∂r

∣∣∣
r=R0,1

=
∞∑

n=0

F (2)
n Pn(cosϑ),

(74)

respectively. The coefficients F
(1)
n and F

(2)
n are discussed in Appendix D.

Inserting Eqs. (50) and (61) into the displacement condition in Eq. (14) yields

ρf,1ω
2

R0,1

[
A

(i)
n,1S

(i)
1,n(a1R0,1) +B

(i)
n,1T

(i)
1,n(b1R0,1)

]
− k1C

(1)
1,n

dh
(1)
n

dζ

∣∣∣
ζ=k1R0,1

= F (2)
n ,

which yields the relation

H
(4,0)
1,1,nC

(1)
1,n +H

(4,0)
2,1,nC

(2)
1,n +H

(4,0)
3,1,nC

(3)
1,n +H

(4,0)
4,1,nC

(4)
1,n +H

(3,0)
1,1,nC

(1)
1,n = D1,n, (75)
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where H
(4,0)
i,1,n for i = 1, 2, 3, 4, are given by Eq. (70) and (using Eq. (C.34))

H
(3,0)
1,1,n = − 1

ρf,1ω2

[
nh(1)

n (ζ)− ζh
(2)
n+1(ζ)

]∣∣∣
ζ=k1R0,1

(76)

and

D1,n =
R0,1

ρf,1ω2
F (2)
n . (77)

Correspondingly, by inserting Eqs. (54) and (61) into Eq. (15) one obtains

2G1

R2
0,1

[
C

(1)
n,1S

(1)
5,n(a1R0,1) + C

(2)
n,1T

(1)
5,n(b1R0,1) + C

(3)
n,1S

(2)
5,n(a1R0,1) + C

(4)
n,1T

(2)
5,n(b1R0,1)

]

+ C
(1)
1,nh(1)

n (k1R0,1) = −F (1)
n ,

which yields the relation

H
(1)
1,1,nC

(1)
1,n +H

(1)
2,1,nC

(2)
1,n +H

(1)
3,1,nC

(3)
1,n +H

(1)
4,1,nC

(4)
1,n +H

(2,0)
1,1,nC

(1)
1,n = D2,n, (78)

where

H
(2,0)
1,1,n =

R2
0,1

2G1
h(1)
n (k1R0,1) (79)

and

D2,n = −R
2
0,1

2G1
F (1)
n . (80)

4.5. Displacement and pressure condition in the innermost fluid

For the innermost fluid the pressure field is given by Eq. (62). Inserting Eqs. (50) and (62) into the
displacement condition in Eq. (14) at r = R1,M yields

ρf,M+1ω
2

R1,M

[
A

(i)
M,nS

(i)
1,n(aMR1,M ) +B

(i)
M,nT

(i)
1,n(bMR1,M )

]
− kM+1C

(1)
M+1,nj′n(kM+1R1,M ) = 0,

which yields the relation

H
(4,1)
1,M,nA

(1)
M,n +H

(4,1)
2,M,nA

(2)
M,n +H

(4,1)
3,M,nB

(1)
M,n +H

(4,1)
4,M,nB

(2)
M,n +H

(3,1)
1,M+1,nC

(1)
M+1,n = 0, (81)

where H
(4,1)
i,M,n for i = 1, 2, 3, 4, are defined in Eq. (70), and

H
(3,1)
1,M+1,n = − 1

ρf,M+1ω2
[njn(ζ)− ζjn+1(ζ)]

∣∣∣
ζ=kM+1R1,M

. (82)

Correspondingly, by inserting Eqs. (54) and (62) into Eq. (15) at r = R1,M the following is obtained

2GM
R2

1,M

[
A

(i)
M,nS

(i)
5,n(aMR1,M ) +B

(i)
M,nT

(i)
5,n(bMR1,M )

]
+ C

(1)
M+1,njn(kM+1R1,M ) = 0,

which yields the relation

H
(1)
11,M,nA

(1)
M,n +H

(1)
12,M,nA

(2)
M,n +H

(1)
13,M,nB

(1)
M,n +H

(1)
14,M,nB

(2)
M,n +H

(2,1)
1,M+1,nC

(1)
M+1,n = 0, (83)

where

H
(2,1)
1,M+1,n =

R2
1,M

2GM
jn(kM+1R1,M ). (84)
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5. Assembling the linear system of equations

In the previous section, 6M equations for the 6M unknowns A
(i)
m,n, B

(i)
m,n and C

(i)
m,n for all n > 0 and 4M

equations for the 4M unknowns for n = 0 was established. So far the solution has been presented for M
elastic spherical shells with standard displacement and pressure conditions; the default case with Neumann-
to-Neumann conditions. By some matrix manipulations of the global matrix, one can implement other
cases as well, including solid spheres, and single Neumann conditions replacing the Neumann-to-Neumann
conditions on the innermost domain.

5.1. The default case with Neumann-to-Neumann conditions

For the default case all equations can be collected into one single linear system of equations

HnCn = Dn (85)

where7

Hn =




H
(3,0)
1,1,n H

(4,0)
1,n

H
(2,0)
1,1,n

H
(1)
1,n

H
(2,1)
2,n

H
(4,1)
1,n H

(3,1)
2,n

H
(3,0)
2,n H

(4,0)
2,n

H
(2,0)
2,n

. . .

H
(2,1)
M,n

H
(4,1)
M−1,n H

(3,1)
M,n

H
(3,0)
M,n H

(4,0)
M,n

H
(2,0)
M,n

H
(1)
M,n

H
(2,1)
1,M+1,n

H
(4,1)
M,n H

(3,1)
1,M+1,n




7Note that the matrix pattern is scaled for the case n > 0, as H
(1)
m,n ∈ R4×4 and H

(4,j)
m,n ∈ R1×4 for n > 0, as opposed to

H
(1)
m,n ∈ R2×2 and H

(4,j)
m,n ∈ R1×2 when n = 0 (for j = 1, 2).

15

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1016/j.jsv.2017.08.006



and

Cn =




C
(1)
1,n

A1,n

B1,n

C2,n

...
AM−1,n

BM−1,n

CM,n

AM,n

BM,n

C
(1)
M+1,n




Am,n =

[
A

(1)
m,n

A
(2)
m,n

]
Bm,n =

[
B

(1)
m,n

B
(2)
m,n

]
Cm,n =

[
C

(1)
m,n

C
(2)
m,n

]
Dn =




D1,n

D2,n

0
0
...
0



.

The submatrices H
(1)
m,n has entries given in Eq. (65) and Eq. (66). The submatrices

H(2,j)
m,n =

[
H

(2,j)
1,m,n H

(2,j)
2,m,n

]

has entries given in Eq. (73). The submatrices

H(3,j)
m,n =

[
H

(3,j)
1,m,n H

(3,j)
2,m,n

]

has entries given in Eq. (71). The submatrices

H(4,j)
m,n =

[
H

(4,j)
1,m,n H

(4,j)
2,m,n H

(4,j)
3,m,n H

(4,j)
4,m,n

]

for n > 0, and

H(4,j)
m,n =

[
H

(4,j)
1,m,n H

(4,j)
2,m,n

]

for n = 0, has entries given in Eq. (70). The entries H
(3,0)
1,1,n, H

(2,0)
1,1,n, H

(3,1)
1,M+1,n and H

(2,1)
1,M+1,n, are given in

Eqs. (76), (79), (82) and (84), respectively. The entries D1,n and D2,n, are given in Eqs. (77) and (80),
respectively.

5.2. Alternative boundary conditions

By removing the last five (three) rows and columns of Hn for n > 0 (n = 0), the Neumann-to-Neumann
boundary condition (NNBC) is replaced by a single Neumann condition8

∂ptot,M

∂r
= 0 (86)

at the innermost solid domain. This Neumann boundary condition may be replaced by other boundary
conditions like the Robin boundary condition (impedance boundary condition) by corresponding manipu-
lation of the matrix Hn. By removing the last row and column of the matrix Hn a Neumann condition
(σrr = 0) is obtained on the inside of the innermost shell9. Moreover, one can model scattering on solid
spheres10 (such that the innermost domain is no longer fluid, but solid) by removing the three last rows
(corresponding to the boundary conditions at R1,M ) and three columns (corresponding to the coefficients

A
(2)
M,n, B

(2)
M,n and C

(1)
M+1,n) of the matrix Hn (and corresponding entries of Cn and Dn). The reason for not

8That is, the normal velocity component of the fluid at the surface is zero, such that ur = 0 in Eq. (14). This is often
referred to as a sound-hard boundary condition, SHBC.

9This is often referred to as a sound-soft boundary condition, SSBC.
10This type of boundary conditions is named elastic sphere boundary conditions, ESBC.
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using the coefficients A
(2)
M,n and B

(2)
M,n is that the corresponding spherical Bessel functions of second kind

are unbounded at the origin, such that these coefficients must be set to zero. The displacement of the inner
solid sphere is then given by

uM = ur,Mer + uϑ,Meϑ (87)

where

ur,M (r, ϑ) =
1

r

∞∑

n=0

Q(0)
n (ϑ)

[
A

(1)
M,nS

(1)
1,n(aMr) +B

(1)
M,nT

(1)
1,n(bMr)

]
(88)

uϑ,M (r, ϑ) =
1

r

∞∑

n=0

Q(1)
n (ϑ)

[
A

(1)
M,nS

(1)
2,n(aMr) +B

(1)
M,nT

(1)
2,n(bMr)

]
. (89)

It should be noted that the solution is well defined also at the origin due to the formulas in Eqs. (C.24)
and (C.25). In fact, on can show that (using Eq. (A.19))

lim
r→0

uM (r, ϑ) =
1

3

[
aMA

(1)
M,1 − 2bMB

(1)
M,1

]
e3,

and (using Eq. (A.20))

lim
r→0

∂u1,M

∂x1

(r, ϑ) =
GM

9KM

(
4a2
M − 3b2M

)
A

(1)
M,0 −

1

15

(
a2
MA

(1)
M,2 − 3b2MB

(1)
M,2

)

lim
r→0

∂u2,M

∂x2

(r, ϑ) =
GM

9KM

(
4a2
M − 3b2M

)
A

(1)
M,0 −

1

15

(
a2
MA

(1)
M,2 − 3b2MB

(1)
M,2

)

lim
r→0

∂u3,M

∂x3

(r, ϑ) =
GM

9KM

(
4a2
M − 3b2M

)
A

(1)
M,0 +

2

15

(
a2
MA

(1)
M,2 − 3b2MB

(1)
M,2

)

lim
r→0

∂ui,M
∂xj

(r, ϑ) = 0 for i 6= j

where ui,M is the ith Cartesian component of u. The stress field can then be computed in the origin as
(using Eq. (B.7))

lim
r→0

σ11,M (r, ϑ) =
GM
15

[
5
(
4a2
M − 3b2M

)
A

(1)
M,0 − 2a2

MA
(1)
M,2 + 6b2MB

(1)
M,2

]

lim
r→0

σ22,M (r, ϑ) =
GM
15

[
5
(
4a2
M − 3b2M

)
A

(1)
M,0 − 2a2

MA
(1)
M,2 + 6b2MB

(1)
M,2

]

lim
r→0

σ33,M (r, ϑ) =
GM
15

[
5
(
4a2
M − 3b2M

)
A

(1)
M,0 + 4a2

MA
(1)
M,2 − 12b2MB

(1)
M,2

]

lim
r→0

σ23,M (r, ϑ) = 0

lim
r→0

σ13,M (r, ϑ) = 0

lim
r→0

σ12,M (r, ϑ) = 0

where σij,M is the stress field in the solid sphere in Cartesian coordinates. If the innermost domain is a
fluid, then

lim
r→0

pM+1(r, ϑ) = C
(1)
M+1,0

lim
r→0
∇pM+1(r, ϑ) =

kM+1

3
C

(1)
M+1,1e3

lim
r→0
∇2pM+1(r, ϑ) = −k2

M+1C
(1)
M+1,0.

Finally, note that one can model connected fluid or solid layers by manipulating the the matrix Hn to match
the pressure and displacement condition between these domains. An example of such an application is air
bubbles in water [15].
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p1

u1

p2

u2

pM

uM

pM+1

Figure 3: Illustration (clip view) of a model (to the left) with 3 steel shells and a model (to the right) with 2 steel shells
surrounding a solid steel sphere, illustrating the distribution of functions (in the case M = 3). The model to the left models
a fluid as the innermost domain, while the model to the right models a solid domain as the innermost domain (note that the
expression uM is slightly altered in this case).

5.3. Summary of solution formulas

In this sub section, the final expressions has been summarized (see Figure 3). Recall that h
(i)
n , Z

(i)
j,n, S

(i)
j,n

and T
(i)
j,n are all derived from spherical Bessel functions (jn and yn), while Q

(i)
n are derived from Legendre

functions. All coefficients (A
(i)
m,n, B

(i)
m,n and C

(i)
m,n) are found by solving the linear system of equations in

Eq. (85). The scattered pressure field in the outermost (unbounded) fluid domain, the mth fluid layer (for
2 6 m 6M), and the innermost fluid domain (if present), are given by

p1(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)C

(1)
1,nh(1)

n (k1r) (90)

pm(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)C(i)

m,nZ
(i)
n (kmr) (91)

pM+1(r, ϑ) =
∞∑

n=0

Q(0)
n (ϑ)C

(1)
M+1,njn(kM+1r), (92)

respectively. The displacement field in the mth solid domain is given by

um = ur,mer + uϑ,meϑ (93)

where

ur,m(r, ϑ) =
1

r

∞∑

n=0

Q(0)
n (ϑ)

[
A(i)
m,nS

(i)
1,n(amr) +B(i)

m,nT
(i)
1,n(bmr)

]
(94)

uϑ,m(r, ϑ) =
1

r

∞∑

n=0

Q(1)
n (ϑ)

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]
. (95)

If the inner domain is a solid domain, the terms involving S
(2)
1,n and T

(2)
1,n in uM , are not present.

18

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1016/j.jsv.2017.08.006



100 200 300 400 500

10−9

10−7

10−5

10−3

10−1

101

103

n

M
ag
n
it
u
d
e
of

B
es
se
l
fu
n
ct
io
n
s

|jn(500)|
|yn(500)|

(a) Magnitude of Besselfunctions ploted for n ∈ [0, 550].

100 300 500 700 900

10−200

10−120

10−40

1040

10120

10200

n

M
ag

n
it
u
d
e
of

B
es
se
l
fu
n
ct
io
n
s

|jn(500)|
|yn(500)|

(b) Magnitude of Besselfunctions ploted for n ∈ [0, 1050].

Figure 4: Illustration of the asymptotic behavior, of the spherical Bessel functions of first (jn(x)) and second (yn(x)) kind, as
a function of n, for a fixed argument x = 500.

6. Computational aspects

Several computational issues arise when implementing the exact solution (which has been implemented
in MATLAB). The source code can be downloaded from GitHub here. In this section, a discussion of some
of these issues will be presented.

6.1. Matrix manipulations

Note that the only complex valued matrix entries of Hn are the first two entries in the first column. So
instead of using a complex matrix solution routine to solve the system, one can exploit this fact to solving a
real valued linear system of equations with two right hand sides. Refer to Fender [15, pp. 18-20] for details.
Moreover, Fender shows that some further matrix manipulation may reduce the overall computational time
by 30% (when doing a frequency sweep). By using the same ideas, the size of Hn can be reduced from 6M
to 4M .

Note that for n > 0, column number 2l, l = 1, 2, . . . , 3M , of Hn contains entries which are linear
combinations of jn and jn+1 (and no spherical Bessel functions of second kind), while column number 2l−1,
l = 1, 2, . . . , 3M , of Hn contains entries which are linear combinations of yn and yn+1. So since

lim
n→∞

|jn(ζ)| = 0 and lim
n→∞

|yn(ζ)| =∞, (96)

(which is illustrated in Figure 4) the matrix Hn becomes poorly scaled for large n. This issue can be solved
by scaling the matrix with a (diagonal) preconditioning matrix Pn where the diagonal entries are given by the
maximal modulus of the corresponding column vectors of Hn. Defining the vector C̃n = PnCn and solving
the system H̃nC̃n = Dn with H̃n = HnP

−1
n , the solution is obtained by Cn = P−1

n C̃n. In Figures 5a
and 5b the magnitude of the entries in Hn is visualized before and after preconditioning, respectively. This
example is the matrix H300 of the S135 benchmark problem (described in Subsection 7.4) at f = 30 kHz.
The condition number was improved from cond(H300) ≈ 7.4 · 10278 to cond(H̃300) ≈ 9.4 · 104.
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Figure 5: Matrix manipulations: Plot of the magnitude of the matrix entries of H300 and H̃300.
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6.2. Series evaluation

As the series involves summation over infinitely many terms, the series needs to be truncated at some

number n = Nε. Denote by p
(N)
1 , the truncated sum for the scattered pressure in the outer domain (Eq. (91)),

p
(N)
1 (r, ϑ) =

N∑

n=0

Q(0)
n (ϑ)C

(1)
1,nh(1)

n (k1r), (97)

and correspondingly for the other fields in Eqs. (91) to (93). In [37, pp. 32-35], Ihlenburg discusses such a
value based on the decay of Bessel functions, in which he suggests to use N ≈ 2kr. In this work, however,
the summation is terminated whenever the magnitude of term n = Nε divided by the magnitude of the
partial sum (based on the first Nε + 1 terms) is less than some prescribed tolerance ε. Typically machine
epsilon is used for this number, i.e. ε ≈ 2.220446 ·10−16. As with the suggestion of Ihlenburg, the number of
terms, Nε, grows linearly with the frequency. The computational complexity of the problem is thus O(ω).

The solution is often needed at several points, or frequencies (or a combination of both). In this case, one
should compute the solutions at all points at once, such that the calls to the implemented Bessel functions
are minimized.

6.3. Round-off errors

Although the products A
(2)
m,nS

(2)
j,n(ζ), B

(2)
m,nT

(2)
j,n (ζ) and C

(2)
m,nZ

(2)
n (η) all goes to zero as n → ∞, the

functions S
(2)
j,n(amr), T

(2)
j,n (ζ) and Z

(2)
n (η) does not. In fact, these functions become unbounded when n→∞

because they are all superposition of Bessel functions of second kind with this property. So since the floating
point number has an upper bound11, there is a limit to the number of terms that can be used. A naive
solution to this problem is to try higher precision, which can easily be done with MATLAB symbolic class.
This however, increases the computational time drastically. In Figure 6 several round-off phenomena which
typically arises are illustrated. The specific example used here is the S135 benchmark problem with SSBC
(described in Subsection 7.4). The incident wave, pinc, is a plane wave traveling in the direction given by
ϑ = 60◦ and ϕ = 240◦ (see Section 7). An uniform (relative to the spherical coordinate system) set of sample
points are distributed in all domains12 where the residual error in the Helmholtz equation (Eq. (9)), the
1st and 2nd component of Navier’s equation in spherical coordinates (Eqs. (47) and (48), respectively), the
displacement condition (Eq. (14)) and the pressure condition (Eq. (15)), is measured. By using the infinity
norm, ‖ · ‖∞, for each residual, and dividing by the magnitude of the terms involved, the relative residual
error is obtained. The maximal relative residual in all domains can then be calculated. In particular, these
relative residual errors are given by

max
16m6M+1

∥∥(∇2 + k2
m

)
pm
∥∥
∞

‖k2
mpm‖∞

(98)

max
16m6M

∥∥∥∂σrr,m

∂r + 1
r
∂σrϑ,m

∂ϑ + 1
r (2σrr,m − σϑϑ,m − σϕϕ,m + σrϑ,m cotϑ) + ω2ρs,mur,m

∥∥∥
∞

‖ω2ρs,mur,m‖∞
(99)

max
16m6M

∥∥∥∂σrϑ,m

∂r + 1
r
∂σϑϑ,m

∂ϑ + 1
r [(σϑϑ,m − σϕϕ,m) cotϑ+ 3σrϑ,m] + ω2ρs,muϑ,m

∥∥∥
∞

‖ω2ρs,muϑ,m‖∞
(100)

max
16m6M

∥∥∥ρfω
2ur − ∂ptot

∂r

∥∥∥
∞∥∥∥∂ptot∂r

∥∥∥
∞

(101)

max
16m6M

‖σrr + ptot‖∞
‖ptot‖∞

. (102)

11For double precision this is typically Vmax ≈ 1.797693134862316 · 10308.
12It is placed 32 points in each domain except for the inner domain with 25 points. The distribution of point in the radial

direction in the exterior domain is limited to the interval [R0,1, 2R0,1].
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Figure 6: Round-off errors: Residual errors for the governing equations and boundary conditions. The use of symbolic
precision in MATLAB illustrate that the errors are due to round-off errors. The relative residual formulas for the Helmholtz
equation, the first and second components of the Navier equation, the displacement condition and the pressure conditions are
given by Eqs. (98) to (102), respectively.

By comparing these error results for both double precision and symbolic precision in MATLAB, one can
conclude that the errors indeed originates from round-off errors. When using double precision, the summation
is ended whenever |yn(η)| > 10290, such that invalid solutions is obtained for sufficiently large n. Since one
needs to have enough terms for the solution to converge, and at the same time have to avoid computing
yn(η) for low η (and large n), the following bound on the frequency based on experimental data is suggested

f .
100

C
where C =

(
R0,1

cf,1

) 3
2 1√

Υ
, Υ = min

{
min

16m6M

R1,m

max{cs,1,m, cs,2,m}
, min
16m6M

R0,m

cf,m

}
, (103)

where cs,1,M and cs,2,M is the transverse and longitudinal wave velocity for the M th spherical shell, respec-
tively. The constant Υ corresponds to the lowest argument η used for the Bessel functions of second kind.
An addendum will be given to yield more numerical evidence for this bound. In particular, plots similar
to the ones in Figure 6 will be presented for all benchmarks and corresponding boundary conditions in
Subsection 7.4. However, it would certainly be possible to construct models in which this bound is not valid.

One can also observe significant round-off errors for very low frequencies which is again due to the
evaluation of the spherical Bessel functions of the second kind with the property

lim
ζ→0
|yn(ζ)| =∞. (104)

Finally, observe that problems for higher frequencies also occur when using the symbolic class in MATLAB
(even though the summation is not terminated prematurely), which calls for a more mathematically sound
way of solving this issue. To avoid evaluating the Bessel functions directly, one could include a scaling such
that one need to evaluate products of the form jn(ξ)yn(η), jn+1(ξ)yn(η), jn(ξ)yn+1(η) and jn+1(ξ)yn+1(η)
(which will be 0 ·∞ type products). One would then probably need to use relations like [43, 03.21.26.0047.01
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and 03.21.26.0049.01]

jn(
√
z)yn(

√
z) = −

√
π

2
G2,0

1,3

(
z

∣∣∣∣∣
0

− 1
2 , n,−n− 1

)
(105)

jn+1(
√
z)yn(

√
z) =

√
π

2
G2,1

2,4

(
z

∣∣∣∣∣
0,− 1

2
0, n+ 1

2 ,−1,−n− 3
2

)
(106)

where G is the Meijer G-function. This investigation is left as future work.

7. Numerical examples

To give further evidence for the correctness of the implemented code, comparison to existing benchmark
solutions by Chang [14], Ihlenburg [37] and Fender [15], will be presented. A final benchmark problem in
the time-domain will be added.

It is customary to present results in the far-field. For the scattered pressure p1, it is defined by

p0(x̂, ω) = re−ik1rp1(x, ω), r = |x| → ∞, (107)

with x̂ = x/|x|. As a side note, using Eq. (C.31), the far-field pattern of the scattered pressure in Eq. (61),
is given by (in the axisymmetric case)

p0 =
1

k1

∞∑

n=0

i−n−1Q(0)
n (ϑ)C

(1)
1,n (108)

which yields a very efficient way of computing the far-field pattern.
From the far-field pattern, the target strength, TS, can be computed. It is defined by

TS = 20 log10

( |p0(x̂, ω)|
|Pinc(ω)|

)
(109)

where Pinc is the amplitude of the incident wave at the geometric center of the scatterer (i.e. the origin).
Note that TS is independent of Pinc.

The directional vector, ds, in spherical coordinates, is given by

ds = −




sinϑs cosϕs

sinϑs sinϕs

cosϑs


. (110)

If the source of the incident wave is located at

xs = −rsds, (111)

the far-field pattern of an incident wave from the point source

pinc(x, ω) = Pinc(ω)
eik1|xs−x|

|xs − x|
, (112)

is actually a plane wave
lim
rs→∞

rse
−ik1rspinc(x, ω) = Pinc(ω)eik1ds·x. (113)

Unless stated otherwise, plane waves will be used for the incident wave. Note that the direction of plane
waves and location of far-field points is often expressed in the aspect angle, α = ϕ, and the elevation angle,
β = 90◦ − ϑ.
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Table 1: Chang parameters: Parameters for the examples in figure 16 and figure 17 in [14].

Parameter Description

E = 2.0× 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7800 kg m−3 Density of solid
ρf = 1000 kg m−3 Density of water
cf,1 = 1460 m s−1 Speed of sound in fluid
R0,1 = 1.005 m Outer radius of spherical shell
R1,1 = 0.995 m Inner radius of spherical shell

Table 2: Ihlenburg parameters: Parameters for the Ihlenburg benchmark problem.

Parameter Description

E = 2.07× 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7669 kg m−3 Density of solid
ρf = 1000 kg m−3 Density of water
cf = 1524 m s−1 Speed of sound in fluid
R0,1 = 5.075 m Outer radius
R1,1 = 4.925 m Inner radius

7.1. Chang benchmark problem

Chang [14] considers a single spherical shell, with a single homogeneous Neumann condition (sound-soft
boundary conditions, SSBC) on the inside of the shell, scattering an incident plane wave (with amplitude
Pinc = 1 Pa). Chang sends the incident plane wave along the positive x3-axis, and uses the parameters
in Table 1. Moreover, the total pressure (Eq. (63)) is measured at the surface. In Figures 7a and 7b the
results are found with k = 15 m−1 and k = 20 m−1, respectively13. In both cases, the shadow region of the
scatterer, ϑ ∈ [0, 90◦], is clearly visible (with total pressure significantly lower than Pinc).

A simple convergence analysis is shown in Figure 8 where the error in the truncated series in Eq. (97)
is plotted. As discussed in Subsection 6.2 the convergence is delayed by the increased frequency from
k1 = 15 m−1 to k1 = 20 m−1. To obtain machine epsilon precision (double precision) Nε = 45 and Nε = 53
is needed for these frequencies, respectively.

7.2. Ihlenburg benchmark problem

Ihlenburg [37] considers a single spherical shell with a single homogeneous Neumann condition (sound-soft
boundary conditions, SSBC) on the inside of the shell, scattering an incident plane wave. Building upon this
example, the corresponding rigid scattering (sound-hard boundary conditions, SHBC) case and scattering
with fluid fill will be presented (Neumann-Neumann boundary conditions, NNBC). The parameters in Table 2
are here used. Frequency sweeps of the target strength (in Eq. (109)) are plotted in Figures 13a and 13b at
the polar angles ϑ = 180◦ and ϑ = 0◦, respectively.

Convergence plots for the three different cases are plotted in Figures 10 to 12, respectively. The linear
computational complexity discussed in Subsection 6.2 is revealed. Moreover, by comparing the SHBC case
in Figure 10 to the SSBC and NNBC cases in Figures 11 and 12, it is clear that the eigenmodes requires
more terms (larger N) in order to achieve better than 1% error precision (this is in particular the case for
eigenmodes at higher frequencies). However, the eigenmodes has no need of more terms in order to reach

13The discrepancies probably comes from the fact that the data set is collected by the software WebPlotDigitizer where a
digital scan of figure 16 and figure 17 [14, pp. 32-33] has been made.
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(a) Wave number k1 = 15 m−1 and series truncation at Nε = 46.
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(b) Wave number k1 = 20 m−1 and series truncation at Nε = 54.

Figure 7: Chang benchmark problem: Predicted total pressure as a function of the polar angle ϑ.
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Figure 8: Chang benchmark problem: Relative error (with 2000 sample points uniformly placed in the ϑ-direction) of the
truncated series in Eq. (97) as a function of N .

machine epsilon precision. So in the case of elastic scattering, the series termination strategy described
in Subsection 6.2 is more rigorous than termination of the series at a given N linearly depending on the
frequency.

7.3. Fender benchmark problem

Fender [15] consider a single air filled spherical shell scattering an incident plane wave (with amplitude
Pinc = 1 Pa). The parameters in Table 3 are here used, where the following conversion formulas is of
convenience

E = ρsc
2
s,2

3c2s,1 − 4c2s,2
c2s,1 − c2s,2

and ν =
1

2

c2s,1 − 2c2s,2
c2s,1 − c2s,2

. (114)

Fender also sends the incident plane wave along the x3-axis, but in negative direction. The frequency sweep
results of the total pressure (in Eq. (63)) are measured at the surface. In Figures 13a and 13b the results

Table 3: Fender parameters: Parameters for the examples in figure 2 and figure 3 in [15].

Parameter Description

cs,1 = 6412 m s−1 Longitudinal wave velocity
cs,2 = 3043 m s−1 Transverse wave velocity
ρs,1 = 2700 kg m−3 Density of solid
ρf,1 = 1026 kg m−3 Density of outer fluid (water)
ρf,2 = 1.21 kg m−3 Density of inner fluid (air)
cf,1 = 1500 m s−1 Speed of sound in water
cf,2 = 343 m s−1 Speed of sound in air
R0,1 = 1 m Outer radius of spherical shell
R1,1 = 0.95 m Inner radius of spherical shell
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(a) Measured at ϑ = 180◦.
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(b) Measured at ϑ = 0◦.

Figure 9: Ihlenburg benchmark problem: Plots of the target strength, TS. The backscattered pressure will correspond to
ϑ = 180◦, which is also the specific case considered by Ihlenburg [37, p. 192] (note that Ihlenburg plots the far field instead of
the target strength).
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Figure 10: Ihlenburg benchmark problem - the sound-hard case: Relative error in the l2-norm (with two sample points
at ϑ = 0◦ and ϑ = 180◦) of the truncated series in Eq. (97) as a function of N . The “exact” solution, p1, is obtained as
described in Subsection 6.2.
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Figure 11: Ihlenburg benchmark problem - the sound-soft case: Relative error in the l2-norm (with two sample points
at ϑ = 0◦ and ϑ = 180◦) of the truncated series in Eq. (97) as a function of N . The “exact” solution, p1, is obtained as
described in Subsection 6.2.
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Figure 12: Ihlenburg benchmark problem - the Neumann-Neumann case: Relative error in the l2-norm (with two
sample points at ϑ = 0◦ and ϑ = 180◦) of the truncated series in Eq. (97) as a function of N . The “exact” solution, p1, is
obtained as described in Subsection 6.2.

Table 4: Benchmark problems: Parameters for S1, S3 and S5.

S1 S3 S5

Outer radius, R0,1 1 m 3 m 5 m
Inner radius, R1,1 0.95 m 2.98 m 4.992 m
Fluid fill air air water

are found at polar angles ϑ = 0◦ and ϑ = 180◦, respectively14.
In Figure 14, another convergence study is illustrated. The Fender benchmark problem was run with

increasing frequency until a Bessel function was evaluated to be above 10290 (the termination criterion as
described in Subsection 6.3). Due to the linear behavior of N as a function of ω needed for convergence
(computational complexity) and the concave behavior of the smallest number N such that |yN (ωΥ )| >
10290 (where Υ is given by Eq. (103)), prematurely termination of the series is inevitable for large enough
frequencies.

7.4. Benchmark problems

Let S1, S3 and S5 be benchmark models of spherical shells characterized by the outer radius R0,1 and
the inner radius R1,1 of the shell. The shells are filled with the given fluid (Table 4) and embedded in water.
The remaining parameters are given in Table 5. These models can be combined into a new set of benchmark
problems: S13 (S1 inside S3 with air in between), S15 (S1 inside S5 with water in between), S35 (S3 inside

14The discrepancies again probably comes from the fact that the data set is collected by the software WebPlotDigitizer where
a digital scan of Figure 2 and Figure 3 [15, pp. 30-31] has been made. Moreover, the spectrum has been sampled rather closely,
revealing small (less significant) eigenmodes not shown by Fender.
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(a) Measured at ϑ = 0◦.
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(b) Measured at ϑ = 180◦.

Figure 13: Fender benchmark problem: Predicted total pressure as a function of k1R0,1 at the surface of the shell.
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Figure 14: Fender benchmark problem: The intersection of these to graphs marks the largest frequency for which the

algorithms presented in this work will give satisfactory results. Here, Υ is given by Eq. (103) and the truncated series p
(Nε)
1 is

given by Eq. (97).

Table 5: Benchmark problems: Common parameters for the benchmark problems.

Parameter Description

E = 2.10× 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7850 kg m−3 Density of solid
ρf,water = 1000 kg m−3 Density of water
ρf,air = 1.2 kg m−3 Density of air
cf,water = 1500 m s−1 Speed of sound in water
cf,air = 340 m s−1 Speed of sound in air
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S5 with water in between) and S135 (S1 inside S3 inside S5 with air in between S1 and S3 and water in
between S3 and S5). These benchmark problems are illustrated in Figure 15.

By default all benchmarks has acoustic structure interaction (ASI) on all of the interfaces between fluid
and solid domains (with Neumann-to-Neumann boundary conditions, NNBC, in Eqs. (14) and (15)). As
described in Subsection 5.2, the boundary conditions on the innermost shell may be replaced by other
boundary conditions like the sound-soft (SSBC) and sound-hard boundary condition (SHBC). The elastic
sphere boundary condition (ESBC) results from filling the innermost shell with the given elastic material.

In Figure 16, the near field is plotted for some of these benchmarks. In Figure 16b the classical interference
pattern emerging behind the rigid scatterer S5 (with SHBC) can be observed. In contrast, the corresponding
case with NNBC in Figures 16c and 16d gives a different picture entirely because most of the energy simply
passes straight through the thin spherical shell. The example is expanded further in Figures 16e to 16h.
For the latter case, the energy transmitted is greatly reduced due to air filled fluid inside the second shell.
The S135 benchmark was visually identical to this benchmark due to this fact (that is, it is hard to reveal
objects inside air filled domains). However, it is clear that sound-hard boundary conditions are not a good
approximation of NNBC in this case. The more natural approximation would be to use SSBC. Indeed, the
SSBC approximate the innermost fluid with pM+1 = 0, which is clearly a good approximation in this case.

7.5. Benchmark problems in the time domain

Finally, the application of the work in the time domain will be presented. In particular, consider scat-
tering by a single wavelet given by (from [40, p. 633])

P̆inc(t) =

{
4

3
√

3

[
sin(ωct)− 1

2 sin(2ωct)
]

0 < t < 1
fc

0 otherwise,
(115)

with ωc = 2πfc and kc = ωc/cf,1, and where fc is the center frequency (Figure 17a). The corresponding
frequency spectrum (using the definition of the Fourier transform in Eq. (6)), is given by (Figure 17b)

Pinc(ω) =
(
F P̆inc

)
(ω) =

{
4

3
√

3
iπ
ω eiπω/ωc ω ∈ {±ωc,±2ωc}

4√
3

ω3
c

(ω2−ω2
c )(ω2−4ω2

c )

(
1− e−2πiω/ωc

)
otherwise.

(116)

A plane wave with this wavelet in the time-domain then takes the form

p̆inc(x, t) = P̆inc

(
t− x3

cf,1

)
, (117)

with corresponding field in the frequency domain given by

pinc(x, ω) = (F p̆inc(x, ·))(ω) = Pinc(ω)eik1x3 . (118)

An alternative to plane waves, is waves due to point sources. Using the wavelet in Eq. (115), these waves
are given by

p̆inc(x, t) = P̆inc

(
t− |xs − x|

cf,1

)
rs

|xs − x|
and pinc(x, ω) = Pinc(ω)

rs

|xs − x|
eik1|xs−x| (119)

where xs is location of the point source given in Eq. (111) (at a finite distance rs = |xs|).
As Ψ(x, ω) cannot be computed for infinitely many frequencies, an approximate of the time dependent

fields in Eq. (7) by [40, p. 614] can be used

Ψ̆(x, tm) ≈ 2

T
Re





Ň/2−1∑

n=1

Ψ(x, ωn)e−2πinm/Ň



 (120)
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(a) S1 (b) S3 (c) S5

(d) S13 (e) S15 (f) S35

(g) S135 (h) S13 with ESBC (i) S15 with ESBC

Figure 15: Benchmark problems: The first row (S1, S2, S3) represent the default set of benchmarks from which the others
are built (clip view). The model S5 and S3 is, respectively, 5 and 3 times the size of S1 (the figures are thus not to scale). S13 is
a combination of S1 and S2, S13 is a combination of S1 and S3, and S23 is a combination of S2 and S3. S123 is a combination
of S1, S2 and S3. The final two figures are derived models with a solid sphere as the innermost domain.
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(a) S5 with SHBC: Plot of the real part of ptot.
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(b) S5 with SHBC: Plot of the modulus of ptot.
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(c) S5 with NNBC: Plot of the real part of ptot.
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(d) S5 with NNBC: Plot of the modulus of ptot.
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(e) S35 with SHBC: Plot of the real part of ptot.
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(f) S35 with SHBC: Plot of the modulus of ptot.
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(g) S135 with NNBC: Plot of the real part of ptot.
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(h) S135 with NNBC: Plot of the modulus of ptot.

Figure 16: Benchmark problems: Plots of the near-field of some benchmark problems. The shells are cut open whenever a
domain inside the shell is present. The visualization was done in Paraview.

34

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1016/j.jsv.2017.08.006

http://www.paraview.org/


−1 0 1 2 3

·10−3

−1

−0.5

0

0.5

1

t [s]

P̆
in
c
(t
)
[P
a]

(a) Wavelet in time domain.
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(b) Wavelet in frequency domain.

Figure 17: Benchmark problems in the time domain: Wavelet P̆inc(t) and corresponding frequency spectrum |Pinc(ω)|.
The wavelet has compact support on the interval [0, 1/fc], where fc = 1.5× 103 Hz. The frequency spectrum is plotted for
positive frequencies to the end of the bandwidth, f = B/2 = 6.4× 103 Hz (with B = Ň/T ).
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Figure 18: Benchmark problems in the time domain: Visualization of a wavelet (from a far-field point) in the time
domain which transmits (the 1st transmitted wave) and reflects (the 1st reflected wave) an elastic sphere (which is cut open for
visualization purposes). The 2nd transmitted wave through the elastic sphere takes a lead of the direct wave as the wave speed
in the elastic material is larger than that of the fluid. Aliasing is also visible. Two transparent planes have been inserted to
visualize the total pressure field. The von Mises stress, σ̆v, is visualized in the solid. The visualization was done in Paraview.

where

tm = m∆t, ∆t =
T

Ň
, ωn = n∆ω, ∆ω =

2π

T
. (121)

Note that the contribution from the static case (n = 0) has not been included as the incident wave,
pinc(x, 0) = 0, results in the trivial solution Ψ(x, 0) = 0. The Fourier series approximation results in
periodic time-dependent fields, with period T , sampled in the interval [0, T ] with Ň time steps. The param-
eter Ň also quantifies the number of terms in the Fourier series approximation, such that it also controls
the error (aliasing). By choosing Ň to be powers of two, the approximation can be very efficiently evaluated
by the fast Fourier transformation.

In Figure 18 an example based on the S5 benchmark problem with ESBC is illustrated; An elastic sphere
(with parameters given in Table 5) is impinged by the incident wave in Eq. (117). In this example, the
following parameters has been used: fc = 1.5 kHz, Ň = 210 = 1024 and T = 120/fc. In Figure 18, the total
pressure is plotted in the fluid, and the von Mises stress given by

σv =

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6(σ2

23 + σ2
13 + σ2

12)

2
(122)

is plotted in the solid domain.
For the benchmark problems, the longitudinal speed and transverse speed in the solid is cs,1 ≈ 6001 ms−1

and cs,2 ≈ 3208 ms−1, respectively. So since, cs,1 ≈ 4cf and cs,2 ≈ 2cf , the waves traveling through the elastic
sphere with the longitudinal wave speed, will transmit through the solid 4 times as fast as the waves in the
surrounding fluid (this wave correspond to the 1st transmitted wave in Figure 18). Correspondingly for the
waves traveling with the transverse wave speed. This can indeed be observed as well, but the amplitude of
the transverse wave traveling at the speed cs,1 is only about 2% of the amplitude of the incident wave Pinc,
and is thus barely visible. Much more energy is transmitted through the wave with the transverse wave
speed (the amplitude is approximately 14% of Pinc).

Consider finally the S15 benchmark problem with ESBC; A thin shell surrounding a solid sphere is
impinged by the incident wave in Eq. (119) (that is, the incident wave originates from a point source in the
near field). The point source is located at a radius of rs = 10 m away from the center of the scatterer (the
origin). All other parameters remains the same as in the previous example.
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Figure 19: Benchmark problems in the time domain: Visualization of a wavelet (from a point source) in the time domain
which transmits (the 1st transmitted wave) and reflects (the 1st reflected wave) the outermost thin shell (which is cut open for
visualization purposes), and is then scattered (the 2nd reflected wave) by the innermost solid sphere. The 2nd transmitted wave
through the elastic sphere takes a lead of the direct wave as the wave speed in the elastic material is larger than that of the
fluid. Aliasing is also visible. Two transparent planes have been inserted to visualize the total pressure field. The displacement
field is here not visualized. The visualization was done in Paraview.

In Figure 19 the effects from previous example can again be observed. In addition, waves traveling
in the thin shell are reflected backwards through a head wave in the intermediate fluid. In addition, the
corresponding waves are transmitted through the shell denoted as “Wave from shell”.

It should be pointed out that aliasing (pollution of the solution from the previous incident waves due
to periodicity) is present, although not visible in these plots. The aliasing can be decreased further by
increasing the period T . To preserve the size of the bandwidth B = Ň/T , Ň must be correspondingly
increased.

8. Conclusion

An exact solution to 3D scattering problems on spherical symmetric scatterers has been presented. From
a computational point of view, the solution is exact in the sense that round-off errors are the only source
of errors. However, these round-off errors play a crucial role for higher frequencies (and also for very low
frequencies) when implementing the solution naively. In any case, the computational complexity of the
solution is O(ω).

A set of benchmark problems have been presented for future references. Results have been presented for
some of these benchmarks in both the far-field (frequency domain) and the time domain (near-field). The
exact solution presents a vast set of parameters for large ranges, which makes it a good reference solution,
as many numerical phenomena can occur for different combinations of these parameters.
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Figure A.20: The spherical and Cartesian coordinate system.

A. The spherical coordinate system

The spherical coordinate system is defined by the transformation x(r, ϑ, ϕ) = xi(r, ϑ, ϕ)ei, where ei are
the standard basis vectors in the Cartesian coordinate system and (see Figure A.20)

x1 = r sinϑ cosϕ (A.1)

x2 = r sinϑ sinϕ (A.2)

x3 = r cosϑ. (A.3)

The inverse relation is then found to be

r = |x|, with |x| =
√
x2

1 + x2
2 + x2

3 (A.4)

ϑ = arccos

(
x3

|x|

)
(A.5)

ϕ = atan2(x2, x1), (A.6)

where

atan2(x2, x1) =





arctan(x2

x1
) if x1 > 0

arctan(x2

x1
) + π if x1 < 0 and x2 ≥ 0

arctan(x2

x1
)− π if x1 < 0 and x2 < 0

π
2 if x1 = 0 and x2 > 0

−π2 if x1 = 0 and x2 < 0

undefined if x1 = 0 and x2 = 0.

(A.7)

Hence, the Jacobian matrix of the spherical transformation is given by

Js =



∂x1

∂r
∂x1

∂ϑ
∂x1

∂ϕ
∂x2

∂r
∂x2

∂ϑ
∂x2

∂ϕ
∂x3

∂r
∂x3

∂ϑ
∂x3

∂ϕ


 =




sinϑ cosϕ r cosϑ cosϕ −r sinϑ sinϕ
sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ

cosϑ −r sinϑ 0


 (A.8)
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with inverse given by

J−1
s =




∂r
∂x1

∂r
∂x2

∂r
∂x3

∂ϑ
∂x1

∂ϑ
∂x2

∂ϑ
∂x3

∂ϕ
∂x1

∂ϕ
∂x2

∂ϕ
∂x3


 =




sinϑ cosϕ sinϑ sinϕ cosϑ
1
r cosϑ cosϕ 1

r cosϑ sinϕ − 1
r sinϑ

− 1
r

sinϕ
sinϑ

1
r

cosϕ
sinϑ 0


. (A.9)

So for a scalar valued function Ψ the following is obtained (using the chain rule)



∂Ψ
∂r
∂Ψ
∂ϑ
∂Ψ
∂ϕ


 = J>s




∂Ψ
∂x1
∂Ψ
∂x2
∂Ψ
∂x3


. (A.10)

The scale factors in the spherical coordinate system are given by

hr =

∣∣∣∣
∂x

∂r

∣∣∣∣ = 1, hϑ =

∣∣∣∣
∂x

∂ϑ

∣∣∣∣ = r, hϕ =

∣∣∣∣
∂x

∂ϕ

∣∣∣∣ = r sin θ, (A.11)

from which the following basis vectors are derived (see Figure A.20)

er =
1

hr

∂x

∂r
= e1 sinϑ cosϕ+ e2 sinϑ sinϕ+ e3 cosϑ (A.12)

eϑ =
1

hϑ

∂x

∂ϑ
= e1 cosϑ cosϕ+ e2 cosϑ sinϕ− e3 sinϑ (A.13)

eϕ =
1

hϕ

∂x

∂ϕ
= −e1 sinϕ+ e2 cosϕ. (A.14)

This can be written in the following matrix form
[
er eϑ eϕ

]
= J>e

[
e1 e2 e3

]
= J>e (A.15)

where

Je =




sinϑ cosϕ sinϑ sinϕ cosϑ
cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0


 (A.16)

and inverse given by

J−1
e =




sinϑ cosϕ cosϑ cosϕ − sinϕ
sinϑ sinϕ cosϑ sinϕ cosϕ

cosϑ − sinϑ 0


. (A.17)

So for any vector field
Ψ = Ψ1e1 + Ψ2e2 + Ψ3e3 = Ψrer + Ψϑeϑ + Ψϕeϕ (A.18)

the following relation is found (by comparing each component)


Ψ1

Ψ2

Ψ3


 = J>e



Ψr

Ψϑ
Ψϕ


, (A.19)

and the Jacobian of Ψ is given by (using the chain rule)



∂Ψ1

∂x1

∂Ψ1

∂x2

∂Ψ1

∂x3
∂Ψ2

∂x1

∂Ψ2

∂x2

∂Ψ2

∂x3
∂Ψ3

∂x1

∂Ψ3

∂x2

∂Ψ3

∂x3


 =



∂Ψ1

∂r
∂Ψ1

∂ϑ
∂Ψ1

∂ϕ
∂Ψ2

∂r
∂Ψ2

∂ϑ
∂Ψ2

∂ϕ
∂Ψ3

∂r
∂Ψ3

∂ϑ
∂Ψ3

∂ϕ


J−1

s

=


J1Ψr + J2Ψϑ + J3Ψϕ + J>e



∂Ψr

∂r
∂Ψr

∂ϑ
∂Ψr

∂ϕ
∂Ψϑ

∂r
∂Ψϑ

∂ϑ
∂Ψϑ

∂ϕ
∂Ψϕ

∂r
∂Ψϕ

∂ϑ
∂Ψϕ

∂ϕ





J−1

s

(A.20)
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where

J1 =




0 cosϑ cosϕ − sinϑ sinϕ
0 cosϑ sinϕ sinϑ cosϕ
0 − sinϑ 0


, J2 =




0 − sinϑ cosϕ − cosϑ sinϕ
0 − sinϑ sinϕ cosϑ cosϕ
0 − cosϑ 0


, J3 =




0 0 − cosϕ
0 0 − sinϕ
0 0 0


.

Using Eqs. (A.10), (A.15) and (A.19), the following formulas are obtained

∇Ψ =
∂Ψ

∂r
er +

1

r

∂Ψ

∂ϑ
eϑ +

1

r sinϑ

∂Ψ

∂ϕ
eϕ (A.21)

∇2Ψ =
1

r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂Ψ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2Ψ

∂ϕ2
(A.22)

∇ · Ψ =
1

r2

∂(r2Ψr)

∂r
+

1

r sinϑ

∂(Ψϑ sinϑ)

∂ϑ
+

1

r sinϑ

∂Ψϕ
∂ϕ

(A.23)

∇2Ψ =

(
∇2Ψr −

2

r2
Ψr −

2

r2 sinϑ

∂(Ψϑ sinϑ)

∂ϑ
− 2

r2 sinϑ

∂Ψϕ
∂ϕ

)
er

+

(
∇2Ψϑ −

1

r2 sin2 ϑ
Ψϑ +

2

r2

∂Ψr

∂ϑ
− 2 cosϑ

r2 sin2 ϑ

∂Ψϕ
∂ϕ

)
eϑ

+

(
∇2Ψϕ −

1

r2 sin2 ϑ
Ψϕ +

2

r2 sinϑ

∂Ψr

∂ϕ
+

2 cosϑ

r2 sin2 ϑ

∂Ψϑ
∂ϕ

)
eϕ

(A.24)

∇× Ψ =
1

r sinϑ

(
∂

∂ϑ
(Ψϕ sinϑ)− ∂Ψϑ

∂ϕ

)
er +

1

r

(
1

sinϑ

∂Ψr

∂ϕ
− ∂

∂r
(rΨϕ)

)
eϑ

+
1

r

(
∂

∂r
(rΨϑ)− ∂Ψr

∂ϑ

)
eϕ.

(A.25)

B. Linear elasticity

In this section the needed formulas from linear elasticity used in this paper are listed. A more compre-
hencive introduction to linear elasticity may be found in [44]. From the displacement field u = uiei the
strain field, εij , is defined by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(B.1)

from which the stress field, σij , can be obtained through the constitutive relation15 (derived from the
generalized Hooke’s law)




σ11

σ22

σ33

σ23

σ13

σ12




= C




ε11

ε22

ε33

2ε23

2ε13

2ε12




with C =




K + 4G
3 K − 2G

3 K − 2G
3 0 0 0

K − 2G
3 K + 4G

3 K − 2G
3 0 0 0

K − 2G
3 K − 2G

3 K + 4G
3 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




(B.2)

where it has been assumed that the elastic material is isotropic. Note that

C−1 =
1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)



. (B.3)

15This representation is often referred to as the Voight notation.
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In [44, p. 19] the transformation formula for the stress tensor from an arbitrary coordinate system to another
can be found. If ei and ẽi represents the basis vectors of these two coordinate systems and the stress field is
known in the first coordinate system, then the stress field in terms of the second coordinate system is found
by

σ̃ij = αikαslσkl, (B.4)

where
αij = cos(ẽi, ej) = ẽi · ej (B.5)

represents the cosine of the angle between the axes corresponding to the vectors ẽi and ei. Letting ẽ1 = er,
ẽ2 = eϑ and ẽ3 = eϕ (the basis vectors in the spherical coordinate system), and {e1, e2, e3} the standard
basis vectors in Cartesian coordinates, one gets (using Eq. (A.15))

[αij ] =




sinϑ cosϕ sinϑ sinϕ cosϑ
cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0


 = Je. (B.6)

This yields the relation 


σrr

σϑϑ
σϕϕ
σϑϕ
σrϕ

σrϑ




= D




σ11

σ22

σ33

σ23

σ13

σ12




(B.7)

where

D =




sin2 ϑ cos2 ϕ sin2 ϑ sin2 ϕ cos2 ϑ sin 2ϑ sinϕ sin 2ϑ cosϕ sin2 ϑ sin 2ϕ
cos2 ϑ cos2 ϕ cos2 ϑ sin2 ϕ sin2 ϑ − sin 2ϑ sinϕ − sin 2ϑ cosϕ cos2 ϑ sin 2ϕ

sin2 ϕ cos2 ϕ 0 0 0 − sin 2ϕ
− 1

2 cosϑ sin 2ϕ 1
2 cosϑ sin 2ϕ 0 − sinϑ cosϕ sinϑ sinϕ cosϑ cos 2ϕ

− 1
2 sinϑ sin 2ϕ 1

2 sinϑ sin 2ϕ 0 cosϑ cosϕ − cosϑ sinϕ sinϑ cos 2ϕ
1
2 sin 2ϑ cos2 ϕ 1

2 sin 2ϑ sin2 ϕ − 1
2 sin 2ϑ cos 2ϑ sinϕ cos 2ϑ cosϕ 1

2 sin 2ϑ sin 2ϕ



.

The inverse relation is found by inverting the matrix D, which takes the form

D−1 =




sin2 ϑ cos2 ϕ cos2 ϑ cos2 ϕ sin2 ϕ − cosϑ sin 2ϕ − sinϑ sin 2ϕ sin 2ϑ cos2 ϕ
sin2 ϑ sin2 ϕ cos2 ϑ sin2 ϕ cos2 ϕ cosϑ sin 2ϕ sinϑ sin 2ϕ sin 2ϑ sin2 ϕ

cos2 ϑ sin2 ϑ 0 0 0 − sin 2ϑ
1
2 sin 2ϑ sinϕ − 1

2 sin 2ϑ sinϕ 0 − sinϑ cosϕ cosϑ cosϕ sinϕ cos 2ϑ
1
2 sinϑ sin 2ϕ − 1

2 sin 2ϑ cosϕ 0 sinϑ sinϕ − cosϑ sinϕ cos 2ϑ cosϕ
1
2 sin2 ϑ sin 2ϕ 1

2 cos2 ϑ sin 2ϕ − 1
2 sin 2ϕ cosϑ cos 2ϕ cos 2ϕ sinϑ 1

2 sin 2ϑ sin 2ϕ



.

Moreover, 


σrr

σϑϑ
σϕϕ
σϑϕ
σrϕ

σrϑ




= C




εrr

εϑϑ
εϕϕ
2εϑϕ
2εrϕ
2εrϑ



, (B.8)
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where (cf [38, p. 150])

εrr =
∂ur

∂r

εϑϑ =
1

r

(
∂uϑ
∂ϑ

+ ur

)

εϕϕ =
1

r sinϑ

(
∂uϕ
∂ϕ

+ ur sinϑ+ uϑ cosϑ

)

εϑϕ =
1

2r

(
1

sinϑ

∂uϑ
∂ϕ

+
∂uϕ
∂ϑ
− uϕ cotϑ

)

εrϕ =
1

2

(
1

r sinϑ

∂ur

∂ϕ
+
∂uϕ
∂r
− uϕ

r

)

εrϑ =
1

2

(
1

r

∂ur

∂ϑ
+
∂uϑ
∂r
− uϑ

r

)
.

(B.9)

Finally, note that Navier’s equation of motion (Eq. (10)) in spherical coordinates are given by (cf. [38, p.
189])

∂σrr

∂r
+

1

r

∂σrϑ

∂ϑ
+

1

r sinϑ

∂σrϕ

∂ϕ
+

1

r
(2σrr − σϑϑ − σϕϕ + σrϑ cotϑ) + ω2ρsur = 0 (B.10)

∂σrϑ

∂r
+

1

r

∂σϑϑ
∂ϑ

+
1

r sinϑ

∂σϑϕ
∂ϕ

+
1

r
[(σϑϑ − σϕϕ) cotϑ+ 3σrϑ] + ω2ρsuϑ = 0 (B.11)

∂σrϕ

∂r
+

1

r

∂σϑϕ
∂ϑ

+
1

r sinϑ

∂σϕϕ
∂ϕ

+
1

r
(2σϑϕ cotϑ+ 3σrϕ) + ω2ρsuϕ = 0. (B.12)

C. Fundamental functions

Exact solutions for scattering problems on spherical symmetric scatterers are heavily based on the spher-
ical coordinate system defined in Appendix A. Some fundamental functions then naturally arise, and the
notation will briefly be presented in the following.

C.1. Legendre polynomials

The Legendre polynomials are defined recursively by (cf. [45, p. 332])

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (C.1)

starting with P0(x) = 1 and P1(x) = x. From orthogonality property [43, 05.03.21.0006.01]

∫ 1

−1

Pm(x)Pn(x) dx =
2

2n+ 1
δmn, (C.2)

with δmn being the Kronecker delta function, one can do a simple substitution to obtain the following
expression ∫ π

0

Pm(cosϑ)Pn(cosϑ) sinϑdϑ =
2

2n+ 1
δmn. (C.3)

Note the following identity from the expanded Legendre equation

d2

dϑ2
Pn(cosϑ) + cotϑ

d

dϑ
Pn(cosϑ) = −n(n+ 1)Pn(cosϑ). (C.4)

The associated Legendre polynomials is a generalization of the Legendre polynomials as they are defined by

Pmn (x) = (−1)m(1− x2)
m
2
∂m

∂xm
Pn(x). (C.5)
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A convenient result of this is the following relation

P1
n(cosϑ) =

d

dϑ
Pn(cosϑ). (C.6)

Let
{
Q

(j)
n

}
j∈N

be a set of functions defined by

Q(j)
n (ϑ) =

dj

dϑj
Pn(cosϑ), (C.7)

the first four of which are given by

Q(0)
n (ϑ) = Pn(cosϑ)

Q(1)
n (ϑ) = −P′n(cosϑ) sinϑ

Q(2)
n (ϑ) = −P′n(cosϑ) cosϑ+ P′′n(cosϑ) sin2 ϑ

Q(3)
n (ϑ) = P′n(cosϑ) sinϑ+

3

2
P′′n(cosϑ) sin 2ϑ− P′′′n (cosϑ) sin3 ϑ

(C.8)

where the derivatives are found by the recursion relations

(n+ 1)P′n+1(x) = (2n+ 1)[Pn(x) + xP′n(x)]− nP′n−1(x) (C.9)

(n+ 1)P′′n+1(x) = (2n+ 1)[2P′n(x) + xP′′n(x)]− nP′′n−1(x) (C.10)

(n+ 1)P′′′n+1(x) = (2n+ 1)[3P′′n(x) + xP′′′n (x)]− nP′′′n−1(x) (C.11)

starting with

P′0(x) = 0, P′1(x) = 1, P′2(x) = 3x

P′′0(x) = 0, P′′1(x) = 0, P′′2(x) = 3, P′′3(x) = 15x

P′′′0 (x) = 0, P′′′1 (x) = 0, P′′′2 (x) = 0, P′′′3 (x) = 15, P′′′4 (x) = 105x.

Note that the formulas in Eq. (C.8) can be rewritten in the following way

Q(1)
n (ϑ) =

n

sinϑ
[Pn(cosϑ) cosϑ− Pn−1(cosϑ)] (C.12)

Q(2)
n (ϑ) =

n

sin2 ϑ

[
−
(
n sin2 ϑ+ 1

)
Pn(cosϑ)− Pn−1(cosϑ) cosϑ

]
. (C.13)

From Eq. (C.4) the following relations can be obtained

Q(2)
n (ϑ) = −Q(1)

n (ϑ) cotϑ− n(n+ 1)Q(0)
n (ϑ) (C.14)

Q(3)
n (ϑ) = −Q(2)

n (ϑ) cotϑ+Q(1)
n (ϑ) cot2 ϑ+ (−n2 − n+ 1)Q(1)

n (ϑ). (C.15)

C.2. Spherical Bessel and Hankel functions

The Bessel functions of the first kind can be defined by [45, p. 360]

Jυ(x) =
∞∑

m=0

(−1)m

m!Γ(m+ υ + 1)

(x
2

)2m+υ

, (C.16)

while the Bessel functions of the second kind are defined by

Yυ(x) =
Jυ(x) cos(υπ)− J−υ(x)

sin(υπ)
, (C.17)
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where
Yn(x) = lim

υ→n
Yυ(x) (C.18)

whenever n ∈ Z (cf. [45, p. 358]). These definitions may be used to define the spherical Bessel functions.
The spherical Bessel functions of the first kind are defined by (cf. [45, p. 437])

jn(x) =

√
π

2x
Jn+ 1

2
(x) (C.19)

and the second kind are defined by

yn(x) =

√
π

2x
Yn+ 1

2
(x). (C.20)

Some important limits of the spherical Bessel function of the first kind at the origin are [43, 03.21.20.0016.01
and 03.21.20.0017.01]

lim
x→0

j0(x) = 1, lim
x→0

jn(x) = 0 ∀n ∈ N∗ (C.21)

lim
x→0

d

dx
j1(x) =

1

3
, lim

x→0

d

dx
jn(x) = 0 ∀n ∈ N \ {1} (C.22)

lim
x→0

d2

dx2
j0(x) = −1

3
, lim

x→0

d2

dx2
j2(x) =

2

15
, lim

x→0

d2

dx2
jn(x) = 0 ∀n ∈ N \ {0, 2}. (C.23)

From this the following limits are obtained

lim
x→0+

jn(x)

x
=





∞ n = 0
1
3 n = 1

0 n > 1

(C.24)

and

lim
x→0+

jn(x)

x2
=





∞ n = 0, 1
1
15 n = 2

0 n > 2.

(C.25)

A couple of convenient identities involving the derivatives of the spherical Bessel functions are given by [43,
03.21.20.0007.01 and 03.21.20.0008.01]

d

dx
Z(i)
n (x) = Z

(i)
n−1(x)− n+ 1

x
Z(i)
n (x) (C.26)

d

dx
Z(i)
n (x) =

n

x
Z(i)
n (x)− Z(i)

n+1(x) (C.27)

for i = 1, 2. By combining these two formulas, one can compute higher order derivatives. For example

d2

dx2
Z(i)
n (x) =

[
n(n− 1)

x2
− 1

]
Z(i)
n (x) +

2

x
Z

(i)
n+1(x). (C.28)

The spherical Hankel functions of the first and second kind can now be expressed by

h(1)
n (x) = jn(x) + iyn(x) (C.29)

and
h(2)
n (x) = jn(x)− iyn(x). (C.30)

respectively. Two important limits for spherical Hankel functions are [37, p. 25]

lim
x→∞

xe−ixh(1)
n (x) = i−n−1 (C.31)

lim
x→∞

xeixh(2)
n (x) = in+1 (C.32)
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One can trivially show that the Eqs. (C.26) to (C.28) holds for spherical Hankel functions as well

d

dx
h(i)
n (x) = h

(i)
n−1(x)− n+ 1

x
h(i)
n (x) (C.33)

d

dx
h(i)
n (x) =

n

x
h(i)
n (x)− h

(i)
n+1(x) (C.34)

d2

dx2
h(i)
n (x) =

[
n(n− 1)

x2
− 1

]
h(i)
n (x) +

2

x
h

(i)
n+1(x), (C.35)

for i = 1, 2.

D. The incident wave

The coefficients F
(1)
n and F

(2)
n in Eq. (74) may be computed by using the orthogonality property of the

Legendre polynomials in Eq. (C.3). In fact, any square integrable function Ψ(ϑ) on the interval [0,π] can
be written as (see [37, p. 27])

Ψ(ϑ) =
∞∑

n=0

ΨnPn(cosϑ) (D.1)

where

Ψn =
2n+ 1

2

∫ π

0

Ψ(ϑ)Pn(cosϑ) sinϑdϑ. (D.2)

For example, a plane wave traveling along the x3-axis can be expanded as [45, 10.1.47]

pinc(x, ω) = Pinc(ω)eik1x3 = Pinc(ω)eik1r cosϑ = Pinc(ω)
∞∑

n=0

(2n+ 1)injn(k1r)Pn(cosϑ) (D.3)

such that

F (1)
n = Pinc(ω)(2n+ 1)injn(k1R0,1) (D.4)

F (2)
n = Pinc(ω)(2n+ 1)ink1j

′
n(k1R0,1). (D.5)

Another example of an incident wave satisfying the axisymmetry property, is a wave due to a point source
located at xs = −rse3. The incident wave can then be expressed with the fundamental solution of the
Helmholtz equation

pinc(x, ω) = Pinc(ω)
rs

|xs − x|
eik1|xs−x|, |xs − x| =

√
r2 + 2rsr cosϑ+ r2

s . (D.6)

By a simple substitution v = cosϑ in Eq. (D.2) one gets

F (1)
n = Pinc(ω)

2n+ 1

2
rs

∫ 1

−1

eik1q(v)

q(v)
Pn(v) dv

F (2)
n = Pinc(ω)

2n+ 1

2
rs

∫ 1

−1

(R0,1 + rsv)
eik1q(v)

q3(v)
[ik1q(v)− 1]Pn(v) dv

(D.7)

where

q(v) =
√
R2

0,1 + 2rsR0,1v + r2
s .

One can obtain simple expressions for some of these coefficients, for example

F
(1)
0 = Pinc(ω) sinc(k1R0,1)eik1rs .

But in general one needs to use a numerical routine to evaluate the integrals in Eq. (D.7).
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