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Abstract Oceanographic climatology is normally estimated by dividing the world’s
oceans into geographical boxes of fixed shape and size, where each box is repre-
sented by a climatological salinity and temperature profile. The climatological
profile is typically an average of historical measurements from that region. Since
an arbitrarily chosen box may contain different types of water masses both in
space and time, an averaged profile may be a statistically improbable, or even
nonphysical representation.

This paper proposes a new approach that employs empirical orthogonal func-
tions in combination with a clustering technique to divide the world’s oceans into
climatological regions. Each region is represented by a cluster that is determined
by minimising the variance of the state variables within each cluster. All profiles
contained in a cluster are statistically similar to each other, and statistically dif-
ferent from profiles in other clusters. Each cluster is then represented by mean
temperature and salinity profiles and a mean position.

Methods for estimating climatological profiles from the cluster information
are examined and their performances are compared to a conventional method of
estimating climatology. The comparisons show that the new methods outperform
conventional methods and are particularly effective in areas where oceanographic
fronts are present.
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1 Introduction

Climatological underwater temperature and salinity profiles are estimated from
historic data. Conventional methods divide the world’s oceans into geographical
boxes of fixed size and shape and average. Climatological profiles are estimated
by averaging, or finding the median of, all historic profiles measured within each
box. Typically, the historic data set is also divided in time in order to produce
an estimate for each month or season. An example of a climatology database is
World Ocean Atlas [12,13] which uses geographical boxes of either 1o or 5o for
either annual, seasonal, or monthly temporal resolutions.

There are obvious advantages of using such rigid methods, particularly in terms
of robustness, but also some disadvantages. For example, consider areas dominated
by two or more different types of water masses separated by fronts, a not unusual
situation in the littorals [7,16,20]. A geographical box used for estimating climato-
logical profiles may contain several distinctly different profiles, and since fronts are
dynamic [16], the water masses present in a small geographical box may change
in the course of a month. The temperature and salinity distributions in such areas
will typically have multiple peaks and high skewness and kurtosis resulting in a
statistically improbable or even unphysical averaged profile.

Some applications of climatology require accurate and physical representations
of the oceanographic profile rather than a conventional averaged profile. For ex-
ample, modeling of acoustic wave propagation requires the present sound speed
profile [8]. The modelled acoustic field is highly sensitive to errors in the sound
speed profile [4,11], which is derived from temperature and salinity profiles [3].

We propose a new method for estimating climatological profiles where the
physical and statistical behaviour is preserved. The method employs empirical or-
thogonal functions (EOF) [19] and clustering [18] to divide a set of historic profiles
into different clusters. The clusters replace the rectangularly shaped geographical
boxes and are then each associated with average temperature and salinity profiles
and an averaged position. When a sufficient amount of clusters are used, the statis-
tics of each cluster will be approximately Gaussian [5], which makes the average
profile a good representative for that cluster and if used in an acoustic model, the
predicted field will be representative for the entire cluster.

For a given geographic position the method outputs several estimates of the
climatological salinity and temperature profiles and the probability that they ap-
ply for the specified position. This way, the user is made aware if the area is
dominated by statistically different types of waters (several nearby clusters with
comparable probability), or a single dominant water type (one cluster with very
high probability).

The proposed method is tested on temperature and salinity profiles collected
and made freely available by the Coriolis project and programmes that contribute
to it (http://www.coriolis.eu.org). Comparisons are made to conventional methods
of estimating climatology.

EOFs are popular tools in oceanography and have been used extensively in
the literature since the 70s [17]. LeBlanc and Middleton [10] employed EOFs to
complete sound speed profiles with missing data points using climatological data.
EOFs are easily combined with clustering techniques. This combination is much
used for classification purposes, e. g. in seabed classification [15], and has also been
used on modelled oceanographic data [6,9]. Bunkers et al [2] have shown that EOF
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and clustering may be used to improve climatological estimates of meteorological
data.

2 Method

Let a set of N measured oceanographic profiles, with positions given by xn =

(x
(1)
n , x

(2)
n ), contain both measurements of salinity, s

(j)
n , and temperature, t

(j)
n , as

functions of depth, where j is the depth step and n is the profile number.
Let the entire set of profiles be split into M clusters with mean position, x̂m =

(x̂
(1)
m , x̂

(2)
m ), and let mean temperature and salinity at each depth be given by t̂

(j)
m

and ŝ
(j)
m , respectively. The clusters may be of different sizes and each contains Nm

profiles, where m indicates the cluster number.
According to Bayes’ law the probability that the mth cluster contains the nth

profile is given by:

P (m|n) = P (n|m)P (m)

P (n)
, (1)

P (m) is the probability that the mth cluster contains a profile and is simply
estimated by:

P (m) =
Nm

N
. (2)

P (n) is a normalising factor given by:

P (n) =

M∑
m=1

P (n|m). (3)

For a given profile n, P (n|m) may be interpreted as a function of the attributes
of the mth cluster. Assume that the cluster positions, temperature profiles, and
salinity profiles are independent of each other, then:

Pd(n|m) = fx(xm,xn)

J∏
j=1

ft(t
(j)
m , t (j)n )fs(s

(j)
m , s (j)

n ), (4)

where Pd(n|m) is the likelihood function; the probability distribution correspond-

ing to P (n|m). fx(xm,x), ft(t
(j)
m , t (j)), and fs(s

(j)
m , s (j)) are the probability dis-

tributions for the positions, temperature profiles, and salinity profiles for the mth
cluster. Furthermore, assume independent Gaussian distributions, then:

Pd(n|m) =

(
(2π)J+1

2∏
j=1

σ (j)
xm

J∏
j=1

σ (j)
sm

J∏
j=1

σ
(j)
tm

)−1

(5)

exp

[
−1

2

2∑
j=1

(
x

(j)
n − x̂

(j)
m

σ
(j)
xm

)2
− 1

2

J∑
j=1

((
s
(j)
n − ŝ

(j)
m

σ
(j)
sm

)2
+

(
t
(j)
n − t̂

(j)
m

σ
(j)
tm

)2)]
.
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By requiring that each profile is initially assigned to a single cluster only, the
distribution of clusters may be determined. For our purposes the optimal distri-
bution of clusters is the distribution that maximises the product

∏N
n=1 Pd(n|m).

This may be approximated by minimising the log–likelihood function:

min
C

[
1

2

N∑
n=1

M∑
m=1

cmn

(
2 log

(
2∏

j=1

σ (j)
xm

J∏
j=1

σ (j)
sm

J∏
j=1

σ
(j)
tm

)
(6)

+

2∑
j=1

(
x

(j)
n − x̂

(j)
m

σ
(j)
xm

)2
+

J∑
j=1

(
s
(j)
n − ŝ

(j)
m

σ
(j)
sm

)2
+

J∑
j=1

(
t
(j)
n − t̂

(j)
m

σ
(j)
tm

)2)]
.

where cmn is unity when the nth profile initially is part of the mth cluster and
zero otherwise. C is a vector containing all cluster parameters, e. g. cluster cen-
troids and standard deviations. This nonlinear optimisation problem is not easily
solvable, and some simplifying assumptions must be made to process the amount
of data needed to generate useful climatology. In our case we assume that the stan-
dard deviations of the temperature and salinity profiles are approximately equal
for all clusters:

σ (j)
xm ≈ σ (j)

x , σ
(j)
tm ≈ σ

(j)
t , σ (j)

sm ≈ σ (j)
s ,

The approximated standard deviations, σ
(j)
x , σ

(j)
t , and σ

(j)
s , are selected according

to the application. Since the first term in (6) becomes a constant, the minimisation
problem is reduced to:

min
C

[
N∑

n=1

M∑
m=1

cmn

(
2∑

j=1

(
x

(j)
n − x̂

(j)
m

σ
(j)
x

)2
+

J∑
j=1

(
s
(j)
n − ŝ

(j)
m

σ
(j)
s

)2
+

J∑
j=1

(
t
(j)
n − t̂

(j)
m

σ
(j)
t

)2)]
.(7)

Let the vector pn with elements p
(j)
n be given by:

pn =

[
x

(1)
n

σ
(1)
x

,
x

(2)
n

σ
(2)
x

,
s
(1)
n

σ
(1)
s
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(2)
n

σ
(2)
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,
s
(3)
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(3)
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, ...,
s
(J)
n

σ
(J)
s

,
t
(1)
n

σ
(1)
t

,
t
(2)
n

σ
(2)
t

,
t
(3)
n

σ
(3)
t

, ...,
t
(J)
n

σ
(J)
t

]T
, (8)

and

p̂ (j)
m =

1

Nm

N∑
n=1

cmnp
(j)
n , (9)

then (7) may be written as:

min
C

[
N∑

n=1

M∑
m=1

cmn

2J+2∑
j=1

(
p (j)
n − p̂ (j)

m

)2]
. (10)

Let p
(j)
n be represented by the weighted sum of a set of EOFs [17], such that:

p (j)
n = p (j) +

K∑
k=1

κnku
(j)
k , (11)
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u
(j)
k are the EOFs and κnk their corresponding weights, also called coefficients.

K = 2J + 2 is the number of elements of the EOFs. The EOFs are orthonormal,
thus inserting (11) into (10) yields:

min
C

[
N∑

n=1

M∑
m=1

cmn

K∑
k=1

(κnk − κ̂mk)
2

]
, (12)

κ̂mk is the averaged coefficients representing the profiles in cluster m:

κ̂mk =
1

Nm

N∑
n=1

cmnκnk. (13)

(12) is a minimization over the sum of all variances of the EOF coefficients for all
clusters and may be written as:

min
C

[
M∑

m=1

K∑
k=1

Nmσ2
km

]
, (14)

where the standard deviations of the EOF coefficients in each cluster are given by:

σkm =

√√√√ 1

Nm

N∑
n=1

cmn(κkn − κ̂km)2. (15)

Considering the approximation in (7) and that each of the parameters are nor-
malised by their approximated standard deviation, then cmn is simply reduced
to:

cmn =

{
1,

∑K
k=1 (κkn − κ̂km)2 <

∑K
k=1 (κkn − κ̂ki)

2 ∀ i ̸= m
0, otherwise.

, (16)

which is equivalent to placing a profile in the cluster whose centroid is at the
lowest Euclidean distance from the profile in coefficient space. K–means clustering
is a fast clustering algorithm that solves this problem, but is prone to finding
local minima rather than the actual optimum. The clustering algorithm should be
repeated several times with different random seeds and the best solution should be
chosen. In the example in the following sections, clustering was repeated 120 times

and the cluster distribution that resulted in the most parameters (x
(j)
m , s

(j)
m , and

t
(j)
m ) with Gaussian statistics was selected. The Kolmogorov-Smirnov test with
a significance level of 5% was employed to determine whether a parameter was
Gaussian.

For a given cluster distribution, the expected values and standard deviations
may be approximated from the data. The expected values are then approximated
as:

t̂ (j)m ≈ 1

Nm

N∑
n=1

cmnt
(j)
n , (17)
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and similar for position, x̂
(j)
m , and salinity, ŝ

(j)
m . The standard deviations, which

then replace the approximations in (7), are estimated as follows:

σ
(j)
tm ≈

√√√√ 1

Nm

N∑
n=1

cmn

(
t
(j)
n − t̂

(j)
m

)2
. (18)

and similarly for position, σ
(j)
xm, and salinity, σ

(j)
sm.

2.1 Estimating climatology

Given a set of clusters determined by the method described in the previous sec-
tion, climatology for a geographic position, x, is estimated. Since the salinity and
temperature profiles at x are unknown, the marginal probability distribution for
position must be used to determine the probability that cluster m represents po-
sition x. From (1) the marginal distribution for position is given by:

Pd(m|x) = Nm

N

(∏2
j=1 σ

(j)
xm

)−1

exp

(
−
(

x (1)−x̂ (1)
m√

2σ
(1)
xm

)2
−
(

x (2)−x̂ (2)
m√

2σ
(2)
xm

)2)
∑M

m=1

(∏2
j=1 σ

(j)
xm

)−1

exp

(
−
(

x (1)−x̂
(1)
m√

2σ
(1)
xm

)2
−
(

x (2)−x̂
(2)
m√

2σ
(2)
xm

)2) . (19)

Five different methods for estimating the climatological profile at position x
are employed:

1. Nearest proximity. The mean salinity and temperature profiles from the cluster
with a centroid closest in Euclidean distance to x.

2. Weighted proximity. A weighted average of the mean salinity and temperature
profiles of all clusters, where the squared Euclidean distance is used as weights.

3. Most probable. The mean salinity and temperature profiles from the most prob-
able cluster (maximize Pd(m|x)).

4. Weighted probability. A weighted average of the mean salinity and temperature
profiles of all clusters, where Pd(m|x) are used as weights.

5. Best fit. The mean salinity and temperature profiles from the three most prob-
able clusters.

Note that only the latter three methods use the marginal distribution in (19), the
two first methods only apply the Euclidean distance in geographic coordinates to
determine which cluster to use. Note also that the fifth method actually yields three
climatological profiles. In later comparisons, the profile resulting in the best fit with
data is used. Clearly, in an operational scenario the user does not know which
profile gives the best fit, but the added information of knowing the three most
typical types of profiles is useful, particularly in areas where fronts are present.

Each of the above mentioned methods are compared to a conventional method
for estimating climatology. The area of interest is divided into equally sized geo-
graphic boxes and the average of all profiles within each box is the conventional
climatological estimate for that box.
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3 Example data set

The data set used was collected and made freely available by the Coriolis project
and programmes that contribute to it (http://www.coriolis.eu.org ). The data set
consists of 19 701 ARGO profiles from the North Atlantic Ocean from 1. of January
to 31. of March between 2001 and 2012, (see Tab. 1).

Nonphysical and incomplete profiles are removed. A profile is considered incom-
plete if it does not contain measurements shallower than 10 m depth and deeper
than 500 m depth. Profiles containing temperature measurements below -10◦C
and above 40◦C are considered nonphysical. Likewise for profiles containing salin-
ity measurements below 15 PSU and above 50 PSU. Also, profiles with spikes in
temperature (more than 5◦) or salinity (more than 2 PSU) between neighbouring
depth samples are considered nonphysical. The remaining profiles are interpolated
linearly to the following depths (in meters): {10, 20, 30, 50, 75, 100, 125, 150,
200, 250, 300, 400, 500} following [12,13]. The depth steps have lower density in
the deeper regions since most of the variability is closer to the surface, see Fig. 1.
The method requires the same depth sampling in all profiles. A maximum depth
of 500 m was chosen. Most of the variance is then included and the profiles in
relatively shallow regions are preserved. A maximum depth of e. g. 1500 m would
result in the loss of approximately 40% of the data due to exclusion of shallower
profiles.

The geographical variability is illustrated by the sea surface temperature in
Fig. 2. The sea surface temperature in general decreases with increasing latitude,
but at some positions the measured sea surface temperature deviates from the
surrounding measurements. A stricter filtering of the data would have removed
these outliers. A temperature front is observed along the East Coast of North
America, which is in agreement with earlier literature on the subject [1,7,14, and
more].

Table 1 Number of ARGO profiles from the North Atlantic Ocean during the first quarter of
each year

Year No. of profiles

2001 203
2002 596
2003 1 136
2004 1 320
2005 1 214
2006 1 385
2007 2 034
2008 2 386
2009 2 470
2010 2 370
2011 2 876
2012 1 711
Total 19 701
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Fig. 1 Variance of temperature and salinity as a function of depth for the entire data set.
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Fig. 2 Sea surface temperature at the positions of the applied profiles.

4 Validation

The validation scheme is divided into two steps. The first step analyses how well
the climatology represents the data foundation, while the second step assesses the
method’s ability to predict future profiles.

The data set is split into two parts. The first part of the data set, henceforth
called historic data, consists of all data measured in January to March each year
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Fig. 3 Weighted averaged variance for temperature as a function of number of groups us-
ing both conventional grouping and EOF combined with clustering. The dots represent the
weighted averaged variance for each depth separately.

from 2001 to 2011. The second part of the data set, henceforth called present data,
consists of data measured in January to March 2012.

The EOF and clustering technique described in Sect. 2 is applied on the historic
data set. The number of clusters used is varied from 10 to 100. Climatological
profiles from the historic data are also estimated using a conventional method as
described in section 2.1. The size of the geographic boxes used is varied in order to
find climatological estimates comparable to the ones using the proposed method.

Fig. 3 shows the weighted average variance from all groups using both the EOF
and clustering technique, and the conventional method. The weighted averaged
variance for temperature at a given depth is given by:

(σ
(j)
tm)2 =

1

N

Nm∑
m=1

Nm(σ
(j)
tm)2 (20)

where the standard deviation in temperature for each group, σ
(j)
tm, is given in (18).

Fig. 3 clearly shows that oceanographic variations in each group are significantly
lower when using the EOF and clustering technique than when using the conven-
tional method. The average profile in a cluster is far more representative for the
profiles in the cluster, than the average profile in a geographical box is for the
profiles contained in that box. Notice also that the variance is larger for shallower
depths, which is expected since most geographical and short time scale variations
are located in the upper layers.
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The variances seem to converge for an increasing number of conventional boxes.
Even by reducing the size of each box to a single position, there would still be
temporal variations present that will add to the total variance. The clustering on
EOF coefficients connects similar profiles in the same cluster regardless of position
and time and thus reduces the variance below this limit. The obvious disadvantage
with clustering is that the geographical extent of a cluster becomes ambiguous as
two profiles measured in the same location at different times may belong to two
different clusters.

The methods described in Sect. 2.1 are used to generate a temperature and
salinity profile for all profile locations in both the historic and the present data
set. The following error function for temperature is used to evaluate the ability of
the methods to represent the historic data set:

EHt =

√√√√ 1

NHJ

NH∑
n=1

J∑
j=1

(
t
(j)
Hn − t (j)(xn)

)2
. (21)

J is the number of depth steps and NH is the number of historic profiles. t (j)(xn) is

the jth depth step of the estimated climatological profile and t
(j)
Hn is the measured

temperature profile from the historic data set. The error function used to evaluate
the ability of the method to predict profiles is similar:

EPt =

√√√√ 1

NPJ

NP∑
n=1

J∑
j=1

(
t
(j)
Pn − t (j)(xn)

)2
(22)

NP is the number of profiles in the present data set. Equivalent error functions
for salinity are also applied.

The resulting error functions are compared in Figs. 4 and 5. Clearly, the meth-
ods that rely on spatial proximity (methods 1 and 2) give poorer estimates than
the methods using the marginal distribution (methods 3 – 5). For both the his-
toric and present data set the methods using marginal distributions outperform
the conventional method for temperature estimates. The salinity estimates have
performance equivalent to that of the conventional method. The best fit method
(method 5) performs particularly well, but this method assumes that the user is
able to pick the best profile out of three choices.

5 Results

Creating climatology based on clustering and EOF is here demonstrated using 26
clusters. The amount of clusters used was determined using the Bayesian Infor-
mation Criteria [5]. For comparison the conventional climatological method with
a resolution of 15◦ by 15◦ resulting in 26 groups is also employed.

The average standard deviations over the 26 conventional groups, see Fig. 6,

are used as σ
(j)
t and σ

(j)
s in (7) applied in the EOF clustering. The standard

deviations for latitude and longitude are set to 7◦ and 14◦, respectively. A higher
standard deviation in longitude is selected, because larger latitudinal than longi-
tudinal oceanographic variations are observed in the data set, see Fig. 2, thus
clusters with higher standard deviation in longitude than latitude provide better
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Fig. 4 The historic error function defined in (21) as a function of number of clusters for the
different methods of estimating climatology as described in section 2.1.
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Fig. 5 The predicted error function defined in (22) as a function of number of clusters for the
different methods of estimating climatology as described in section 2.1.

climatological estimates. Note that the minimisation in (7) depends on the relative
magnitudes of the standard deviations only. By decreasing the selected standard
deviation of one parameter only, the weight of that parameter in the minimisation
is increased.

According to the proportion of variances five coefficients capture approximately
98% of the variance in the profiles, see Fig. 7. This is sufficient for the purpose
of estimating climatology. The first EOF coefficient has the highest variance and
contains approximately 75% of the variance. Fig. 8 shows the EOF’s derived from
the historical data set. Due to the standard deviation chosen in Sec. 4, the absolute
value of the first EOF is higher for temperature than for salinity, see Fig. 8. Larger
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Fig. 6 The standard deviations of temperature and salinity as functions of depth. The stan-
dard deviations are averaged over all 26 groups when using conventional methods for dividing
the area into boxes (15◦ by 15◦).

EOF values for temperature causes the proposed method to have a larger focus
on temperature than salinity when generating clusters, which is the main reason
why temperature estimates are more accurate as observed in Sec. 4. The salinity
estimates could be improved by decreasing the chosen standard deviation of the
salinity, but that would in turn reduce the performance of the temperature esti-
mates. A possible improvement, which is considered outside the scope of this work,
is to perform a separate cluster analysis for temperature and salinity, resulting in
two sets of clusters and possible improvements in both salinity and temperature
estimates.

Fig. 9 shows the distribution of the two first EOF coefficients that represent
all profiles in the historic data set. Each coefficient pair is coloured according to
what cluster they belong to. For high latitudes the temperature varies less with
depth than further south. In order to adjust the gradient of the mean temperature
profile, the coefficient corresponding to the first EOF in Fig. 8 have larger values
at higher latitudes. The geographical distribution of all profiles is given in Fig. 10.
The position of each profile is coloured according to what cluster the profile be-
longs to. Observe that the clusters are spatially compact, but less compact than
what is observed in EOF coefficient space. There is a strong geographical mix-
ing between neighbouring groups, which explains some of the errors observed in
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Fig. 7 The proportion of variances for the EOFs using 26 clusters.
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Fig. 8 Left: The contribution from salinity, temperature, and position to the five first EOFs.
Right: The mean profiles of salinity and temperature and the mean position used in (11). Note
that the EOF analysis is performed on normalised versions of the salinity, temperature, and
position, as defined in equation (8).

Sec. 4. By decreasing the selected maximum spatial standard deviation, σ
(j)
x , the

mixing could be reduced. Since the idea behind the proposed method is to find
clusters characterised by oceanographic homogeneity, one must be careful not to
overdo the requirement for the spatial standard deviations. There is a trade-off in
the method between spatially contiguous clusters with low mixing (lower spatial
standard deviations) and oceanographically homogeneous clusters (higher spatial
standard deviations).

The contribution of each profile to the error function (22) for the present data
set is plotted geographically in Fig. 11. The results using the conventional method
with a 5o × 5o box is included for reference. Note that the conventional method
has an overall performance that is comparable to the ”Best fit” method, except
in difficult areas close to the coast, such as north of Great Britain and the East
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Fig. 10 The geographic position of the clustered profiles when the EOF coefficients are clus-
tered into 26 groups.
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using the six methods described in Sec. 2.1. The profiles are here divided into 26 groups with
the centre positions marked with a black square. The conventional method is used on 5o × 5o

squares whose centers are marked by small black squares.

Coast of North America. The conventional method employs 147 resolution cells,
while the proposed method used only 26 clusters.

The three methods using the marginal distribution (methods 3 - 5) to esti-
mate a climatological profile outperforms the methods based on spatial proximity
(methods 1 and 2), which is in agreement with Sec. 4. The methods that rely on
spatial proximity perform poorly in an area around 40oW and 45oN. The main
reason is found in Fig. 10 which shows that the nearest cluster center is cluster
1 which consists of outliers, including the profiles with sea surface temperatures
that deviate from the surrounding measurements observed in Fig. 2. These pro-
files all have extreme values in EOF coefficient space beyond the limits of Fig. 9.
The methods that rely on proximity is sensitive to outliers when the geographical
center of the outliers is close to the position in question. Since only 0.16% of the
profiles are included in this cluster, the methods that rely on probabilites are much
less affected. This explains some of the observed differences in RMS between the
methods that rely on proximity and the methods that rely on probabilities, see
Figs. 4 and 5.

In areas dominated by two or more fundamentally different types of profiles
the averaging made by conventional methods may result in nonphysical and/or
a statistically improbable climatological estimate of the profiles. Fig. 12 shows
an example from the East Coast of North America where two different types of
water masses are located in the same area. Cold water from the Labrador Sea
runs southwards between the coast line and the warmer Gulf Stream running
northeast. The average of all profiles inside a 15o × 15o box does not represent
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the profiles in the area since it falls between the two groups of profiles. The non–
Gaussality of the temperature and salinity distributions in the box makes a simple
averaging method misleading. Even a reduction of the box size to 5o × 5o, does
not improve the average estimate. Increasing the resolution further will not remove
the problem since the fronts separating the different types of water masses in the
area are dynamic and therefore measurements in a single position may in time
change from one type of water mass to the other.

In areas dominated by fronts any single estimate of the profile would be mis-
leading. The best fit method separates different types of water masses into clusters,
and therefore gives reliable climatological estimates of the temperature and salin-
ity profiles for all present water masses. In such cases, presenting different possible
profiles with associated probabilities is clearly more useful than presenting a sin-
gle, averaged profile, which has a very low probability of being an actual profile in
such an area.

6 Conclusion

Amethod for dividing an ocean into climatological regions using empirical orthogo-
nal functions and clustering has been presented and demonstrated on ARGO buoys
data for the winter seasons from 2001 to 2011. A set of oceanographic profiles are
divided into clusters, where each cluster is represented by a mean position, a mean
salinity, and a mean temperature profile.

Different schemes for estimating climatology for a specific geographic posi-
tion using these clusters were proposed and tested. ARGO buoy data from the
winter season in 2012 were then used to validate the method by comparing its
climatological estimates to estimates from conventional climatological methods.
Some schemes were solely based on the Euclidean distance from the selected posi-
tion to nearby clusters. These schemes had equal or poorer performance than the
conventional method. The remaining schemes, however, employed the marginal
probability distribution for geographic position in order to select the most proba-
ble clusters, rather than the nearest. These schemes had better performance than
the conventional method.

One of the advantages of the proposed method is the ability to estimate dif-
ferent types of profiles, where each cluster represents a type. The method also
estimates the probability that these profiles are representative for a specific geo-
graphic position. By offering the user not just a single, but several profiles, he may
better understand the present oceanography. It is shown that if the user is able to
select the correct type of profile then the performance of the proposed method to
estimate climatological profiles far exceeds that of conventional methods, particu-
larly for temperature profiles. An example of an area dominated by different types
of waters is given, and in this area an averaged profile is a poor representative
for the oceanography. In such areas it is better to present several possible water
types, rather than an average profile that is statistically improbable and possibly
even nonphysical.
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