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Abstract— Compressed sensing (CS) based reconstruction
methods have been in much focus over the last years as they
provide a mean to work with limited amount of data. In this
article we present an application of CS and sparse reconstruction
in a radar setup to form range-Doppler maps. We characterize a
radar system where instead of transmitting a train of pulses the
pulse transmission occurs in a sparse manner. An array based
radar may thus for example alternate beams between two or
more angles within the same processing interval applying the
entire array. We show that gaps in data can very adequately be
filled in by sparse reconstruction which can also be used to ex-
trapolate additional values. Comprehensive simulations covering
various scenarios, including sea clutter conditions, are used to
demonstrate the effectiveness of the scheme.

I. INTRODUCTION

Radar systems play an important role in air surveillance,
detection and tracking of targets. A typical radar may operate
by transmitting a number of pulses at a specific direction,
stacking up returned matched filtered data in a matrix and
performing a Fourier transform across the slow-time domain.
This results in a range-Doppler map which can be used for for
example target detection. Modern radars are typically equipped
with electronically steering arrays and are able to digitally
steer a beam instantaneously. When emitting pulses in a given
direction a radar may desire to transmit a number of pulses
in a different direction for various purposes, such as tracking,
and then come back to the main angle to resume standard
operation. The radar may also be interested in dividing its time,
within the same coherent processing interval, between two, or
more, scanning directions and for example only transmit all
the pulses in the same angle if some unusual activity does
show up. This type of beam switching with all array elements
introduces a number of empty gaps in the slow-time domain
and a range-Doppler profile has to be constructed with fewer
pulses, resulting in less integration gain and lower Doppler
resolution.

In this regard, an interesting question is to what extent
empty data segments can be reconstructed or interpolated from
available data, particularly for the purpose of a range-Doppler
plot. This work investigates the performance of such a system
and suggests a compressed sensing (CS) type of framework
[1], [2], [3] with emphasis on the slow-time / Doppler domain.
Several previous papers have considered various aspects of
employing a CS scheme is a radar context [4], [5], [6], [7],
though the explicit construction of a range-Doppler map has

only been given limited attention. In contrast to for example
[7], [8], [9] we do not assume that the radar emits specific
modulated subpulses or even a continuous pulse of trains in
the same direction and also do not infer that the sampling
of incoming pulses is done in a sparse fashion. A standard
matched filtering operation is rather carried out on a pulse
to pulse basis. The presented concept emphasizes emission
and reception of pulses in a sparse manner itself, freeing up
valuable time at the radar to do other tasks such as multiple
beam switching with little to no performance loss. Unlike most
other papers e.g. [4], we also treat each range bin indepen-
dently leading to an ensemble of one-dimensional problems
with tractable partial Fourier matrices. It is demonstrated that
this simplified process, with individual reconstruction for each
range bin, still manages to provide substantial flexibility and
improvement to a radar system.

The motivation for CS comes from the fact that a range-
Doppler profile is likely to be sparse in nature. Each target
typically occupies a few Doppler bins. Clutter, if present,
though more diverse in nature, is still often likely to be
concentrated to within a specific Doppler bin interval. As
the overall contour is otherwise dominated by noise a sparse
reconstruction strategy may be competent at compiling a
profile where the missing data has been repleted.

In addition to interpolating missing values, another appli-
cation of the method is to extrapolate data beyond the end
points to extract additional slow-time data elements. This alone
can be useful addition to a system as before proceeding with
a Fourier transform across slow-time, a windowing function
is often applied to smooth out measurements and reduce
sidelobe levels; data collected at the beginning and end of the
integration period is thus weighted down. An extrapolation
can provide more substance in making maximum use of all
available data and on its own incorporated as a software
enhancement not requiring extensive system redesign.

II. SIGNAL MODEL

We consider a radar system where transmission and re-
ception of N pulses takes place during a determined slow-
time coherent interval. At each pulse repetition interval p(t)
is emitted and the incoming signal at slow-time u, u =
1, 2, ..., N , be described by

s(t, u) =
∑
n

σnp(t−∆n)ejvn,u + w̃(t) (1)
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where t is fast-time. σn are reflectivity levels of incoming
echoes and targets while ∆n is the signal delay associated with
each reflector, we assume these values remain unaltered during
the dwell period. j =

√
−1 and ejvn,u is the experienced

Doppler phase shift and for a constant velocity object typically
modeled by

vn,u = vn,u−1 +
rn 4πfc
c PRF

, (2)

where rn is the radial velocity of target n, fc carrier frequency,
PRF pulse repetition frequency and c speed of light. For
convenience we can define vn,0 = 0.

After transmission of each waveform the radar samples any
incoming pulse reflections and a matched filtering operation is
carried out via the time-reversed and conjugated pulse p∗(−t).
The pulse compressed data can then be specified as

Y (t, u) = p∗(−t) ∗ s(t, u) (3)

where ∗ prescribes convolution in fast-time. In a practical
setting the fast-time parameter will also be discrete, we denote
this explicitly as

Y(tm, u) = Y (tm∆t, u), tm = 1, 2, ...., R ∈ CN×R (4)

given ∆t as the resolution of the radar. R∆t thus corresponds
to the largest time-delay associated with the maximum unam-
biguous radar range.

For further processing Y(tm, u) is typically multiplied
in slow-time by a windowing function w(u) ∈ CN×1 to
yield YW (tm, u) = w(u)Y(tm, u) ∈ CN×R. Performing
a Fourier transformation with respect to slow-time, over all
discrete time-delays, or equivalently ranges, results in the
range-Doppler map matrix:

D(tm, ω) = F YW (tm, u) ∈ CN×R. (5)

F is the discrete Fourier matrix of size N × N , Fk,l =
exp(2πjkl/N) while the inverse discrete Fourier matrix is
expressed by F̂ = 1

NF∗ where ∗ is the conjugation operator.
Notice that the above process is independent for each range
bin. ω can readily be converted into [−vmax vmax] where
vmax = c PRF

4fc
is the maximum unambiguous velocity, with

the resolution in Doppler space given by N , ∆ω = 2vmax

N .
We assume that for whatever reason the radar does not

transmit N pulses right after each other in the same direction
rather the truncated Ỹ(tm, ũ) ∈ CN−K×R only contains
N−K slow-time measurements, ũ = 1, 2, ..., N−K, collected
arbitrary within the coherent interval of N pulses. A typical
range-Doppler plot may now still be constructed by applying
a Fourier matrix of size N − K × N − K, however, as (2)
is not satisfied, incoherent data can result in lower integration
gain and spectral leakage.

The method of sparse reconstruction is to assemble an
extended range-Doppler profile using a sparse reconstruction
procedure and thus attempt to retain a high resolution in slow-
time. In case of (2) each target is concentrated in velocity and
the profile can be assumed to be sparse. The reconstructed
solution should ideally approximate (2) for each target and

maximize overall sparsity in Doppler. For this we define L
to indicate the number of desired output entries in slow-time
and assume L ≥ N . The reconstructed profile in slow-time is
denoted by Ŷ(tm, û) ∈ CL×R, û = 1, ..., L and the range-
Doppler map is

D̂(tm, ω̂) = F̂ ŵ(û)Ŷ(tm, û) ∈ CL×R (6)

where F̂ is an L× L Fourier matrix. We additionally define
a binary selection matrix M ∈ BN−K×L by taking an L× L
identity matrix and removing respective rows for which no
collected data is available. w̄(ũ) is formed by selecting a win-
dowing function of L entries, ŵ(û) ∈ CL×1, and truncating
it to N −K values by excluding samples at positions where
no collected data is available:

w̄(ũ) = Mŵ(û) ∈ CN−K×1. (7)

The reconstructed matrix should have the same set of data
at measured positions:

(MŶ)(tm, ũ) = Ỹ(tm, ũ), (8)

or with windowing functions included

M(ŵŶ)(tm, ũ) = (Mŵ)Ỹ(tm, ũ). (9)

This may be expressed as

(MF̂∗F̂ŵŶ) (tm, ũ) = w̄Ỹ (tm, ũ) (10)

leading to
F̂RD̂ (tm, ω̂) = w̄Ỹ (tm, ũ), (11)

given the partial inverse Fourier matrix F̂R = MF̂∗ ∈
CN−K×L.

For a range T = tm the objective is therefore to determine a
sparse Doppler profile D̂(T, ω̂) consisting of L samples while
being in agreement with the observations. The reconstruction
problem under convex relaxation therefore takes the shape of

D̂(T, ω̂) = arg min ||Ḋ(T, ω̂)||1 (12)

under the constraint

|| F̂R Ḋ(T, ω̂)− w̄(ũ) Ỹ(T, ũ) || ≤ δ (13)

where δ is acceptable error limit while || ||1 indicates the L1
norm.

Finding an independent solution over all defined values
of tm = 1, 2, ...., R produces a range-Doppler map matrix
D̂(tm, ω̂) ∈ CL×R where any missing data would effectively
have been inter- or extrapolated. In a practical setting the
optimization processes may be run in parallel as each range
bin poses a separate problem. δ may accordingly be set to
the estimated noise level to restrict its influence or to a value
relative to ||w̄(ũ)Y(T, ũ)||.

The design of F̂R can be selected randomly (e.g. random
beam switching) or designed deterministically (e.g. prede-
termined beam switching pattern) where the matrix can be
optimized beforehand to provide substantial high degree of
recovery [1], [10], [11], [12], [13], [14].
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Fig. 1: Original R-D map with 32 pulses
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(b) Zoomed in, Tmax : −43.02dBm

Fig. 2: Sparse reconstruction, 3 extrapolations on both ends

An artifact of sparse reconstruction is that D̂ may contain
figures exactly identical to zero; making it difficult to compute
signal to noise ratios. For displaying purposes, zero values may
be set to the a priori estimated noise level, as done in this text.

III. SIMULATED DATA

In this section we review the performance of CS and seek
restoration of range-Doppler maps with limited amount of
available data. For this end we employ an in-house radar
simulator which can simulate various target, clutter and noise
conditions. The simulator uses Advanced Propagation Model
(APM) [15] as propagation model and The Georgia Institute
of Technology model (GIT) [16] for sea clutter modeling.
Including sea clutter in a scenario presents for a more
challenging and realistic environment while it also provides
insight on a less sparse scene. For the simulation case the
wind speed is set to 10m/s creating significant sea clutter
conditions whose amplitude is modeled with an K-distribution
and an Gaussian spectrum with mean 0 and slightly varying
spread. A Swerling 1 target with radar cross section of 0.2m2

is simulated with velocity of 20m/s and altitude of 10m
placed approximately 125km from the radar just outside the
clutter region. The coherent period of target and clutter is
assumed to correspond to 32 pulses. The radar antenna has
beamwidths of 2◦, altitude set at 1000m operating at 3GHz,
a bandwidth of 0.8 MHz, emitting power at 15kwatt, antenna
transmit and receive gain of 37dB and an PRF of 3000. The
average noise figure evaluates to −107dBm and the Blackman
window has been utilized throughout. The sparse solutions
are found through a spectral projection gradient method with
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Fig. 3: Standard R-D map with 20 random pulses (out of 32)
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Fig. 4: Reconstruction from 20 random pulses (6 extrapolations)

δ = 0.01||w̄(ũ) Ỹ(T, ũ)||, i.e. an overall 1% deviation from
the original values is permitted.

A. Extrapolation only

We first consider the case where the radar transmits all N =
32 pulses in the same direction and sparse reconstruction is
solely used to extrapolate three additional values at both ends.

Figure 1 shows the original N = 32 pulse range-Doppler
plot generated from simulated data where the target after
processing attains an SNR of 48dB while figure 2 shows
the outcome from extrapolated sparse reconstruction with
a total of 6 extra (L = 38) Doppler bins. Extrapolation
contributes with 1.1dB extra to the target power in this
case while still retaining the target within four Doppler bins
effectively improving the accuracy. The peak clutter power
is likewise slightly increased but clutter is otherwise nicely
joined together with reduced sidelobe levels and most of the
spikes stand out as before.

B. Beam switching, 32 pulses

A more suggestive CS application of the method is to
have alternating beams in a predefined time limit. The radar
transmits a few pulses in one particular direction before
transmitting a batch of pulses in another direction using the
entire radar array. The radar iterates this a number of times
within the coherent processing interval till a desired number of
pulses have been collected. Sparse reconstruction can then be
used to fill in gaps and to maintain comparable resolution in
Doppler as if all pulses had been emitted in this direction.
The transmission pattern can in a typical CS framework
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be designed in a random or pseudo-random manner with a
specific ratio between the various scan angles and to minimize
mutual coherence of matrices. [17], [18], [11], [19].

An example of the results obtained is demonstrated next
where the radar only transmits N − K = 20 pulses, out of
standard N = 32, in a random order, at the main direction.
Figure 3 shows the outcomes in the case of standard pulse-
Doppler processing where the Doppler resolution is quite low
due to the decreased number of slow-time data. The target
is dimmer with spectral leakage. The results from sparse
reconstruction with the identical data set given in figure 4 show
a somewhat different picture. The target still stands out quite
clear with a comparable power level and still preserving good
accuracy in Doppler. The sea clutter pattern is also continuous
and generally well-behaved much in line with figure 2 but with
the addition of minor low energy peaks at potential ambiguous
Doppler velocities. Nevertheless, in an environment with less
clutter this is unlikely to be of any major concern.
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Fig. 5: Average peak target energy
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Fig. 6: Reconstructed target and clutter Doppler profiles

Figure 5 shows a more comprehensive graph over how the
average peak target energy varies with varying number of
available pulses and sparse reconstruction with or without ex-
trapolation alongside standard range-Doppler processing over
100 runs. As evident, sparse reconstruction is able to retain
the target power level till a minimum of about N = 12 pulses
and must be said to work exceptionally well for single targets.
Extrapolating enriches with integration gain and the effect is
sustained throughout.

Further on, figure 6 displays some examples of reproduced
Doppler profiles for target and clutter at 36km with various
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Fig. 7: Standard R-D map with 10 random pulses (out of 16)
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Fig. 8: Reconstruction from 10 random pulses (6 extrapolations)

number of pulses and assuming 3 additional extrapolations on
each end. Although the target stands out, clutter reconstruction
starts to degrade when less than half of all pulses are available
for reassembly.

C. Beam switching, 16 pulses and low SNR

In this subsection we rely on the same scenario as described
previously but reduce the processing interval to N = 16
pulses. Noise is also greatly scaled up bringing the target
SNR after standard Doppler processing to 17.6dB. Random
pulse emission and reception thus occurs within a shorter
time frame where fewer pulses will bring the SNR down even
further. Figure 7 visualizes the obtained range-Doppler map
in the case of N − K = 10 pulses while figures 8 and 9,
respectively, show the reconstructed plots with L = 22 (3
extrapolations on each side) and L = 32 (8 extrapolations on
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Fig. 9: Reconstruction from 10 random pulses (16 extrapolations)
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each side). The difference between the results obtained via
standard Fourier processing and CS is quite noticeable with
over 7dB difference in observed target power (L = 22) while
additional extrapolation increases this further.

Figure 10 shows average peak target energy levels for
different number of pulses over 100 runs. The performance
of sparse reconstruction for the main target starts to suffer
when the number of available pulses approximately reaches
one half which is also verifiable via the Doppler profiles in
figure 11.
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Fig. 10: Average peak target energy
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Fig. 11: Reconstructed target and clutter Doppler profiles with varying
number of available pulses (out of 16) and 16 extrapolations

The random pulse emission method utilized for the simu-
lations can most likely be improved upon by optimizing the
transmission structure [14]. In any case, formation through
sparse reconstruction expands upon what is typically attainable
through standard Doppler processing for the same amount of
data.

IV. CONCLUSION

The use of compressed sensing based techniques for con-
struction of range-Doppler maps has been considered. The
emphasis of this work was on the slow-time domain under
a standard radar employing matched filter processing on each
single pulse. CS can permit a radar to emit pulses in a sparse
manner freeing up valuable time at the radar. It was shown
that sparse reconstruction methods can be exploited to fill in

missing values and the same approach can also be used to
extrapolate supplementary figures at the beginning and end of
a data set. The results indicate that sparse reconstruction, with
independent optimization for each range bin, performs well
and quality maps can be obtained, even in the presence of
energetic clutter, with reduced amount of radar data.
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