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English summary 
PlaneRay is a ray tracing program for underwater acoustic propagation modeling that can treat 
moderately range-varying scenarios. The model uses a unique sorting and interpolation routine 
for efficient determination of a large number of eigenrays connecting a source with a large 
number of receivers positioned on a horizontal line. No rays are traced into the bottom, but the 
bottom interaction is modeled by local plane wave reflection coefficients. The bottom can be a 
fluid sedimentary layer over an elastic half space and the layer thickness and the sound speeds 
and the densities of the sediment and the elastic medium can vary with range. The sound speed of 
the water may vary with depth, but not with range. For each eigenray the model calculates the 
trajectories, travel times and amplitudes and constructs the complete frequency response by 
coherent addition of all the multiple arrivals. By multiplying the frequency spectrum with the 
spectrum of a source signal and inverse Fourier transforming the product, the complete time 
response at any position on the receiving line is synthesized. The paper gives a description of the 
model and presents a number of illustrative cases. Important considerations are the accuracy of 
the ray model and how accurate the plane wave reflection coefficients can represent the effects of 
a layered bottom. This problem is discussed by comparing the time and frequency domains 
solution of the ray model with the results from established models based on the wave number 
integration and the parabolic equation. 
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Sammendrag 
PlaneRay er modell for beregning av akustisk bølgeutbredelse i sjøen som kan anvendes i 
situasjoner hvor bunnens egenskaper og vanndybden kan varierer med avstanden. Modellen er 
basert på strålegangsbergninger og benytter en spesiell metode med sortering og interpolasjon for 
å finne alle egenstrålene mellom en sender posisjon og et antall mottaker posisjoner som alle må 
være på samme dyp. Ingen ståler går ned i bunnen, men den akustiske interaksjon med bunnen tas 
vare på ved å benytte planbølge refleksjonskoeffisienter. Bunnen kan bestå av et fluid 
sedimentlag over et elastisk halvrom. Modellen tillater at tykkelsen på sedimentlaget samt 
tettheter og lydhastighetene i sedimentlaget og i det elastiske halvrommet kan variere med 
horisontalavstanden. Lydhastigheten i sjøvannet kan variere med dybden, men ikke med 
avstanden. 
 
Modellen beregner strålegangene, gangtidene og amplitudene til alle egenstrålene mellom en gitt 
senderposisjon og mottaker posisjonene og finner hele frekvensresponsen ved koherent addisjon 
av bidragene fra alle egenstrålene. Ved å multiplisere frekvensfunksjonen med frekvensspekteret 
til det utsendte signalet bergenes tidsforløpte og frekvensinnholdet til de mottatte signalene i alle 
mottakerposisjonene. 
 
Rapporten beskriver modellen og illustrere bruken ved hjelp av en rekke eksempler. Nøyaktighet 
til stålegangs beregninger og denne modellen i diskuteres og resultatene sammenliknes med 
resultatene fra andre akustiske forplantningsmodeller basert på bølgetallsintegrasjon og løsningen 
av den parabolske ligningen. 
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1 Introduction 
Modeling the acoustic propagation conditions has always been an important issue in underwater 
acoustics and there exists a vide variety of mathematical/numerical models based on different 
approaches. The most common models are based on normal modes (Jensen and Ferla, 1979), the 
parabolic equation (Collins, 1993, 2001) and models based on the wave number integration 
technique (Schmidt, 1987, 1993); all these models have been extended to deal with range 
dependent problems. Ray tracing models, which are the oldest and simplest class of models, have 
for some time been consider outdated as compared with the more sophisticated models mentioned 
above. However, in recent years there seems to be a new interest for ray tracing models, also for 
long range, low frequency applications. There may be several reasons for this. Firstly, ray trace 
models may be more accurate than commonly believed, also for low frequency applications. 
Secondly, representing the sound field by rays gives a more physical description that is easier to 
understand and interpret than other types of field descriptions. Finally, ray tracing models are 
efficient since the main calculation of ray trajectories is independent of frequency; the frequency 
enters only through the interaction with the boundaries, sea surface and sea floor, and can be 
introduced separately.  
 
For these reasons we have developed a forward acoustic propagation model, named PlaneRay 
based on ray tracing. An essential feature of this model is a unique sorting and interpolation 
routine, and the model has proved to be efficient in determining eigenrays also for range 
dependent environments. The bottom is modeled with plane wave reflection coefficient, and in 
principle any number of elastic or acoustic layers can be modeled.  In the present implementation 
the bottom has a fluid sedimentary layer over an elastic half space and the layer thickness and the 
material properties are allowed to be range dependent. The sound speed profile in the water can 
only be a function of depth and is not allowed to vary in the horizontal direction. The effects of a 
layered bottom are included with plane wave reflection coefficients and rays are only traced to the 
water-sediment interface and not into the bottom. Figure 1 shows the general propagation 
problem that can be modeled with PlaneRay. The receivers are located on a horizontal line in the 
water. 
 

depth

range

sound speed 

source
receiver line

Elastic half space

Fluid sediment layer

 

Figure 1. The PlaneRay model computes the received field from a source at receivers located 
on a horizontal line. The sound speed profile is only function of depth. The bottom 
can be a fluid sedimentary layer over an elastic half space and both can be range 
dependent. 
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Figure 2 shows two typical scenarios with geophysical models of the bottom that can be modeled 
with the PlaneRay model. The bottom is characterized with a sediment layer over hard bedrock. 
In some cases the sea bed is almost horizontal (upper), in other areas with intrusions of hard rocks 
all the way up the water interface (lower). In this case the sound speed is approximately constant 
with depth and range 

 

Figure 2. Geoacoustic model for two relevant areas that can be modelled with the PlaneRay 
model. The bottom is characterized with a sediment layer over hard bedrock.  In 
some cases the sea bed is almost horizontal (upper), in other areas with intrusions of 
hard rocks all the way up the water interface (lower). The sound speed is 
approximately constant with dept and range.  

 
The results of a typical application of the model are illustrated in Figure 3.The input data is the 
sound speed profile and the topography and the geoacoustic model of the bottom. The program 
determines the trajectories, that travel times and amplitudes of all the eigenrays connecting a 
source position to one or more receiver positions and add coherently the contributions to produce 
the transmission loss as function of frequency and range, or the time response of the received 
signal at several receiver stations. 
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Figure 3. Illustration of the PlaneRay model. Left: The sound speed profile. Centre: The 
scenario with propagation to a distance over 10 km where the water depth changes 
gradually with range and where the bottom has a sedimentary layer of varying 
thickness over a solid half space. The program determines the trajectories, travel 
times and amplitudes of all the eigen rays connecting a source position to one or 
more receiver positions and adds coherently the contributions to produce the 
transmission loss as function of frequency and range or the time response of the 
received signal at several receiver stations (right). 

The use of ray tracing for propagation modeling is not new or original and many such models 
have been developed and presented in the literature earlier. In particular, we point to articles of 
Westwood and Vidmar (1987) and Westwood and Tindle (1987) where ray tracing  is applied for 
time- series simulation of shallow water propagation with a homogeneous fluid bottom. The main 
difference is that the PlaneRay can handle range-dependent bottom topography and structure, but 
no rays are traced into the bottom as is done with the model of Westwood and Vidmar (1987). In 
a more recent paper Stotts et al. (2004) reported on modelling transmission loss in range 
dependent environments using ray tracing. Although the principle of using ray theory is the same 
as used in PlaneRay, the implementations are very different, in particular is the algorithm for 
finding the eigenrays very different. 
 
In this paper we first describe the PlaneRay model and then present some results from testing and 
comparison with other models for both range independent and range dependent scenarios. 
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2 Model description  
The algorithm can be considered as having three stages: 
(1) The initial ray tracing using a large number of rays to map out the entire sound field. 
(2) Sorting and interpolation to determine the trajectories and the ray history of the eigenrays 
connecting the source to the receivers. 
(3) Synthesis of the acoustic field in frequency domain by coherently adding the contributions of 
the eigenrays, and calculation of the full-waveform time responses by Fourier transformation.  

2.1 Initial ray tracing 

The input information is the range dependent bathymetry, a sound speed profile and the source 
location and the receiver depth. The initial ray tracing is done by launching a relative large 
number of rays, (typically 1000 rays) with angles selected to cover the entire space between a 
fixed source location and out to receiver on a horizontal line at the specified receiver depth. For 
each ray, the model computes the ranges and the travel times to the locations where the ray 
intersects the receiver depth, and records the locations and the angles for reflection from the 
bottom and the surface. All this information is stored and used in the following stages. Notice that 
the rays are not traced into the bottom and that both the sound speed profile and the bathymetry 
are fixed; therefore the ray tracing is only executed once for each site. 
The theory of acoustic waves (Jensen et al. 1993 and Clay and Medwin, 1977) is well known and 
shall not be developed here. The implementation used in the PlaneRay model is to divide the 
water column into a large number of layers with the same thickness Δz. Within each layer, the 
sound speed is approximated with a straight line so that, in the layer zi<z<zi+1, the sound speed is 
taken to be  

 ( ) ( )  .i ic z c z z g= + − i  (1) 

where ci is the sound speed at depth zi, and the sound speed gradient in the segment is gi. Since 
the sound speed in each of these layers has a constant gradient, the ray in each layer follows a 
circular arc; the arc’s radius of curvature Ri(z) is given by the local sound speed gradient gi(z) and 
the ray parameter ξ, 

 ( ) 1  ,
( )i

i

R z
g zξ

= −  (2) 

The ray parameter is defined as: 

 ( )
cos s

sc z
θξ =  (3) 

where θs is the initial angle of the ray’s trajectory at the source depth zs and c(zs) is the sound 
speed at the source depth. After traveling through the layer from zi  to zi+1  the ray’s range 
increment is  
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( )1i ir r R 1sin sin ,i i iθ θ+ −  (4) 

hich also can be written in the form  

+ − = − 

w

2 2 2 2
1 11 ( ) 1i i i

i

r r c z
g

ξ ξ
ξ+ +− = − −⎢⎣

1 ( )   .ic z⎡ ⎤− ⎥⎦  (5) 

he local sound speed gradient is approximated by 

 

T

1

1

( ) ( )  .i i
i

i i

c z c zg
z z
+

+

−
=

−  (6) 

he travel time increment is  

 

T

2 2
1

1 2 2
1

( ) 1 1 ( )

1 1 ( )( )1 ln   .ii
i i

i i

c zc z ξ
τ τ +

+

⎛ ⎞+ −⎜ ⎟− =  (7) 

with distance the ray parameter is no longer constant, but changes 
om inclination angle. An incoming ray

 angle is α. 

i
g c z c zξ +

⎜ ⎟+ −⎝ ⎠

When the water depth varies 
with the bott  with angle θin is reflected to the angle θref 
when the bottom

 2 . ref inθ θ α= +  (8) 

Consequently, the ray parameter has to change to 

 2 2

cos( ) cos( 2 ) ,

1
cos(2 ) sin(2 ).in c

ref in
ref

in

c c

c

θ θ α
ξ

ξ
ξ α α= −

+
= =

−
 (9) 

he algorithm makes repeated use of Equations (5
 that the new depth zi+1 is given by the i

T ) and (7), stepping with depth increments Δz in 
such a way old depth z  as  

 1  .i iz z z+ = ± Δ  (

The plus sign indicates a ray going

10) 

 downwards and the minus sign, a ray going upwards. 
vidently the sign has to change when the ray strikes the bottom and the surface, and when the 

s be 
wever, in testing and in some studies it is useful to have the possibility of using a 

d speed; in such cases Equations (5) and (7)
quations: 

E
ray goes through a turning point.  
 
The calculation of the trajectories and travel time described above assumes that the ray’s 
curvature is finite, i.e. that the sound speed gradient is non zero and in real life this will alway
the case. Ho
constant soun  are exchanged with the following 
e

( )1 1 / tani i i i ir r z z θ+ +− = − 1+  (11)  

( )1 1 1 1/ sini i i i i iz z cτ τ θ+ + + +− = − ⎡ ⎤⎣ ⎦  (12)  
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mited by 
n the initial angle θ0 will remain 

between the two rays, regardless of the rays’ paths. The acoustic intensity as function of 
orizontal range, I(r) is according to this principle given

The acoustic intensity is calculated by using the principle that the power within a space li
a pair of rays with initial angular separation of dθ0 centered o

h  by  
2

0 0 0 ( ) 0  .
sin

I r I
r drθ

=  (13) 
cosr dθ θ

By applying Snell’s law we can transform Equation (13) into an expression often found in text 
ooks,  b

2
0 0 0 ( ) 0  ,

sin
I r I

r c drθ
= ⎜ ⎟

cosr c dθθ⎛ ⎞⎛ ⎞
⎜ ⎟
⎝ ⎠⎝ ⎠

he 
 

e calculate by using Equation (13). Both expressions, Equations (13) and (14), break 
own at turning points and at caustics. We will later describe how this problem is treated in the 

 
he geometrical part of the transmission loss is define

 (14) 

The expression of Equations (14) is not valid when the bottom depth varies with range since t
ray parameter is then changed by the bottom reflections as given by Equation (9), the intensity is
therefor
d
model. 

T d as 

( )
 ( )

0

10 lg .TL r
I

= − ⋅ ⎜ ⎟
⎝ ⎠

 (15) 

Note that absorp

I r⎛ ⎞

tion and losses associated with reflections from the sea bottom or surface are not 
clude, only refraction effects and geometrical spreading is included in the expression of 

 launch angle will look as shown in 
Figure 4. The grouping of angle, range pairs in rather smooth curves are noticeable and this 
behavior is utilized in the sorting and interpolation scheme. 

in
Equation .(15). 
 
A typical plot of range to receiver depth as function of initial
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Figure 4. Recording of the ranges to the given receiver depth intersection as function of the 
rays initial angle resulting from the initial ray tracing. 
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together with the ray history in terms of number, angle and locations of bottom and surface 
ce the sound speed profile and the bathymetry are supposed to 

Beam displacement is also implemented in the model as an option. When the incident grazing 
ngle is lower than the critical angle the ray ap

the interface. The beam displacement is 

The first step in the modeling is to apply the algorithm described above to a relative large nu
of rays spanning the whole range of initial angles that are relevant for the actual studies. For each
ray, the trajectory, travel time and the transmission loss are calculated and stored in the

reflections and turning points. Sin
be fixed, and not changed, this ray tracing calculation is only done once for each site. 

2.2 Beam displacement 

a pears to be displaced a certain distance Δl along 

 .l
k
δ∂

Δ =
∂  (16) 

ere δ is the phase angle of the reflection coefficien
the bottom (1) for angles lower than the critical angle (Tindle and Bold, 1981) 

 

H t for the interface between the water (0) and 

0 12 tan .i
1 0

ρ γ
δ

ρ γ⎜ ⎟
⎝ ⎠

 (17) 

The beam displacement therefore can be expressed as  

⎛ ⎞
= −

 
2 2

0 1 0 1( )ρ ρ γ γ
2 2 2 2

0 1 1 0 0 1

2 .
( )

l k
γ γ ρ γ ρ γ+

 (18) 

he difference in propagation time between a beam 
directly from the bottom is  

+
Δ =

T displaced at the bottom and a beam reflected 

 ( )0
0

1 cos .lt
c

θΔ
Δ = −  (19) 

In these equations the horizontal wave number, γ0 and γ1 are the vertical wave numbers and ρ0 a
ρ1 are the densities of the water and the bottom medium respectively. The beam displacement of 
Equation 

nd 

uency 

ified 

d (19) using the parameters c0=1500 
/s c1=1700 m/s, ρ0 =1000 kg/m3 and ρ1 =1500 kg/m3. Note that the beam displacement, 

according to Equation (18) and Figure 5, increases sharply in the vicinity of the critical angle. 
This indicates a limitation of the validity of this approach 
 

(18) and the difference in propagation time of Equation (19) are functions of freq
and valid only for the half-space model with a vertical homogeneous bottom. In the PlaneRay 
model the beam displacement is introduced in the initial ray tracing for one frequency spec
by the user and can therefore only be used for narrow frequency band signals around that 
frequency. Figure 5 shows the results of Equations (18) an
m
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Figure 5. Beam displacement (left) and travel time increase (right) as function of incident 
grazing angle. Calculated by Equations (18) and (19) for the frequencies of 25, 5, 
100, 200 Hz and the parameters c0=1500 m/s c1=1700 m/s ρ0 =1000 kg/m3, and ρ1 
=1500 kg/m3. 

2.3 Eigenray determinations 

The next step is to determine the eigenrays and their trajectories. The approach used in PlaneRay 
is based on interpolation on the results of the initial ray tracing. However, the interpolation has to 
be done on rays that have same type of ray history. This consideration is illustrated in Figure 6 
which shows a simple example of ray tracing with constant water depth and sound speed.  
 

   

θ0  

 
r1 r2 r0 

Figure 6. An eigenray to the receiver at range r0 is found by interpolating between the two 
rays arriving at the same receiver depth at ranges r1 and r2. 

The figure shows three ray paths from the source to reach three receivers at the same depth at 
different ranges. All the three rays have gone through one reflection from the surface and two 
reflections from the bottom. The two rays intersecting the receiver depth at ranges r1 and r2 are 
the two rays from the initial ray tracing and the desired ray is the ray with start angle θ0 that is 
reaching the target at range r0. Notice that all the rays have the same number of reflections from 
the surface (one) and the bottom (two). Therefore the relation between initial angle θ0 and 
receiver range can be expected to follow a reasonable smooth curve amendable to interpolation. 
The generalization of this example to any number of surface and bottom interactions and 
inclusions of rays with upper or lower turning points is implemented in the program. In the 
special the case of a constant sound speed c(z) = constant there will be 5 classes of arrivals and 
these are the classes 0, 1, 2, 3 and 4 shown in Table 1.  The example of Figure 6 corresponds to 
Class 4 with n=2.  
 
With a depth dependent sound speed profile there can be additional classes with upper and lower 
turning points. These are labeled Class 5, 6, 7 for rays going through upper turning points, in 
situations with negative sound speed gradients, and Class 8, 9, 10 for rays going through lower 
turning points for positive sound speed gradients. The classes 14, 15, 16 and 17 are for rays going 



 
 
  

 
through one or more upper and lower turning points without striking the bottom. In range 
dependent environments with varying water depths there may be other combinations than the 
ones defined in Table 1. In such cases the user has to define the additional classes with the desired 
combinations of the numbers of upper and lower turning points and number of surface and bottom 
reflections. 
 
Figure (7) shows an example of the interpolation scheme to determine the eigenrays to reach a 
receiver at a specific range, in the example of Figure 7 the range is 1000 meter and we find 8 
eigenrays with angles with values -19.3°, -16.7°, -8.5°, -5.7°, 2.9°, 5.7°, 14.1°, 16.7°. It is easy to 
verify that these values are correct. 
 

Table 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Class Bottom  Surface   
Class 1 0 0 Direct ray 
Class 2  n-1 n Negative start angle 
Class 3 n n Negative start angle 
Class 4 n n Positive start angle 
Class 5 n n-1 Positive start angle 
Class  Bottom  Upper tuning points  

Class 6  n n+1 Negative start angle 
Class 7 n  n Negative start angle 
Class 8 n n Positive start angle 
Class 9 n+1 n Positive start angle 

    
Class Surface Lower turning points  

Class 10 n+1 n Negative start angle 
Class 11  n n Negative start angle 
Class 12 n n Positive start angle 
Class 13 n n+1 Negative start angle 

Class Upper turning points Lower turning points  
Class 14 n n-1 Negative start angle 
Class 15 n n Negative start angle 
Class 16 n n Positive start angle 
Class 17 n-1 n Positive start angle 
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Figure 7. Ranges to the given receiver depth intersection as function of the rays initial angle 
resulting from the initial ray tracing. 
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2.4 Turning points and caustics 

Equation (13) predicts infinite intensity under two conditions, when θ =0 and when dr/dθ0=0. 
The first condition signifies a turning point where the ray path becomes horizontal; the second 
condition occurs at points where an infinitesimal increase in the initial angle of the ray produces 
no change in the horizontal range traversed by the ray. In both cases there is focusing of energy 
by refraction where infinite amplitude is predicted by classical ray theory.  
This section illustrates how the model handles caustics and turning points by showing a simple 
example where sound speed is increasing monotonically with depth according to 

 ( ) 0 .c z c gz= +  (20) 

With the values c0=1475 m/s and g=0.03 s-1. 
Figure 8 shows the rays with initial angles from 0.1°to 6° at 0.1° intervals. The two dashed lines 
are the caustics for ray having been through one (m=1) and two (m=2) turning points respectively. 
The caustics are calculated by the method outline in the book by Officer (1958).   
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Figure 8. Example of turning points and caustics. The figure shows ray paths for rays with 
initial angle from 0.1°to 6° at 0.1° intervals. The caustics are shown with dashed 
lines for m=1 and m=2 turning points. 

 
According to Snell’s law the turning points at the 100 m depth occur when the initial angle equals 
arcos[c(0)/ c(100)], in this case when θ0 = 3.65° at ranges of 2.97 km, 9.65 km, 15.51 km and 
22.23 km. 
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Figure 9. Upper: Range to a receiver at 100 m depth as function of initial angle θ0 between 0° 
and 6° Lower: Ray amplitudes to receivers at 100 m depth as function of range for 
the same angles as shown in the left-hand figure.  

The upper part of Figure 9 shows the range to a receiver at 100 m depth as function of initial 
launch angle θ0.  The lower panel shows the geometrical transmission loss as function of range 
for some of the multi path contributions. Notice the small gaps gaps in the transmission loss 
curves at the ranges of the turning points, this is most noticeable at 2.97 km. The caustics are 
where dr/dθ0 =0 and can, in both plots, be seen at the ranges 8.9 km, 15.4 km and 21.7 km. The 
model produces very strong fields at ranges near and beyond the caustics and total shadow zones 
for shorter ranges near the caustics. The behaviours at turning points and at caustics are as 
anticipated for classical ray theory. Methods to improve the estimates at caustics and turning 
points are found in the literature, for instance Jensen et al. (1993), but presently not implemented 
in the model. 

2.5 Synthesis of the sound field  

The received sound field is synthesized by coherent additions of the contributions of all the 
eigenrays. No rays are traced into the bottom and the effects of a layered bottom are described 
entirely by plane ray reflection coefficients. In the current implementation the bottom is modelled 
with a fluid sedimentary layer over a homogeneous solid half space. The thickness of the layer 
and the parameters of the layer and the half space can vary with range in any manner specified by 
the user.  
 
The bottom reflection coefficient of this bottom is  
 

 
( )
( )

01 12 1

01 12 1

exp 2

1 exp 2
p

b
p

r r i D
R

r r i D

γ

γ

+ −
=

+ −
 (21) 

where γp1 is the vertical wave number for sediment layer and D is the thickness of the sediment 
layer. The reflection coefficient between the water and the sediment layer, r01, is given as  
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and r12 is the reflection coefficient between the sediment layer and the solid half space,  
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In Equations (15) and (16) Zki is the acoustic impedance for the compressional (k = p) and shear 
(k = s) waves in water column (i = 0), sediment layer (i = 1) and solid half-space (i = 2), 
respectively. θs2 is the transmitted grazing angle for the shear wave in the solid half-space.  
Figure 10 shows an example of the bottom loss as function of angle and frequency for a sediment 
layer with the thickness D = 5 m, density 1500 kg/m3 and sound speed 1700 m/s over a 
homogeneous half space with density 2500 kg/m3 and compressional sound speed 4700 m/s and 
shear speed 2200 m/s. Notice the anomalous high reflection loss at angles around 20 degrees and 
200 Hz as well as zero degrees and 75 Hz, this will be discussed later. 
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Figure 10. Bottom reflection loss for a sediment layer with thickness D = 5 m, density 1500 
kg/m3 and sound speed 1700 m/s over a homogeneous half space with density 2500 
kg/m3, compressional sound speed 4700 m/s and shear speed 2200 m/s. 

3 Case studies 
This section presents the result of testing the model and comparing the results with other 
propagation models. Other tests of the Plane Ray model have been done by Smedsrud and 
Tollefsen at FFI, (Smedsrud and Tollefsen 2007)  
 
In the tests and examples to be presented here, some will show the time responses and in all these 
cases the source signal is a short Ricker pulse with time signature and frequency spectrum as 
shown in Figure 11. 
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Figure 11. Source signal (upper) and its frequency spectrum (lower) used in the calculation of 
the time responses. 

3.1 Range independent cases 

3.1.1 The Pekeris’ wave guide 

We present results calculated by PlaneRay model for range independent cases and compare with 
the results of the wave number integration model OASES (Schmidt, 1987, 1993). The first case is 
the so called Pekeris’ case (Pekeris, 1948) with water depth 100 m, layer thickness D =0. The 
sound speed and density in water are constants, respectively c0 = 1500 m/s ρ0 =1000 kg/m3

  and 
the sound speed of the bottom is 1700 m/s and the density is 1500 kg/m3

, the absorption in the 
bottom is 1 dB/ wavelength.  
 
Figure 12 shows the transmission loss as function of range and frequency and the time response at 
a number of receivers out to the range of 20 km. In the time plots we have added the line that 
corresponds to rays that are striking the bottom with the critical angle. The equation of this line 
for reduced time tred versus range r is  

 
0

1 1 .
cosred

crit

rt
c θ
⎛ ⎞

= −⎜
⎝ ⎠

⎟  (24) 
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Figure 12. Frequency and time response of a Pekeris’ wave guide where the bottom sound 
speed is 1700 m/s, the density is 1500 kg/m3. Left: Transmission loss as function of 
range and frequency. Right: Time response for a number of receivers with distances 
from 100 meter to 20 km from the source. The source signal is a short transient 
(Ricker wavelet). 

 
Figure 13 shows the transmission loss as function of range for the selected frequencies of 25, 50, 
100 and 200 Hz compared with the results using OASES for the same case. For the lowest 
frequency, 25 Hz, the agreement is rather poor, but for the higher frequencies the PlaneRay 
results agree quite well with the OASES results.  
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Figure 13. Comparison of the transmission loss as function of range for different frequencies by 
PlaneRay (red line) and OASES (blue line) for Pekeris’ wave guide where the 
bottom sound speed is 1700 m/s, the density is 1500 kg/m3.  

 
The oscillations in transmission loss with range are caused by mode interference. Notice that 
there is shift in the interference patterns of the two results, most pronounced for low frequencies 
and long ranges. This can to some extent be corrected by beam displacement to be discussed next.  
The ray approximation to the solution of the wave equation is, by common definition, considered 
valid for frequencies higher than the frequency where the water depth is two times the 

 20 FFI-rapport 2008/00610 

 



 
 
  

 
wavelength. Since the water depth in this example is 100 meter this definition gives a lower 
frequency limit of 30 Hz which is in agreement with we have observed in Figure 13. 

3.1.2 Correction for beam displacement 

The comparison with the OASES results in Figure 13 shows that the oscillations in the 
transmission loss with range are a little out of phase and shifted in range. In order to explain this 
we redo the ray tracing and apply the beam displacement option of the model, implemented with 
Equations (18) and (19). As the beam displacement is frequency dependent, we have to choose a 
particular frequency and in this case we chose 50 Hz. The beam corrected transmission loss 
curves are shown in Figure 14  
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Figure 14. Transmission loss as function of range for the frequencies 25, 50, 100, 200Hz. 
Calculated with beam displacement optimized for 50 Hz. 

 
The agreement for the frequency of 50 Hz is considerably improved, but there this an increased 
level of numerical noise at the shortest distances. For 100 Hz and 200 Hz the agreement with 
OASES is poorer, which is as expected since the beam displacement in this case is optimized and 
calculated for 50 Hz. 

3.1.3 Homogeneous slow speed sediment bottom 

The next case is with a homogeneous mud bottom with a sound speed of 1450 m/s and density of 
1200 kg/m3. These is a situation that causes intromission of rays with grazing angles at the bottom 
approximately 23.5°and consequently very high bottom reflection loss for steeper angles. This 
shown in Figure 15 and the ray tracing results  are in excellent agreement with the OASES results 
for all frequencies. 
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Figure 15. Comparison of the transmission loss as function of range for different frequencies by 
PlaneRay (red line) and OASES (blue line) for Pekeris’ waveguide with a low sound 
speed mud bottom. The sound speed of the sediment is 1450 m/s and the density 
is 1200 kg/m3. 

3.1.4 Elastic homogeneous bottom 

We consider the same wave guide, but with an elastic homogeneous bottom. The water depth is 
100 m with constant sound speed in the water of 1500 m/s. The source depth is 25 m and the 
receiver depths are 75 m. The bottom is an elastic half-space with parameters cp=3000 m/s, 
cs=500 m/s, density 1800 kg /m3, and both waves with attenuations of 0.5 dB per wavelength. 
Figure 16 shows the frequency and time responses, and Figure 17 compares the transmission loss 
as function of range for the frequencies of 25, 50, 100 and 200 Hz with the results produced by 
the OASES model. Again, the ray trace results compare very well with the OASES results. 
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Figure 16. Frequency and time response of a Pekeris’ wave guide with a homogeneous solid 
bottom with compressional speed 3000 m/s and shear speed 500 m/s. 
Left: Transmission loss as function of range and frequency.  
Right: Time responses for a number of receivers with distances from 100 meter to 10 
km from the source. The source signal is a short transient (Ricker wavelet). 
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Figure 17. Comparison of the transmission loss as function of range for different frequencies by 
PlaneRay (red line) and OASES (blue line) for Pekeris’ waveguide with a 
homogeneous solid bottom with compressional wave speed 3000 m/s and shear wave 
speed 500 m/s. 

3.1.5 Modelling the effect of layered bottoms  

As stated before, the model does not trace rays down in the bottom and the effect of a deeper 
interface is entirely modeled through the bottom reflection coefficient. It is therefore interesting 
to compare the PlaneRay results with a model that treats a layered bottom correctly. We consider 
the structure shown in Figure 18 with three different cases of bottom properties. In all cases the 
water depth is H = 100 m and the layer thickness considered are D = 2, 5 and 10 m. The bottom 
parameters for the three different cases are given in Table 2. 

 

Figure 18. The bottom structure for the CASE 1, 2 and 3. The parameter values given in the 
figure are the same for all cases, the other parameters are given in Table 2. 

Table 2 
 

CASE Description 
 

Sediment 
Sound speed c1 

Density ρ1 
Attenuation α1  

Solid half-space 
Sound speed cp2 

Density ρ2 
Attenuation αp2 

Solid half-space 
Shear speed cs2 

Shear attenuation αs2 

1 Mud layer over 1450 m/s 1800 m/s 0 

3
0 0 01500 m/s, 0 dB/λ, 1000 kg/mc α ρ= = =

1 1 1, ,c

H = 100 m 

α ρ D = 2, 5, 10 m  

2 2 2 2 2 , , , ,p s p pc c α α ρ
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sediment 1500 kg/m3 

1.0 dB/wavelength 
2000 kg/m3 

1.0 dB/wavelength 
0 

2 Sediment layer 
over bedrock, 
high shear speed 

1700 m/s 
1500 kg/m3 

1.0 dB/wavelength 

4700 m/s 
2500 kg/m3 

0.5 dB/wavelength 

2200 m/s 
0.5 dB/wavelength 

3 Sediment layer 
over bedrock, 
low shear speed 

1700 m/s 
1500 kg/m3 

1.0 dB/wavelength 

4700 m/s 
2500 kg/m3 

0.5dB/wavelength 

2000 m/s 
0.5 dB/wavelength 

 

3.1.6 Mud layer over sediment  

In the first example of CASE 1 in Table 2, the bottom has a 5 meter thick mud layer with the very 
low sound speed of 1450 m/s and density 1200 kg/m3, over a infinite half space with speed 1800 
m/s and density 2000 kg/m3. In Figure 19 the calculated transmission loss using the PlaneRay 
model and the OASES model are compared for the frequencies of 50, 100, 150 and 200 Hz. The 
agreement is quite good, especially for the higher frequencies.  
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Figure 19. Transmission loss as function of range for the frequencies of 50, 100, 200 and 250 
Hz for CASE = 1 in Table 2. The red curves are from the ray trace model, the blue 
curves are the OASES results. 

3.1.7 Fluid sediment layer over hard bedrock 

The case with a sediment layer over hard bedrock is particularly interesting because this can 
result in abnormal high transmission loss for certain combinations of bottom parameters and 
frequencies. In the following we shall illustrate this effect by a number of examples and, in the 
same time, compare the ray tracing results with calculation using OASES. 
 
The first example is CASE 2 of Table 2 where there is a 5 meter thick sediment layer over a hard 
subspace with compressional wave speed of 4700 m/s and shear speed of 2200 m/s. All 
parameters are specified in Table 2. The left part of Figure 20 shows the time responses for a 
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number of ranges up to 10 km and the right hand plot shows the frequency domain results in the 
form of transmission loss as function of range and frequency. 
 
We comment first on the time responses in left panel of Figure 20. The red lines correspond to 
angles at the surface of 5°, 10° and 25°. A significant feature of the time response is the strongly 
reduced amplitudes of the arrivals between the two lines representing 5° and 25°. This indicates 
that the amplitude of the rays hitting bottom at angles between 5° and 25° suffer a significant 
higher bottom reflection loss. 
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Figure 20. Time responses as function of range (left), and transmission loss as function of range 
and frequency (right). Sediment layer with thickness 5 meter over hard bedrock with 
shear speed 2200 m/s. The red lines correspond to angles of 5°, 10° and 25° . 

 
Figure 21 shows the transmission loss as function of range for the selected frequencies of 25, 50, 
100 and 200 Hz.  And the corresponding results of the OASES model. The agreements are quite 
good for the higher frequencies, but poorer at lover frequencies, as we have seen before. Notice 
that both OASES and PlaneRay predict significantly higher transmission loss for 100 Hz than for 
200 Hz. 
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Figure 21. Transmission loss as function of range for the frequencies of 25, 50, 100 and 200 Hz. 

The bottom has a 5 meter sediment layer over a hard-rock half-space with shear 
speed of 2200 m/s.  

 
In the calculation of results of Figures 20 and 21, we have used the same parameters as we used 
to generate the frequency and angle representation of the bottom reflection coefficient shown in 
Figure 10. Note the triangle-shaped plateau of high reflection loss at angels lower than 20° with 
two peaks at 80 Hz and 200 Hz. This high reflection loss that may occur for certain combinations 
of bottom parameter values have been discussed in Hovem and Kristensen (1992), Tollefsen 
(1989) and by Ainslie (2003) and will not be discussed here. We will however demonstrated the 
sensitivity by considering the situations where the shear speed in the elastic half space is 2000 
m/s and not 2200 m/s, all the other parameters being the same.  The new results are shown in 
Figure 22 and 23  
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Figure 22. Time responses as function of range (left) and transmission loss as function of range 
and frequency (right). This case has a sediment layer with thickness 5 meter over 
hard bedrock with shear speed 2000 m/s.  
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Figure 23. Transmission loss as function of range for the frequencies of 25, 50, 100 and 200 Hz 
for the case with a sediment layer with thickness 5 meter over hard bedrock with 
shear speed 2000 m/s.  
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We complete this study of transmission loss anomalies by considering the same two other cases 
with the same bottom properties as in used in Figures 21, but with different layer thicknesses. The 
results are shown in Figure 24 for a layer thickness of 2 m and in Figure 25 for a layer thickness 
of 10 m. In both cases the results compare very well with OASES, except for the lowest 
frequency of 25 Hz. 
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Figure 24. Transmission loss as function of range for the frequencies of 25, 50, 100 and 200 Hz 
for the case with a 2 meter sediment layer over hard bedrock with shear speed  
2200 m/s.  
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Figure 25. Transmission loss as function of range for the frequencies of 25, 50, 100 and 200 Hz 
for the case with a 10 meter sediment layer over hard bedrock with shear speed  
2200 m/s.  

3.2 Positive and negative sound speed gradients  

In this section we study how the PlaneRay code is handling turning rays, crossing rays and 
caustics and we do that by using a linear sound speed profile with 

  (25) ( ) 1495 0.04 .c z z= − ⋅

The water depth is again 100 m and the source depth is 25 m with the receivers located on a line 
at 75 m depth out to a distance of 10 km. The bottom is model as fluid half-space with sound 
speed 1700 m/s, density 1500 kg/m3, and the absorption is 1 dB per wavelength. 
Figure 26 is an illustration of the ray paths and the calculated geometrical transmission loss for 
this case. The upper part of the figure shows the sound speed profile (left) which has a constant 
negative gradient (Equation (25)), the upper right part of the figure shows the trajectories of 10 
rays in the angle interval of ± 5°. The lower part of the figure shows the calculated geometrical 
transmission loss as function of range.  
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Figure 26. Transmission in a waveguide with water depth 100 m and up to the distance of 10 
km, with source depth of 25 m and receiver depths of 75 m. 
The upper part of the figure shows the sound speed profile (left) with constant 
negative gradient, c(z) =1495-0.04 z. The upper right part of the figure shows the 
trajectories of ten rays in the angle interval of ± 5 degrees. The lower part of the 
figure shows the calculated geometrical transmission loss as function of range. 

The transmission loss curves are color-coded with information about the ray history as defined by 
the classes of Table 1. The black curve is the direct ray reaching out to a maximum distance of 
about 2 km. The blue curves are contributions of the rays that have been reflected both in the sea 
surface and the bottom one or more times. The red curves represent the contributions of the rays 
that have gone through a turning point before reaching the sea surface. Notice the effect of the 
caustics as seen from the low transmission loss at about 6.5 km and 7 km. 
 
In figure 27 we compare the PlaneRay results OASES calculation of the transmission loss as 
function of range for the frequencies of 50, 100, 200 and 400 Hz. For this case the basis is the 
calculation of 2*400 rays in the interval ± 60° and with 12*4=48 interactions were included in the 
synthesis of the time and frequency responses.  
 
The general agreement is quite good, but we notice some difference in the transmission losses for 
ranges slightly above 6 km, particularly noticeable for the frequency of 100 Hz and 200 Hz. This 
is probably caused by inaccurate calculations of the contributions of the refracted arrivals at these 
ranges, as can be seen from Figure 26. Some of discrepancies between the PlaneRay and the 
OASES results may be caused by different sampling densities of the sound speed profile. In the 
PlaneRay calculation a depth sampling interval of 0.5 m was used, but the OASES calculation 
used a staircase approximation with step size of 10 m. This difference in effective sound speed 
profile may cause differences in details of the sound field. 
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Figure 27. Transmission loss in dB as function of range for the frequencies 25 Hz, 50 Hz, 100 
Hz  and 200 Hz for the case of a negative gradient shown in Figure 26. The red 
curves are calculated by ray tracing and the PlaneRay model, the blue by the OASES 
model using the wave number integration technique. 

 
Next, we consider the situation with the same geometry, but with a sound speed increasing 
linearly with depth, as  

 ( ) 1495 0.04 .c z z= + ⋅  (26) 

The profile and the some of the eigenrays to a receiver at 8 km are shown in Figure 28 and the 
transmission loss calculations are shown in Figure 29.  
The transmission loss agrees generally with the OASES results, but the there are differences in 
the details. Some of these differences may be attributed to the different ways of sampling the 
sound speed profile as mentioned before. 
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Figure 28. Eigenrays between a source at depth 25 m to a receiver at distance of 8000 m and 
depth 75 m. The sound speed is given as ( ) 1495 0 .c z .04 z= + ⋅  
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Figure 29. Transmission loss in dB as function of range for the selected frequencies 25 Hz, 50 
Hz, 100 Hz and 200 Hz for the case of a positive gradient as shown in Figure 26. 
The red curves are calculated by ray tracing and the PlaneRay model, the blue by 
the OASES model using the wave number integration technique. 

3.3 Propagation in a sound channel 

We consider a case with a sound speed channel at 100 m depth in 500 m of water. Figure 30 
shows the sound speed profile and a selection of rays spanning the interval of -30° to 30°  and 
emitted from a source at 300 m depth. Figure 31 shows the eigenrays connecting the source at 
300 meter with a receiver at 100 m depth and distance 8500 meter from the source. 
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Figure 30. Propagation in a sound channel. Left sound speed profile. Right: Traces of a 
selection of rays spanning the angles of -30° to 30°  emitted at a source depth of 300. 
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Figure 31. Propagation in a sound channel. Left sound speed profile. Right: eigenrays 
connection a source at a depth of 300 m with a receiver at 100 m depth and distance 
8500 m from the source. 

Figure 32 shows the geometrical part for the transmission loss as function of range. The various 
contributions are identified as indicated in the legend. For instance, the red contributions that are 
dominant at the two range intervals 3 to 4 km and 8 to 9 km are from rays that have been through 
both upper and lower turning points and consequently not been reflected from either the surface 
or the bottom. The green contributions from 2 to 4 km and from 8-9 km are from rays that have 
been reflected from the sea surface and gone trough lower turning points before striking the 
bottom.  
 
Figure 33 shows the time plots for the several different ranges up to 10 km. The various 
contributions are colour coded in the same way as in Figure 32. We notice in particular the 
contribution in green and red as coming from rays the have not interacted with the bottom as 
indicated above. The blue contributions in the representations of both Figures 32 and 33 are rays 
reflected both in the sea surface and in the bottom one or more times.  
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Figure 32. Transmission loss as function of range for a source depth of 300 m and receiver 

depth 100. The contributions from the various ray paths are colour as indicated in 
the legend. 
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Figure 33. Time response at various distances for transmission of a Ricker pulse from a source 
at 300 m to a receiver at 100 m. The contributions of the various ray paths are 
colour coded as indicated in the legend. 

Because of the upward refraction sound speed profile a great number of rays will strike the 
bottom at angles lower the critical angle and therefore the length of channel impulse response 
may be very long as can bee seen from Figure 31. In Figure 32 and 33 the number of bottom 
interactions included in the calculations is arbitrarily limited to 12 interactions.  

3.4 Range dependent cases 

3.4.1  The ARL wedge 

The paper by Stotts et al. (2003) reported using a ray trace model and plane wave reflection 
coefficients to model propagation loss in a wedge. Their results showed excellent agreement with 
other propagation models for a selected frequency of 80 Hz. Although the principle of using ray 
theory is the same as used in PlaneRay, the implementations are very different particularly the 
algorithm for finding the eigenrays and therefore it was found interesting to test PlaneRay on the 
same case. 

The wedge has a down slope angle of 3 degrees starting with water depth 100 m at the source 
location as shown in Figure 34 (left). The source depth is 47 m and the receivers are at 30 m 
depths. The bottom is modelled with a 200 m thick sediment layer modelled as a fluid with sound 
speed 1784 m/s, density 1970 kg/m3, and attenuation 0.547 dB/(m kHz). Below this layer the is a 
half space with compressional speed 5790 m/s, density 9800 kg/m3 and zero sound speed. This 
shear speed value is quite unrealistic but for frequency considered the effect of the deeper half 
space is of negligible importance. Figure 34 (left) shows the situation and some of the eigenrays 
connecting the source to a receiver at range 2000. Figure 34 (right) shows that the transmission 
loss obtained by the PlaneRay model is in excellent agreement with the result of the ARL coupled 
mode program for the frequency of 80 Hz. Figure 35 shows the time response as function of 
range (left), and the transmission loss as function of rage and frequency obtained by the ray 
tracing. 
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Figure 34. Example of eigenrays, in this case to a receiver at range 2000 meter and depth 30 
meter(left) and transmission loss as function of range for a frequency of 80 
Hz.(right) The PlaneRay result (red curve) is compared with the result of ARL 
coupled mode code calculation (blue) 

0 100 200 300 400 500

0

1000

2000

3000

4000

5000

6000

Reduced time − ms

R
a

n
g

e
 −

 m

Frequency − Hz

R
an

ge
 −

 m

 

 

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

20

30

40

50

60

70

80

90

100

 

Figure 35. Time response for a number of receivers with ranges out to 7500 m (left) and 
transmission loss (dB) as function of range and frequency (right). 

3.4.2 Down slope propagation with positive sound speed gradient 

Figure 36 shows an example of down slope propagation with a positive sound speed gradient. The 
accuracy in finding the eigenrays is quite good as can be seen. Figure 37 shows some results of 
the calculated transmission losses, this time with the result from the RAM model using the 
parabolic approximation. At the lowest frequency of 25 Hz the agreement is not very good 
because of the low frequency limit for the validity of the ray tracing approximation, as 
commented on earlier. The higher frequencies results agree in the main features, but not in 
details. This is probably due to the difference in sampling density of the sound speed profile as 
discussed earlier, 0.5 m for the PlaneRay calculations and 5 m for the RAM. 
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Figure 36. Eigenrays between a source at depth 25 m to a receiver at distance of 7500 m and 

depth 75 m over a bottom with constant slope from 100 to 200 meters over 10 km. 
The sound speed is given as ( ) 1495 0.04 .c z z= + ⋅  
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Figure 37. Transmission loss in dB as function of range for the selected frequencies 25 Hz, 50 
Hz, 100 Hz and 200 Hz for down slope propagation with positive sound speed 
gradient shown in Figure 36. The red curves are calculated by ray tracing and the 
PlaneRay model and the blue curve by the RAM model using the parabolic 
approximation. 

3.4.3 Range dependent bottom parameters 

In this section we investigate the PlaneRay code for modelling situations where the bottom 
parameters may vary with range .We therefore consider the otherwise simple case with constant 
water depth and constant sound speed profile. The situation under investigation is depicted in 
Figure 38. The water depth is everywhere 300 m. The bottom, for the most part, consist of a fluid-
like sediment layer over a homogeneous solid half space, but in a finite range interval there is a 
salt dome coming from a very large depth and up to the sedimentary layer. The assumed physical 
parameters for the sediment, rock and salt are given in Table 3. The location of the salt dome and 
the thickness of the sediment layer are free parameters that are varied with values given in Table. 
The source depth is in all case 25 m and the receiver depth is 75 m. 
 

 
 

Water depth 300 m 

Fluid sediment, thickness 5, 10 m 

Salt Rock Rock 

Figure 38. Water over a two layer bottom with a salt dome intrusion 
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Table 3. Physical parameters 
 

 Water Sediment Rock Salt 
Sound speed m/s 1500 1800 2400 5300 
Sound attenuation - dB/wavelength 0 0.5 0.5 0.5 
Density kg/m3 1000 1800 2000 2000-2500 
Shear speed - m/s 0 0 1000 2000-2200 
Shear attenuation – dB/wavelength 0 0 0.5 0.5 
 
Figure 39 shows examples of the bottom reflection loss for two cases (1) sediment layer over rock 
and (2) sediment layer over salt; both cases with sediment layer thickness of 5 m. For the case 
with sediment layer over rock (left in Figure 36), there is a significant reflection loss at very low 
frequencies between 20° and 40° and this loss is caused by shear wave conversion in the rock 
which has a shear speed of 1000 m/s.  
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Figure 39. Bottom reflection loss (dB) as function of frequency and incident angle for: 
5 m sediment layer over rock (left), and 5 m sediment layer over salt (right). 

 
In the case with sediment layer over salt there are significant reflection losses in the frequency 
range of 100 to 200 Hz and at angles between 0° and 20°. This loss is caused by conversion to 
interface wave propagating along the sediment-salt interface. The existence of this anomalous 
loss is, however, very dependent on small variations of the geoacoustic parameters of the layer 
and half space, and may disappear completely for other selection of parameters. 
 
We now consider the case where the bottom is composed of a 5 m fluid-like sediment layer over 
an infinite elastic half space with the parameters of salt as given in Table 1. This may not be a 
realistic, but it is a useful for the testing and validation of the modelling. 
 
Figure 40 shows the time responses as function of reduced travel time and range. The red lines 
are the result of plotting Equation (24) for the angles of 5°, 10°, and 20°. Notice the changes in 
amplitudes for arrivals later than the 5° line and another reduction at about 10°. These changes or 
reductions in amplitudes are a direct consequence of the anomalous reflection loss shown in 
Figure 35 (right). 
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Figure 40. Time response in reduced time for receivers at distance up to 50 km. when the 
bottom has a 5 m sediment layer with sound speed 1800 m/s, density 1800 kg/m3, 
over an elastic half space with compressional sound speed of 5300 m/s, shear speed 
2000 m/s, density of 2500 kg/m3. All absorptions are 0.5 dB/λ. 

 
Figure 41 compares the transmission losses calculated by PlaneRay and OASES using the same 
parameters as used to calculate Figure 40. The two set of transmission loss agree quite well with 
exceptions of some points at the extreme distance of 50 km. 
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Figure 41. Transmission loss versus range. The bottom is a 5 m fluid sediment layer over an 
infinite half space of rock with sound speed 2400 m/s, shear speed 1000 m/s, density 
2000 kg/m3 and absorption 0.5 dB per wavelength. The results of PlaneRay are 
compared with OASES for the frequencies of 25 Hz, 50 Hz, 100 Hz, and 200 Hz. 

 
The next example models the effect of a 5 km wide salt dome covered by a 5 m sediment layer 
and located between 15 km and 20 km from the source position, see Figure 38. Figure 42 shows 
the time responses as function of range and the transmission loss as function of range and 
frequency.  
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Figure 43 compares transmission loses with the presence of a salt dome (labelled “Salt dome”) 
with the situation without a salt dome (labelled “Rock only”), both cases calculated  by the 
PlaneRay. Up to a distance of 15 km the two sets of results are identical as expected. At longer 
ranges the transmission losses are different, but not very significantly which indicates the 
presence of a salt dome of this size has relative little importance. 
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Figure 42. Modelling the effect of a 5 km salt dome located between 15 km and 20 km, thickness 
of sediment layer is 5 m. Left: Time responses (left) and transmission loss in dB 
(right). 
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Figure 43. Transmission loss versus range for the frequencies 25 Hz, 50 Hz, 100 Hz and 200 Hz 
Layered bottom with a 5 m thick fluid sediment over rock in the range with a salt 
dome in the interval from 15 to 20 km. The parameters are given in Table 3. 

 
In the next example we consider a wider salt dome 10 km wide, located at the range between 15 
km and 25 km. The time plots in Figure 44 show that the presence of the salt dome increases the 
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bottom reflection loss, and therefore the transmission loss, for rays with angles steeper than 
approximately 10° for longer ranges than 15 km.  
 
 Figure 45 shows the transmission loss as function of range for selected frequencies and 
demonstrate that the increase in transmission loss is frequency dependent. For instance, we 
observe significantly increased transmission loss for 50 Hz for longer ranges than 20 km. For 25 
Hz and 100 Hz there are only small changes and at 200 Hz there no change in the transmission. 
All this agree with, and is as expected, from the frequency dependence of the bottom reflection 
loss which was displayed in Figure 39 (right). This figure shows anomalous high reflection loss 
for very low grazing angels at 100 Hz, which converts to 50 Hz in the case of a 10 meter layer. 
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Figure 44. Time responses as a function of range. Left: 10 m thick sediment layer over rock 
over the whole range. Right: Salt dome located between 15 km and 25 km. 
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Figure 45. Transmission loss versus range for the frequencies 25, 50, 100 and 200 Hz Layered 
bottom with a 10 m thick fluid sediment over rock in the range with a salt dome in 
the interval from 15 to 25 km. The parameters are given in Table 3. 
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4 Dispersion analysis  
We end this report with a comment on the relationship between ray theory and normal mode 
theory. Figure 46 shows PlaneRay simulated time signal at a receiver at 75 meter depth and a 
distance of 10 km from a source at 25 meter. The water depth is 100 meter and the sound speed is 
constant, 1500 m/s, the sound speed of the homogeneous bottom is 1700 m/s. 
 
The lower part shows the result of a time - frequency analysis, also called a Gabor analysis. This 
is accomplished by performing Fourier analysis of sliding-window selections of the time signal to 
determine the frequency components of the signal as function of time. When the distance between 
the source and receiver is known, time can be converted to speed, in this case to group speed. The 
lower part of Figure 46 shows the group speed of the received signal as function of frequency. 
There are a number of modes, two strong modes at 50 Hz and three or four modes at 100 Hz.  
 
In this simple case constant water depth D, and with sound speeds c0 and c1and densities ρ0 and ρ1 
respectively for the water and the bottom the dispersion equation giving the phase speed vm for 
the mode number m is given as: 
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 (27) 

This equation can easily be solved numerically after which the group speed wm of mode number 
m is obtained by calculating. 
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Figure 47 shows the theoretical results for group speed versus frequency obtained directly from 
the relevant dispersion equations, Equations (27) and (28), and we see that the close resemblance 
with the result of the dispersion analysis. This is a demonstration of the connection between mode 
theory and ray theory which is added here only for tutorial reasons. 
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Figure 46. Dispersion analysis of the received signal in an acoustic wave guide:  
Upper: Received time signal at a distance of 10 km from the source. 
Lower: Result of the time-frequency analysis showing the group speed as function of 
frequency.  
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Figure 47. Group speed as function of frequency for the first 6 modes of a Pekeris’ wave guide 
with water depth 100 m and sound speed of 1500 m/s. The sound speed in the bottom 
is 1500 m/s and the density is 1500 kg/m3. 

5 Conclusions  
The PlaneRay model is an acoustic propagation model intended for use in range dependent 
environments, particularly in situations where the structure and material properties of the bottom 
vary with range. An essential feature of the model is the unique sorting and interpolation scheme 
for efficient determination of large number of eigenrays. The complete acoustic field at a given 
receiver location is calculated by coherent addition of the contributions of a large number of 
eigenrays. No rays are traced into the bottom, but the bottom interaction is modeled by local 
plane wave reflection coefficients. The bottom can be a fluid-like sedimentary layer over an 
elastic half space and the layer thickness, the sound speeds and the densities can vary with range. 
The sound speed of the water may vary with depth, but not with range.  
 
Ray tracing calculation is, by definition, frequency independent and therefore the calculations of 
ray trajectories through the water column are not dependent on frequency. Frequency dependency 
is introduced afterwards with the introduction of the bottom or surface reflection coefficient in the 
bottom, by layering and absorption, or by diffuse scattering of rough ocean surface or bottom 
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interface. Therefore the ray tracing and the determination of the eigenrays need to be done only 
once for each scenario, i.e. for a fixed bottom topography, sound speed profile and source and 
receiver depths. Since these calculations are the most computational intensive parts of the code, 
the PlaneRay model is quite efficient for broad frequency band calculations and consequently for 
the calculation of time responses by Fourier transformation of the frequency transfer functions.  
 
During the development of the code we have found that time responses are very useful for the 
interpretation and understanding of the features of a sound field. 
 
There are two main limitations to the overall accuracy and validity of the calculations. Since ray 
tracing technique is fundamentally a high frequency approximation of the solution of the wave 
equation, there are basic limitations with low frequency propagation modelling, for instance 
limited to 50 Hz in 100 m of water depths and 20 Hz in 300 m water. The validity and accuracy 
of using plane ray reflection coefficient to represent the effects of a layered bottom can also be 
bottom questioned. At present this is not fully investigate or understood, but one condition is 
clearly related to the heights of the source and receiver above the water bottom interface and the 
thickness of the layer related to the wavelength of the frequency.  
 
The second main limitation is due to the numerical accuracy of the determination of the 
eigenrays, most serious in the calculation of the ray amplitude or the transmission loss. These 
inaccuracies are of more practical nature and can be reduced by refinements in the calculations at 
later stages.  
 
This report has described the main features of the Plane Ray model and presented the results of a 
number of test cases with comparison with the results for other more established models. 
Additional examples and comparisons are found in Smedsrud and Tollefsen (2007).These 
examples should give a good impression of what the model can do and its limitations. However, 
this is not a manual for using the code, which eventually will be prepared later.  
 
The main conclusion is that ray tracing modelling may be quite useful technique for applications 
moderately range dependent environments and, as such be a valuable addition and alternative to 
other models with different advantages and limitations. 
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