
Methodology

JDMS

Journal of Defense Modeling and
Simulation: Applications,
Methodology, Technology
1–8
� The Author(s) 2017
DOI: 10.1177/1548512917711310
journals.sagepub.com/home/dms

Using a genetic algorithm to solve the
troops-to-tasks problem in military
operations planning

Maria Fleischer Fauske

Abstract
The troops-to-tasks analysis in military operational planning is the process where the military staff investigates who
should do what, where, and when in the operation. In this paper, we describe a genetic algorithm for solving troops-to-
tasks problems, which are typically solved manually. The study was motivated by a request from Norwegian military staff,
who acknowledged the potential for solving the troops-to-tasks analysis more effectively by using optimization tech-
niques. Also, NATO’s operational planning tool, TOPFAS, lacks an optimization module for the troops-to-tasks analysis.
The troops-to-tasks problem generalizes the well-known resource-constrained project scheduling problem, and thus it
is very difficult to solve. As the troops-to-tasks problem is particularly complex, the main purpose of our study was to
develop an algorithm capable of solving real-sized problem instances. We developed a genetic algorithm with new fea-
tures, which were crucial to finding good solutions. We tested the algorithm on two different data sets representing
high-intensity military operations. We compared the performance of the algorithm to that of a mixed integer linear pro-
gram solved by CPLEX. In contrast to CPLEX, the algorithm found feasible solutions within an acceptable time frame for
all instances.

Keywords
Scheduling, genetic algorithms, military applications

1. Introduction

The troops-to-tasks analysis in military operational plan-

ning is the process where the military staff investigates

who should do what, where, and when in the operation. A

large set of tasks must be performed, often with limited

resources. This analysis is done manually by the military

staff. In the study we describe in this paper, our goal was

to develop a tool to automate the troops-to-tasks analysis.

The study was motivated by a request from Norwegian

military staff, who acknowledged the potential for solving

the troops-to-tasks analysis more effectively by using opti-

mization techniques. NATO’s operational planning tool,

TOPFAS, lacks an optimization module for the troops-to-

tasks analysis.1 In addition to being an essential part of

operational planning, troops-to-tasks analysis is also an

important part of long-term defense planning, where the

purpose is to investigate how a force structure should look

in the future.2 In this paper, we describe a genetic algo-

rithm (GA) that can be used to solve real-life troops-to-

tasks problems.

The troops-to-tasks analysis is a project scheduling

problem closely related to the resource-constrained project

scheduling problem (RCPSP).3–6 There are many types of

operations with different objectives, ranging from peace

support operations where the objective might be to do as

many activities as possible within a given time frame, to

high-intensity operations where there is a given set of

tasks, and the objective is to minimize the makespan.

There have been many efforts to incorporate methods

from project scheduling and general planning into differ-

ent parts of military operational planning.7–13 The troops-

to-tasks problem is particularly complex, due to aspects of

Norwegian Defence Research Establishment, Norway

Corresponding author:

Maria Fleischer Fauske, Norwegian Defence Research Establishment, P.O.

Box 25, Kjeller, NO-2027, Norway.

Email: maria.fauske@ffi.no

https://doi.dox.org/10.1177/1548512917711310
journals.sagepub.com/home/dms


the problem such as resource hierarchy, locations, and

resources skills and capacities, as we will describe below.

The troops-to-tasks problem resembles the multi-skill

project scheduling problem (MSPSP) proposed by Néron

and Baptista,14 which is an extension of the RCPSP. In the

MSPSP the resources are, for example, staff members who

are able to perform more than one kind of activity. That is,

they possess more than one skill. The activities have dif-

ferent skill requirements, instead of specific resource

requirements, as is the case in the RCPSP. Many skills

may be necessary to process one activity. Staff members

can only process one activity at a time. The model allo-

cates resources and starting times to each activity, and the

objective is to minimize the makespan. The troops-to-tasks

problem is a MSPSP with additional characteristics and

constraints, where the troops are like staff members with

different skills. Li and Womer15 also studied problems

with multi-skilled personnel, or multi-purpose resources.

They studied both minimization of the total number of

resources9 and the minimization of project costs.16 The

MSPSP is a variant of the more studied multi-mode

RCPSP (MRCPSP), with a very large set of modes for

each activity.

The basic RCPSP was proven to be non-deterministic

polynomial-time hard (NP hard) by Blazewics et al.,17

which means that when problem instances grow large,

there is little hope of solving them to optimality within a

reasonable time. For this reason, the RCPSP and related

problems are usually solved with heuristic algorithms, for

example, the tabu search algorithm and GAs. We find

many references to different solution methods in the litera-

ture. Kolisch and Hartmann18 give an overview of many

of them, as do Peteghem and Vanhoucke.19

Since the MSPSP generalizes the RCPSP, it follows that

the MSPSP is also NP hard. This leads us to believe that in

troops-to-tasks problems, it will also often be difficult or

impossible to find solutions to larger problem instances

that can be proven optimal. However, due to the con-

straints and the characteristics of some troops-to-tasks

problems, there are real-life problem instances that are sol-

vable to optimality within a time frame that is acceptable

in practice, as shown by Fauske.20 However, to find good

solutions to any troops-to-tasks problem instance, and

especially the largest and most complex ones, we are in

need of an heuristic solution method. In this paper we

describe a GA for solving the troops-to-tasks problem in a

high-intensity operation. Such operations are offensive,

with a specific use of military forces, with the purpose of

changing the course of events. On the other end of the

scale, low-intensity operations may involve non-military

tasks, such as policing and building local institutions. The

solution method can easily be adapted to different types of

operations. Activity list-based GAs for solving project

scheduling problems have many times been proved

effective.21,22 Since the use of the GA for project-

scheduling problems is very well documented, we chose

this solution method for our problem. In this paper we

show how such an algorithm performs on real-sized, com-

plex problem instances, which to our knowledge have not

been solved in this manner before.

In this paper we consider high-intensity operations. Our

approach could easily be modified to other types of opera-

tions, since the structure of the problem is the same for

many operations. We compared our GA to a mixed linear

programming model solved by CPLEX.23 In contrast to

CPLEX, the GA found feasible solutions within an accep-

table time frame for every instance in our two case sets.

Whenever CPLEX found the optimal solution, so did the

algorithm. In several instances, the algorithm found better

solutions than CPLEX. This proves that our GA is a pro-

mising approach for solving the troops-to-tasks analysis.

2. Problem description
2.1 General considerations

The problem we solve in this paper is described in detail by

Fauske,20 which also includes the mathematical formulation

of the problem. The problem represents a high-intensity

land operation at brigade level with supporting resources

from the Air Force. A land operation is run and conducted

by the Army. The implications of this are that some of the

resources belong to a strict hierarchy, since in the Army a

person is a part of a squad, which in turn is a part of a pla-

toon, etc., while in the Air Force the platforms (aircraft,

helicopters, etc.) do not belong to such a strict hierarchy,

and thus they operate on their own. The hierarchy puts

restrictions on where the different resources may be at a cer-

tain time. When planning a military operation, you would

not consider all levels of the hierarchy. A commander will

mainly make his plans in cooperation with the commanders

of the underlying troops, that is, one level below.

The resources can process more than one activity at a

time if those activities can be processed in the same

location, and if none of these activities require the full

attention of the resource. We model this as exclusive and

non-exclusive activities. If an activity is exclusive, the

resources processing it can only process this activity at a

certain point in time. Examples of non-exclusive activities

may be maintenance, preparations, or planning activities.

Exclusive activities are typically assaults and attacking

activities.

The resources also have a capacity for each skill. Two

resources possessing the same skill might have different

capacities for that skill. For example, one type of aircraft

may be able to solve a task using one aircraft, while

another type may need two aircraft to process the same

task. A surveillance activity may, for example, require a

2 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



quantity of 0.8 of a specific surveillance skill. That means

that this activity can be processed equivalently by, for

example, two resources that each has a capacity of 0.4 of

this skill or by one resource that has a capacity of at least

0.8 of this skill. If a resource’s capacity is larger than what

is required, that does not mean that it has ‘‘left over’’

capacity to use on another task at the same time. It is the

exclusiveness of the activities that decides whether a

resource can do more than one task at a time. A resource

is situated in a location and it takes time to move between

locations. Location problems have been studied in several

papers,24,25 but then mostly without the resources traveling

between the locations where they are situated. Traveling

time between locations may be modeled as a sort of set-up

time.25–28 We model it by saying that an activity can not

be started until all resources that shall process it have had

the time to travel to the activity’s location.

There may be precedence relations between some of the

activities. If the operation is divided into phases, as is com-

mon, we can use precedence relations to model this. We

make a certain activity mark the end of a phase, and we set

all activities belonging to that phase as predecessors to that

activity.

Some of the activities may have specific release dates

(first allowed starting time) or deadlines (last allowed start-

ing time). Several papers consider release dates and dead-

lines.29–33

This leads us to defining the following problem: a set N
of activities, numbered 1 to N , is to be scheduled. Activity

N is a dummy end activity that represents the end of the

project. There is a set L of locations, and each activity i

must be processed in a location li ∈L. There exists a set R
of renewable resources. Each resource r belongs to some

resource unit u. Resources belonging to the same unit must

always be in the same location, but they do not have to pro-

cess the same tasks. There is a traveling time trlm for

resource r between locations l and m. There is a set of skills

K, and each resource possesses a capacity of ckr ≥ 0 for

each skill k ∈K. An activity i requires an amount of c0ki ≥ 0

of each skill k ∈K. The duration of each activity is denoted

di. Every activity has a release date ei and a deadline fi. An

activity i has a set of predecessors J i ⊂N , and the starting

time of activity i must be larger than the starting time of all

predecessors of i. There is a set N e ⊆N of exclusive activ-

ities. While processing an exclusive activity, the resource

can not process other activities. The problem consists in

allocating a number of resources to each activity i such that

c0ki is satisfied for all k, and finding a starting time si for

every activity, so that the makespan m= sN is minimized.

2.2 Genetic algorithm approach

Our goal is to assign resources and starting times to activi-

ties in such a way that the total duration of the operation,

that is, the makespan of the project, is minimized. To this

end, we developed a GA. GAs were first introduced by

Holland.34 Inspired by evolutionary biology, GAs start

with an initial population of solutions (individuals), and

then seek to find better solutions by repeatedly modifying

the population. At each step, the population is divided into

pairs of parents to produce children through the crossover

operator. The mutation operator is used to introduce varia-

bility to the population. The selection procedure evaluates

the children to decide which individuals will survive in the

population. Over successive generations, the population

evolves toward better solutions. In the following sections

we describe the different parts of our GA. We start by

describing the representation of the individuals, before we

reveal the details about the GA operators.

2.3 Representation of the individuals

In Hartmann,21 different ways of representing the individu-

als in GAs for the RCPSP are examined. They conclude

that the activity list-based GA performs best. There, indi-

viduals are represented by precedence feasible activity

lists. Precedence feasible means that for each activity i in

the list, every predecessor of i has to be before i in the list.

Hartmann and Kolisch22 concluded from experimental

tests that activity list-based procedures outperformed other

procedures. In our case, an individual consists of a prece-

dence feasible activity list, and a corresponding list of lists,

containing the resource assignment of the activities. All

individuals in the population are feasible.

2.4 Initial population

The individuals in the initial population POP are gener-

ated through a two-phase procedure. In the first phase we

generate an ordered list of activities, and in the second

phase we assign resources to the activities. The activity list

is generated through a procedure based on the serial sched-

ule generation scheme (SGS), as explained by Kelley,35

Kolisch,36 and Hartmann,21 which produces a precedence

feasible activity list. The procedure starts by determining

the set S of currently selected activities, which in the

beginning is empty. Then the set E of eligible activities is

determined, that is, those activities that do not have any

predecessors, or whose predecessors are already in S.

From the set E, one activity is picked randomly and put in

S. Then the set E is redetermined. This process is repeated

until all activities are selected. The dummy end activity

represents the end of the project. All other activities are

set as predecessor activities of the end activity. After the

generation of the activity list, resources are assigned to

each of the activities. For each skill requirement of each

activity, resources are drawn randomly until the skill quan-

tity requirement is satisfied. The algorithm assumes that

Fauske 3



the skill quantity requirement can be covered by the avail-

able resources. Based on the activity list and the resource

assignment, the earliest possible starting times of each

activity are determined through a scheduling procedure.

The starting time of each activity will depend on the activ-

ity’s precedence relations, release date, deadline, location,

exclusiveness, the assigned resources’ traveling times, and

the resource hierarchy (since resources in the same

resource unit must be in the same location). Since these

calcluations have to be repeated for each individual in

each generation, it inevitably has a large impact on the

run-time of the algorithm.

2.5 Crossover

The crossover operator is used to add new solutions to the

population. We chose to use a two-point crossover opera-

tor. The population POP is divided into pairs of parents

(a mother and a father). For some probability pcross, the

pair is chosen for crossover to make two children that are

added to the set of children CHI . If the pair is not chosen,

the parents are added to CHI unchanged. The two-point

crossover procedure works as follows.

Two random integers q1 and q2 are drawn, with

1≤ q1< q2≤N , where N is the number of activities. The

first offspring is determined in the following way: the first

q1 activities and its respective resources are taken from

the mother. The next q2� q1 are taken from the father. If

an activity from the father has already been taken from the

mother, this activity is skipped, and the next one is picked

instead. Finally, the remaining activities are taken from

the mother. The second offspring is determined in the

same manner, but the first q1 activities are chosen from

the father instead of the mother, the next q2� q1 from the

mother, and so on.

When the two-point crossover scheme is applied to pre-

cedence feasible activity lists, the offspring will also be

precedence feasible. This is proven by Hartmann.21 Both

the one-point crossover, used by, for example, Elloumi

and Fortemps,37 Peteghem and Vanhoucke,19 and Okada

et al.,38 and the two-point crossover, as described by

Hartmann,21 Alcaraz et al.,39 and Lova et al.,40 are com-

monly used in the literature. Both may perform well.

2.6 Resource mutation

As several resources may possess the skills necessary to

perform a certain task, we introduce resource mutation as a

way of adding variability into the population. With a prob-

ability of pres, an individual in CHI is chosen for resource

mutation. If chosen, one of the activities in the individual

is drawn randomly, and new resources are assigned to this

activity. Another common way to model mutation is to

decide for every activity of the selected individual whether

there should be a mutation. This type of mutation is done

by, for example, Lova et al.40 and Elloumi and Fortemps.37

2.7 Activity mutation

With a probability of pact, an individual in CHI is chosen

for activity mutation. If chosen, a random activity is picked

and swapped with the activity to the left if this does not

violate the precedence relations between the activities.

2.8 Location-based adaptation

In our problem, the resources travel between locations. If it

is possible to do several activities in one location at the

same time or in sequence before traveling to another loca-

tion, this might contribute to a shorter duration of the total

project. We found that the algorithm consequently per-

forms better if we add a procedure that tries to place activi-

ties close to each other in the activity list if these activities

are to be processed in the same location. To avoid conver-

gence, we chose not to do this in every generation. Instead,

we applied the location-based adaptation in every gadapt

generation. The location-based adaptation worsk as fol-

lows: starting with the leftmost activity in the activity list,

for every activity i, activity j 6¼ i in the list that is pro-

cessed in the same location as activity i and that has no

precedence relations, is moved to the spot right next to

activity i in the activity list.

2.9 Fitness computation

After crossover, mutation and location-based adaptation,

the earliest possible activity starting times are calculated

for the individuals in CHI . The objective of our model is

to minimize the makespan of the project. Therefore, the

fitness of the individual is equal to the individual’s make-

span. However, we add a small penalty for starting activi-

ties later than their deadlines. Instead of having hard

deadline constraints, we used the deadline approach to

provide diversity, that is, to avoid convergence in the pop-

ulation, which is important in the GA. Through experi-

ments, we found that adding a fixed penalty of two time

steps for each overdue activity was sufficient to provide

good results. This means that the total fitness is the sum of

the makespan and the penalties for not making the dead-

lines. Thus, the algorithm will try to avoid solutions that

do not meet the deadlines.

2.10 Selection

The last step to obtain the new generation is to select the

best jPOPj individuals from POP ∪ CHI . There are sev-

eral ways to do this, but in our algorithm we keep the best

jPOPj individuals and discard the rest.

4 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



2.11 Computational experiments

The purpose of the computational experiments was to

investigate the performance of the algorithm on problem

instances of different sizes, and to compare the perfor-

mance with that of the mathematical model given by

Fauske,20 which we implemented in the commercial solver

CPLEX. To this end, we generated two different realistic

data sets based on the principles described below.

2.12 Data set generation

In both data sets we used the same force structure for all

instances. This structure is described below. Also, all

instances are based on the type of operation we described

earlier in this paper. In Case set 1 we generated 20 random,

but realistic, instances. These instances represent an opera-

tion with 25 activities, where the last activity is a dummy

end activity. As an operation using the given force struc-

ture might include more activities, we also generated a sec-

ond case set. In Case set 2 set we generated 10 instances,

each representing an operation with 35 activities, where

the last activity is a dummy end activity. The activity dura-

tions, activity skill requirements, the location for each

activity, and precedence relations were generated ran-

domly for every instance.

Our force structure consists of four battalions (resource

units), each with three underlying companies. In addition,

there are six aircraft available. We assume that supporting

resources (e.g., medical, logistics, and Command and

Control Information System) have dedicated tasks, and are

therefore not included in the scheduling. Each company

has five skills, and the types of skills they possess vary

among them. Each aircraft has two different skills. There

are 12 locations. All army units have the same traveling

time between locations, while the aircraft have negligible

traveling times. The operation has two phases in all

instances in Case set 1, and three phases in all instances in

Case set 2. Activity durations vary between one and three

time steps, and each activity requires between one and

three skills. The chance of an activity being assigned a

precedence activity was 0:3. With a probability of 0:6, an

activity was set to be an exclusive activity.

We implemented the GA in MATLAB, on a computer

with a 2.90 GHz Intel(R) Core(TM) i7-3520M CPU, run-

ning the 64-bit Windows 7 operating system. In addition

to solving each instance with the GA, we tried to solve

them mathematically using CPLEX. We set the time limit

in CPLEX to 1 hour, as run-times longer than this would

soon become impractical in a real planning situation.

2.13 Configuration of the algorithm

Finding a good configuration of the GA means choosing

good values for the parameters jPOPj, pcross, pres, pact,

and gadapt. After investigating the cases we generated, we

saw that the optimal parameter value configuration is

somewhat case dependent, and we conclude that in a real-

life planning context some testing must be done for the

best configuration for the specific problem. In this paper,

however, we use the same parameter configuration for all

instances in a case set. Table 1 shows this configuration.

We did experience that increasing the number of individu-

als also increased the number of optimal values found, but

it also increased the run-times significantly. The choice of

parameter values must balance the need for good solutions

and the need for shorter run-times. We found that using

1200 individuals was a good choice for Case set 1, and

2000 was a good choice for Case set 2. We stopped the

algorithm after 150 generations, because we did not see

any improvements in solutions after such a number of

generations.

3. Results
3.1 Case set 1

CPLEX found proven optimal values in nine of the 20

cases in this case set. In the remaining 11 cases, feasible

solutions were found, but they were not proven optimal.

For most cases, the GA did not find the optimal value

every time we ran the case. Therefore, we ran each case

10 times, and we recorded how many times the optimal

value was found. Table 2 shows the results of all of these

runs. In 19 of the 20 cases, CPLEX and the GA found the

same best value. In the remaining case (case 9), the GA

found a better solution than CPLEX. On average, the GA

found the best solution in 7:35 of 10 runs, after 5:6 min-

utes. This involved calculating 80, 464 individuals, over

66:7 generations, on average. This indicates that the stop-

ping criteria of 150 generations will, on average, be quite

large.

In a few of the cases, CPLEX outperformed the GA by

finding proven optimal solutions after a short amount of

time. However, the GA is a safer choice, as its perfor-

mance is more stable. This is especially true if we look at

the results from Case set 2.

Table 1. Best parameter value configuration for the genetic
algorithm.

Parameter Value

POP (small case set) 1200
POP (large case set) 2000
pcross 1.0
pact 0.6
pres 0.8
gadapt 3

Fauske 5



3.2 Case set 2

In a real planning situation, we assume that it would, in

many cases, be impractical to run the GA many times. For

Case set 1 we chose to run the GA several times to illus-

trate the number of times it could find the optimal solution.

For Case set 2, we only run each case once, to simulate a

real planning situation. The results from Case set 1 showed

us that the GA will probably not find the optimal solution

every time we run a case. Therefore, we do not expect to

necessarily find the optimal solution when running the GA

only once. Our main interest in Case set 2 is therefore to

check if the GA outperforms the mathematical model

implemented in CPLEX, when run only once.

The results from running Case set 2 are shown in

Table 3. In this case set, there was only one case (case 7)

where CPLEX found a proven optimal solution within the

time limit of 1 hour. In four of the cases, CPLEX did not

find feasible solutions. Of the six cases where CPLEX

found feasible solutions, the GA found better solutions in

three. In the other three cases, CPLEX and the GA found

equally good solutions. The run-times for the GA varied

between 9:2 and 23:0 minutes, which is quite acceptable

in a real planning context.

Table 2. Results from solving Case set 1 with the genetic algorithm in MATLAB and with a mathematical model in CPLEX. Run-
time values are given in minutes.

CPLEX Genetic algorithm

Case Run-time Lower bound Obj. value Best fitness # best fitness Mean # gen. Mean run-time Mean # ind.

8 1.7 13 13 13 5 67.8 5.8 81,360
2 2.5 17 17 17 5 75.6 6.5 90,720
20 6.0 16 16 16 1 96.0 7.6 115,200
12 8.4 18 18 18 7 58.1 5.6 69,771
1 15.2 16 16 16 3 63.3 5.2 83,600
4 20.3 17 17 17 6 66.0 5.9 79,200
11 22.7 20 20 20 9 63.6 5.2 76,267
15 29.4 13 13 13 4 71.5 5.7 85,800
13 51.6 19 19 19 1 53.0 4.0 63,600
3 60.0 15 18 18 10 55.7 4.9 66,840
5 60.0 14 16 16 10 43.8 3.8 52,560
6 60.0 14 20 20 10 94.0 7.5 112,800
7 60.0 16 19 19 1 76.0 6.0 91,200
9 60.0 13 25 19 7 73.7 6.2 88,457
10 60.0 21 22 22 3 82.0 7.1 98,400
14 60.0 17 19 19 6 67.3 5.6 80,800
16 60.0 18 20 20 5 73.4 6.2 88,080
17 60.0 15 19 19 10 44.7 3.8 53,640
18 60.0 16 18 18 5 51.6 4.6 61,920
19 60.0 17 18 18 9 57.6 5.1 69,069
Mean 40.9 7.35 66.7 5.6 80,464

Table 3. Results from solving Case set 2 with the genetic algorithm in MATLAB and with a mathematical model in CPLEX.

CPLEX Genetic algorithm

Case Lower bound Obj. value Fitness # gen Run-time # ind

4 23 24 24 103 23.0 206,000
7 23 23 23 46 9.2 92,000
6 22 29 29 48 9.5 96,000
2 31 34 32 71 15.3 142,000
10 26 40 29 48 9.9 96,000
3 23 29 28 55 11.1 110,000
1 x 25 75 10.1 90,000
5 x 27 99 20.3 198,000
8 x 26 108 23.0 216,000
9 x 26 72 15.0 144,000

6 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



The results from Case sets 1 and 2 show us that the GA

we developed is suitable for solving the complex troops-

to-tasks problem we defined in this paper. It finds good

solutions to the problem within a time frame that is accep-

table in a real planning context. However, in each plan-

ning situation, some effort must be made to find a good

parameter configuration of the algorithm, which will add

to the time comsumption. The main advantage of the GA

compared to a mathematical approach will be the ability

to find feasible solutions for larger problem instances.

The performance of the GA is stable and, with only a

few exceptions, it outperforms the mathematical model in

the cases we developed for this paper.

4. Conclusions

In this paper, we designed a GA for solving the troops-to-

tasks problem in a high-intensity military land operation.

We compared the performance of the GA with that of a

mixed integer linear programming model solved by a com-

mercial solver. In contrast to CPLEX, the GA found feasi-

ble solutions within an acceptable time frame for every

case in our two case sets. We introduced a location-based

adaptation to the GA, which consequently made the algo-

rithm perform better. Our study shows that the GA is suit-

able for solving troops-to-tasks problems in military

operational planning, and in long-term defense planning.

To our knowledge, there has not been any previous

attempts to solve the troops-to-tasks problem by means of

automatic tools. The two case sets we used in our compu-

tational experiments are available upon request to anyone

who would wish to develop new algorithms for solving

the problem we presented.

Funding

This research received no specific grant from any funding

agency in the public, commercial, or not-for-profit sectors.

References

1. Ménard C. Personal communication (e-mail). Contractor for

NATO Communications and Information Agency, 2016.

2. Hennum AC and Glærum S. Norwegian long-term defence

planning. Technical report, NATO RTO-TR-069-SAS-072,

2008.

3. Hartmann S and Briskorn D. A survey of variants and exten-

sions of the resource-constrained project scheduling problem.

Eur J Oper Res 2010; 207: 1–14.

4. Brucker P, Drexl A, Möhring R, et al. Resource-constrained

project scheduling: Notation, classification, models, and

methods. Eur J Oper Res 1999; 112: 3–41.

5. Özdamar L and Ulusoy G. A survey on the resource-con-

strained project scheduling problem. IIE Trans 1995; 27:

574–586.

6. Icmeli O, Erenguc SS and Zappe CJ. Project scheduling prob-

lems: a survey. Int J Oper Prod Manag 1993; 13: 80–91.

7. Willick K, Wesolkowski S and Mazurek M. Multiobjective

evolutionary algorithm with risk minimization applied to a

fleet mix problem. In: WCCI 2010 IEEE world congress on

computational intelligence (CCIB), Barcelona, Spain, 18–23

July 2010, pp. 1–7. Piscataway, NJ: IEEE.

8. Bui LT, Barlow M and Abbass HA. A multi-objective risk-

based framework for mission capability planning. New Math

Nat Comput 2009; 5: 459–485.

9. Li H and Womer K. A decomposition approach for ship-

board manpower scheduling. Mil Oper Res 2009; 14:

1–24.

10. Abbas H, Bender A, Baker S, et al. Identifying the fleet-mix

in a military setting. In: second international intellingent

logistics systems conference (IILS2006), Brisbane, 22–23

February 2006. Springer-Verlag.

11. Popken D and Cox L. A simulation-optimization approach

to air warfare planning. J Defence Model Simulat 2004; 1:

127–140.

12. Schlabach JL, Goldberg DE and Hayes CC. FOX-GA: a

genetic algorithm for generating and analyzing battlefield

courses of action. Evol Comput 1999; 7: 45–68.

13. Wilkins DE and Desimone RV. Applying an AI planner to

military operations planning. In: Zeweben M and Fox M

(eds) Intelligent scheduling. San Mateo, CA: Morgan-

Kaufmann Publishers, 1994, pp.685–708.

14. Néron E and Baptista D. Heuristics for the multi-skill project

scheduling problem. In: international symposium on combi-

natorial optimization (CO’2002), CNAM Institute, Paris, 8–

10 April, 2002.

15. Li H and Womer K. Project-scheduling with multi-purpose

resources: a combined milp/cp decomposition approach. Int

J Oper Quant Manag 2006; 12: 305–325.

16. Li H and Womer K. Scheduling projects with multi-skilled

personnel by a hybrid milp/cp benders decomposition algo-

rithm. J Schedul 2009; 12: 281–298.

17. Blazewics J, Lenstra JK and Kan AHGR. Scheduling subject

to resource constraints: classification and Complexity.

Discrete Appl Math 1983; 5: 11–24.

18. Kolisch R and Hartmann S. Experimental investigation of

heuristics for resource-constrained project scheduling: an

update. Eur J Oper Res 2006; 174: 23–37.

19. Peteghem VV and Vanhoucke M. A genetic algorithm for

the preemptive and non-preemptive multi-mode resource-

constrained project scheduling problem. Eur J Oper Res

2010; 201: 409–418.

20. Fauske MF. Optimizing the troops-to-tasks problem in mili-

tary operations planning. Mil Oper Res 2015; 20: 49–57.

21. Hartmann S. Project scheduling under limited resources.

Berlin: Springer, 1999.

22. Hartmann S and Kolisch R. Experimental evaluation of

state-of-the-art heuristics for resource-constrained proj-

ect scheduling problem. Eur J Oper Res 2000; 127:

394–407.

23. CPLEX Optimizer. Web site, https://www-01.ibm.com/soft-

ware/commerce/optimization/cplex-optimizer/ (accessed 16

May 2017).

Fauske 7



24. Krüger D and Scholl A. Managing and modelling general

resource transfer in (multi) project scheduling. OR Spektrum

2010; 32: 369–394.

25. Mika M, Waligóra G and Weglarz J. Simulated annealing

and tabu search for multi-mode resource-constrained project

scheduling with positive discounted cash flows and different

payment models. In: Józefowska J and Weglarz J (eds)

Perspectives in modern project scheduling. Berlin: Springer,

2006, pp.131–165.

26. Mika M, Waligóra G and Weglarz J. Tabu search for multi-

mode resource-constrained project scheduling with schedule

dependent setup times. Eur J Oper Res 2008; 187: 1238–

1250.

27. Schwindt C. Resource allocation in project management.

Berlin: Springer, 2005.

28. Neumann K, Schwindt C and Zimmermann J. Project sche-

duling with time windows and scarce resources. Berlin:

Springer, 2002.

29. Drezet LE and Billaut JC. A project-scheduling problem with

labour constraints and time-dependent activities require-

ments. Int J Prod Econ 2008; 112: 217–225.

30. Kis T. RCPS with variable intensity activities and feeding

precedence constraints. In: Józefowska J and Weglarz J (eds)

Perspectives in modern project scheduling. Berlin: Springer,

2006, pp.105–129.

31. Kis T. A branch-and-cut algorithm for scheduling of projects

with variable intensity activities. Math Program 2005; 103:

515–539.

32. Klein R. Project scheduling with time-varying resource con-

straints. Int J Prod Res 2000; 38: 3937–3952.

33. Klein R and Scholl A. Scattered branch and bound – an adap-

tive search strategy applied to resource-constrained project

scheduling. Central Eur J Oper Res 2000; 7: 177–201.

34. Holland JH. Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press, 1975. Second
edition, 1992.

35. Kelley JE. The critical path method: Resources planning and
scheduling. In: Muth JF and Thompson GL (eds) Industrial
scheduling. Upper Saddle River, NJ: Prentice Hall, 1963,
pp.347–365.

36. Kolisch R. Serial and parallel resource constrained project
scheduling methods revisited: theory and computation. Eur J
Oper Res 1996; 90: 320–333.

37. Elloumi S and Fortemps P. A hybrid rank-based evolutionary
algorithm applied to multi-mode resource-constrained proj-
ect scheduling problem. Eur J Oper Res 2010; 205: 31–41.

38. Okada I, Takahashi K, Zhang W, et al. A genetic algorithm
with local search using activity list characteristics for solving
resource-constrained project scheduling problem with multi-
ple modes. IEEJ Trans Elecctr Electron Eng 2014; 9: 190–
199.

39. Alcaraz J, Maroto C and Ruiz R. Solving the multi-mode
resource-constrained project scheduling problem with
genetic algorithms. J Oper Res Soc 2003; 54: 614–626.

40. Lova A, Tormos P, Cervantes M, et al. An efficient hybrid
genetic algorithm for scheduling projects with resource con-
straints and multiple execution modes. Int J Prod Econ 2009;
117: 302–316.

Author biography

Dr. Maria Fleischer Fauske is a senior scientist at the

Norwegian Defence Research Establishment (FFI). Her

area of expertise is defence planning. She is currently

managing the operations research competency develop-

ment within FFI.

8 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)




