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A THEORETICAL STUDY OF SMALL SCALE TURBULENCE IN STRATIFIED
TURBULENT SHEAR FLOWS

1 INTRODUCTION

Fluid dynamical processes in virtually all practical applications are strongly dominated by a
rapid temporal and spatial variation of velocity and pressure; this is something we usually
refer to as a turbulent motion. Turbulence is present in almost all fluid flow configurations,
be it in air or water, and when it is present it tends to dominate the dynamics. The success
of computational modelling of for instance dispersion of toxins, or other substances, in air
or water is crucially dependent on the ability to predict the significantly enhanced mixing
caused by turbulence. The ability to predict turbulence is equally crucial in aero- and
hydrodynamical applications, as well as in atmospheric and oceanographic processes.

The problem of turbulence is not a problem of physical law; it is a problem of description.
To some extent we are now able to compute turbulence exactly1, that is to numerically solve
the set of fundamental equataions that governs turbulent fluid flow (so-called “Direct
Numerical Simulations”). Although we have experienced a dramatic increase in computer
speed over the last decade or so, however, the computer power is still far from being
sufficient; one could even argue if it ever will be in order to compute ’real’ turbulent flows.
The reason it is so difficult to predict turbulence lies in its very nature; the enormous range
of scales. In the atmosphere for instance, it can range from scales in the order of kilometer
all the way down to a fraction of a meter, or even centimeter.

Direct numerical simulations invitable generates an enormous amount of data. These data
sets are so large that we not only have diffulties managing within available computer
resources, but also to extract useful information from. In order to compress the huge
amount of information we usually rely on a statistical description of turbulence. This is the
approch adopted here.

The present study is motivated by a need to gain a deeper understanding of the small scale
dynamics of turbulence in a sheared and stratified environement. In particular, the dynamics
of the smallest scales of motion in a turbulence field affected by shearing and buoyant
forces imposed by mean velocity and temperature gradients, respectively. This need stems
from problems related to the modeling of startified shear flows; virtually all present models
for small-scale turbulence are fundamentally flawed.

The terminology ’small scales’ alludes to the scales at which kinetic energy is transformed
into internal energy by the action of viscosity. The rate at which energy is dissipated in this
small scale regime is traditionally believed to be closely related to the rate at which energy
is transfered from the very largest, energy supplying, scales to sequentially smaller and

1but only within the errors of our computer model.
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smaller scales, until it finally reaches the smallest ones where it is dissipated into heat. This
concept is usually referred to as the turbulent energy cascade and it plays a crucial role in
our present understanding of turbulence. An edited version of this report has been published
in SIAM Journal of Applied Mathematics, 2003, Vol. 64, No. 1, pp. 309-321.

1.1 Local isotropy

It is well established that the imposition of density stratification and mean straining
significantly promotes anisotropy on the energetic large-scale turbulence motion. It is
frequently also argued that the small-scale motion would remain virtually unaffected by the
large-scale anisotropy at sufficiently high Reynolds number (Re). This view inherently
assumes that any direct effects of the large-scale motion on the smallest scales would be
negligible at high enough Re, and that large-scale anisotropies would not mediate across the
spectral gap fast enough to overcome the nonlinear scrambling of the cascade process.
Small-scale turbulence is therefore expected to be statistical independent of the large-scale
motion at sufficiently high Re. This is essentially the postulate of local isotropy put forward
by A. N. Kolmogorov [6] more than 70 years ago; a postulate that has been enormously
influential in turbulence research.

The conjecture of locally isotropic turbulence is sometimes also based on the notion of a
clear-cut separation of characteristic time scales; since the limiting behavior of the
small-to-large scale time-scale ratio asymptotes to ������� Re �	��
��� � as Re � � , it is
believed that small-scale turbulence would have sufficiently long time to interact with itself,
and to establish a state of directional independence, or local isotropy.

The terminology ’local isotropy’ alludes to statistical isotropy of the smallest, dissipative
scales of motion; i.e.scales much smaller than the energetic large-scale motion.
Mathematically, ’isotropy’ implies that any statistical measure must display invariance to
arbitrary reflections and rotations. Local isotropy is, however, not only a concept of
theoretical interest. It is in fact widely used for instance by experimentalists to infer the rate
of viscous dissipation of turbulent kinetic energy (formally defined as �������������� �!���� ) by only
conducting measurements of one of the 6 independent components of the fluctuating
rate-of-strain tensor �"���� (defined in (2.8)). In particular, by imposing the assumption of local
isotropy the number of derivative correlations that must be determined can be reduced from
twelve to just a single one, e.g. � � #�$ �&%'� ( � , see e.g. [5].

There exist several hundred articles and papers on the concept of locally isotropic
turbulence. Among the pioneering ones are due to Kolmogorov [6] and Obukhov [10], to
only mention a few. Monin and Yaglom [8] provides an extensive review on the early
developments of the topic whereas more recent reviews are provided by Nelkin [9], Frisch
[3], Sreenivasan and Antonia [14], and Warhaft [20]. Among the many studies there are a
growing number of theoretical, experimental and numerical investigations that suggest that
the concept of local isotropy is somewhat dubious. Townsend [17] and Uberoi [18] were
probably among the first to suggest that there exists a direct effect of large scale anisotropy
on the dissipative scales of motion, in addition to the indirect influence through the
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cascading process. This view was supported by e.g. Durbin and Speziale [2] who
demonstrated that, as a formally consistent consequence of the Navier-Stokes equations,
there must indeed exist a direct effect of mean straining on the dissipative scales. They
concluded that local isotropy is a physically implausible argument in turbulence affected by
mean straining.

Brasseur and Wei [1], and Yeung et al. [22] conducted numerical studies of the triadic
interactions in forced turbulence. These studies demonstrated that triadic interactions
between widely disparate scales directly modified the structure of the smallest scales in
accordance with the structure of the large energetic ones. Experimental results in uniform
turbulent shear flow [12] also imply a direct coupling between the large- and small-scales in
strained turbulence. They further concluded, fully in line with Durbin and Speziale [2] that
the hypothesis of local isotropy in isothermal turbulent shear flows seems untenable even in
the limit of infinite Re.

Sreenivasan [13] reviewed experimental work on local isotropy of passive scalar fields, and
suggested that local isotropy is not a natural concept for scalar fields in shear flows, except
perhaps for such extreme Re that are of no practical use on earth. Van Atta [19] analyzed
experimental data in stably stratified turbulence and noted that the effects are surprisingly
rapid, destroying the directional independence of the smallest scales as soon as buoyancy
forces become dynamically important. This was essentially confirmed by the enormous
numerical simulations of Werne and Fritts [21] who studied a stratified shear layer. They
found that turbulence affected by mean straining tends to develop a state of local
streamwise axisymmetry, as opposed to local isotropy. The concept of locally axisymmetric
turbulence in strained homogeneous flows has been theroretically and experimentally
considered by George and Hussain [5] who concluded that a theory of local axisymmetry
provides more credibility to the numerous measurements that have failed to confirm local
isotropy. These findings, along with many more not mentioned here, add to the body of
literature that shed new light on the consept of locally isotropic turbulence.

The present study examines local isotropy from a theoretical point of view. It extends the
approach suggested in [2] to homogeneous flows affected by both density stratification and
mean straining. The methodology is based on an examination of the dynamical equations
governing single-point turbulence correlations that are characteristic of small-scale
turbulence; these equations are formally consistent with the Navier-Stokes equations. The
objective of the study is to provide insight of whether or not the hypothesis of local isotropy
is a formally consistent concept in stratified flows, and if not, to also provide an estimate
under what circumstances it would constitute a physically plausible approximation. The
practical implications are related to the development of semi-empirical models intended to
describe the statistical coupling between large- and small-scale turbulence; a development
which is crucial for improved turbulence model formulations.
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2 THE EVOLUTION OF SINGLE-POINT TURBULENCE STATISTICS

The present analysis is based on the incompressible Navier-Stokes equations in the limit of
homogeneous turbulence, and to cases where the Boussinesq approximation constitutes a
reasonable assumption. The latter assumption is not believed to be a severe limitation in the
present context; the Boussinesq approximation represents a first order pertubation of the
fluid density. In cases where this approximation fails, an even stronger effect of buoyancy is
expected.

Single-point turbulence statistics allude to correlations of fluctuating quantities evaluated at
the same position in space and time. Dynamical equations governing these statistics can be
rigorously derived from the conservation equations for mass, momentum (Navier-Stokes)
and energy: $ �*)% �,+ �.- (2.1)$�/ )% �102)%�3 $ 3 )% �4+65 $ �")7 0 ��8 � )% �90 ::<; = � - (2.2)$�/ )> 02)%�3 $ 3 )> +@? 8 � )> 0 � �ACB )� ���<)� �D��E (2.3)

Repeated indices imply summation, e.g. )%43 $ 3 )> +F)%'� $ � )> 02)%�� $ � )> 02)%�G $ G )> . The superscript )
denotes instantaneous quantities, the subscript ; denotes a constant reference state, and)� ��� �IHJ #�$ �*)% �K0 $ �1)% � ( is the instantaneous rate-of-strain tensor. Spatial and temporal
differentiation are denoted $ML � $N�O$�P	L and $</ � $,�Q$	R , respectively, and8 � + $ �LSL � $ � �.#�$�P	LT$�P	L (

. Here, � +VU � :M; is the kinematic viscosity, and ?W+VX ��# :M; A*B (
the thermal diffusivity, where U , X and A B denote the dynamic viscosity, thermal
conductivity and specific heat, respectively. Y is the gravitational acceleration. According to
the the Boussinesq approximation, the density ratio : � :1; in (2.2) varies according to::<; +2Z[5]\ # )> 5_^ ; ( (2.4)

where \ �a` 5 $ log # : ( �Q$ >�bdc defines the thermal expansion coefficient at fixed mean
temperature ^ #fe - R ( .
Equations governing fluctuating quantities can systematically be derived using the
following procedure:

1. Decomposing the instantaneous velocity, pressure and temperature fields into mean
and fluctuating parts, i.e. )g #fe - R ( +�h #ie - R ( 0 g #ie - R ( .

2. Average to obtain the dynamical equation for the mean field; h #ie - R ( � )g #fe - R ( , sinceg #ie - R ( �j� by definition.

3. Obtaining the evolution equations for the fluctuating fields g #ie - R ( by subtracting 2
from 1.



11

Using this procedure, the evolution of the k 5 th component of the fluctuating velocity% � #fe - R ( for an incompressible fluid can then be written as$�/ % �90ml 3 $ 3"% �90 %�3 $ 3 lS�10 %�3 $ 3"% �90 %�3 $ 3 % �,+n5 Z:<; $ � 7 0 �.8 � % �	5o\ = � > - (2.5)$ � % �,+ � E (2.6)

Here, p #ie - R ( denotes the mean velocity field, and
> #ie - R ( is the fluctuating temperature

field. The corresponding dynamical equation governing the evolution of the fluctuating
temperature field

> #ie - R ( reads:$�/ > 0ml Lq$<L > + 5 % Lq$�L ^r5 % Lq$�L > 0s? 8 � > 0ut �ACB�v �D� � ����0 � �ACBxw � ���� � ��D� 5 � ����y� ���� z E (2.7)

Here, � ���� + Z� #{$ � % �|0 $ � % � ( (2.8)

and v ���T+ Z� #�$ �}l4�~0 $ ��lS� ( (2.9)

denote the fluctuating and mean rate-of-strain tensor, respectively.

Transport equations governing suitable turbulence correlation can now be constructed from
(2.5) – (2.7), and the results are formally consistent with the incompressible Navier-Stokes
equations in the limit of the Boussinesq approximation. The assumption of homogeneity
constitutes the only additional simplification and it implies that statistical measures of the
flow must be translational invariant, i.e. single-point correlations are spatially constant.

The fluctuating pressure field 7 #ie - R ( in (2.5) is the solution to a Poisson equation which can
be obtained by taking the divergence of (2.5). Invoking the incompressibility and
homogeneity constraints then gives8 � 7 +25 :<; $ � %N3 $ 3!% ��5 � :<; $ 3 % � $ ��l 3 5 :<; \ = � $ � > (2.10)

which represents nonlocal effects on single-point statistics 2. The fluctuating momentum
and temperature equations, (2.5) and (2.7), can symbolically be written on operator form as� % �4+ � and

� > + � , respectively. The transport equation governing the second-order
moments, � ���[+ � ����[� % � % � , is readily obtained by multiplying (2.5) by % � , adding the result
to itself with k and � interchanged, and finally averaging. This can symbolically be written
as % � � % �10 % � � % �T+ � . The result for homogeneous turbulence reads� /d� ��� + 5 Z:<; w % � $ � 7 0 % � $ � 7 z 5 #f� � 3 $ 3 l4�K0 � � 3 $ 3 lS� (5 � �D�q5]\ w = � % � > 0 = � % � > z (2.11)

2It is interesting to note that the solution of (2.10) shows that the evolution of single-point moments im-
plicitely depend on two-point correlations, i.e. correlations of velocity components evaluated at different posi-
tion in space, see e.g. Rotta [11] for more details.
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where
� / � � � � R is the local time derivative. Recall that all spatial derivatives of turbulence

correlations are zero in homogeneous turbulence. The second-order viscous dissipation rate
tensor is given by � ����+ ��� � ����T����� $<L % � $�L % ��E (2.12)

The evolution equation governing the turbulent kinetic energy, ��� �� � ��� , is obtained by
taking the trace of (2.11), and multiplying by �� ;� / � +25 � � 3 $ 3 lS�N5 � 5 Z� \ = � % � > - (2.13)

where ��� �� � ��� is the rate of turbulent energy dissipation.

By first writing (2.11) as
� � ��D� + � , the corresponding transport equation for the third-order

moments, � ��� 3 � � ���� 3 � % � % � %�3 , can then be derived as %,3 � � ��D� 0 � ���� � %�3 + � . The result
can be written as� /d� ��� 3 + 5 Z:<; w � ���� $ 3 7 0 � �� 3 $ � 7 0 � �� 3 $ � 7 z5 #f� L ��� $�L l 3 0 �yL � 3 $�L l4�|0 �yL � 3 $�L lS� (5 � ��� 3 5o\ w = 3 � ���� > 0 = � � �� 3 > 0 = � � �� 3 > z (2.14)

where � ��� 3 ����� w % � � �� 3 0 % � � �� 3 0 %N3 � ����*z (2.15)

denotes the third-order viscous dissipation rate tensor.

The equation governing the transport of turbulent heat flux ( % � > ) can readily be derived as> � % �10 % � � > + � :� / % � > +n5 Z:<; > $ � 7 0o������5 � ����5]\ = � > � 0_t �ACB1v 3 � % � � � 3 � 0 � �ACB % � � � 3 � � � 3 � (2.16)

where � ��� � # ?�0 � ( $�L > $�L % � (2.17)

and �����q+25 w % L > $�L lS�10 � L � $�L ^ z (2.18)

represent the rate of dissipation and production of turbulent heat flux, respectively.

To this end the dynamical equations governing the turbulent heat flux ( % � > ), and second-
and third-order velocity moments ( � ��� and � ��� 3 ) have been derived. This rather limited
choice of basic single-point correlations suffices to assess the validity of the local isotropy
postulate in stratified turbulence, and to provide an estimate of when this hypothesis may
constitute a physically plausible approximation. It should be noted however, that the
abovementioned correlations are characteristic for the large-scale energetic part of the
turbulence spectrum. In order to study the dynamics of the dissipative scales, on the other
hand, correlations characteristic for these scales must be considered. In particular the
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dynamical equations governing the dissipation rate tensors � �D� , � ��� 3 and � ��� appearing in
(2.11), (2.14) and (2.16), respectively. These tensors comprise correlations between
fluctuating gradients and characterise therefore the high wave-number part in spectral
space, or the small scales in physical space.

The transport equation for dissipation rate � ��� of turbulent heat flux can be derived as# ?�0 � ( $�L > $�L�# � % � ( 0 # ?�0 � ( $<L % � $�L�# � > ( + � and the result can be written as� / � ����+ 5 � 3 � $ 3 lS��5 ��� L 3 �� $<L l 3 0_t �ACB.v 3 �y��� 3 �5 Z� w Z�0 Pr �	� z�� � 3 $ 3 ^r5 Z� \ # Z�0 Pr
( = � � ��0u����� (2.19)

for homogeneous turbulence where Pr ��� � ? is the Prandtl number, � L 3 ��,+ $�L > $ 3!% � , and��� 3 ��+ $�L % � $�L � � 3 � . The dissipation rate of temperature variance
> � is defined as� � �6� ? $�L > $<L >

(2.20)

whereas the last term in (2.19) is������+ 5 ?�0 �:<; $ � > 8 � 7 0 # ?�0 � (q� %�� $ ��% � 8 � > 0 %�� $ � > 8 � % �f�0 # ?�0 � ( � 8 � > 8 � % �10 � �ACB $�L % � $<L�# � � 3 � � � 3 � ( E (2.21)

The evolution equations for � ��� is derived as
� � ���[+ ���'` % � $�L�# � % � ( 0 % � $�L�# � % � ( b + � and

the result reads� / � ����+��W����5 ��� L 3 ��� $�L l 3 5 # � � 3 $ 3 lS��0 � � 3 $ 3 l4� ( 5o\ w = � � ��&� 0 = � � ���� z (2.22)

where � ��� 3 L ����� $ � %�3 $ � % L and�W��� + 5�t � � $ �L 3 % � $ �L 3 % ��5 ��� w � �� 3 $ 3!% �10 � �� 3 $ 3!% � z5 �O�:<; #�$ � % �10 $ � % � ( 8 � 7 E (2.23)

The corresponding evolution equation for third-order dissipation rate tensor � ��� 3 (2.15) is
obtained as

� � ��� 3 + ��� #i� 3 ���|0 � � � 3 0 � ��� 3 ( + � where � 3 ���T+ # %�3 � � ���� 0 � ���� � %�3 ( . After
some algebra, the final result can be symbolically written as� / � ��� 3 +r���D� 3 0¢¡~��� 3 0¤£,�D� 3 0¦¥§��� 3 (2.24)

where�q��� 3 +@¨���� 3 0¤¨4� � 3 0_¨ 3 ��� (2.25)¡~��� 3 +jl��D� 3 0ml4� � 3 0ml 3 �D� (2.26)£,��� 3 +V©���� 3 0_©�� � 3 0¤© 3 ��� (2.27)¥§��� 3 +Vª���� 3 0¤ª��&� 3 0_ª 3 ��� (2.28)
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and¨ 3 ���«+ 5 ���:<; � # % � 8 � % �K0 % � 8 � % � ( $ 3 7 �5 ���:<; � # % � 8 � %�3 0 %�3 8 � % � ( $ � 7 �5 ���:<; � # %�3 8 � % �K0 % � 8 � %�3 ( $ � 7 �5 t �:<; #{$ � # % � %N3 ( 0 $ � # % � %�3 ( 0 $ 3 # % � % � (¬( 8 � 7 - (2.29)

l 3 ���«+ 5 ��� � %�3 #{$<L % � $ �O% �|0 $�L % � $ �O% � ( � $�L l �5 � � �D� $ � l 3 5 � 3¬� � $ � lS��5 � 3 � � $ � l4� - (2.30)© 3 ���T+25 ��� \ w = � %N3 � ��� 0 %�3 � ���� 0 % � � ��&� z - (2.31)

ª 3 ���«+ ��� � %�3 $<L %	� #{$ �Q% � $�L % �|0 $ �Q% � $�L % � ( 5 %	� $ �O%N3 $�L % � $<L % � �5 ��� � � $�L % � $<L % � 8 � %�3 0 $�L %�3 #�$�L % � 8 � % �10 $�L % � 8 � % � ( �5�t � � %�3 8 � % � 8 � % ��E (2.32)

It follows directly from (2.29) – (2.32) that ¨ 3 ���T+V¨ 3 �&� , l 3 ���T+jl 3 �&� , © 3 �D��+@© 3 �&� andª 3 ���T+Vª 3 �&� . Consequently �T�D� 3 , ¡���� 3 , £,��� 3 and ¥§��� 3 are symmetric for any permutation of
indices, see (2.28). This property is obviously required by the definition of � ��� 3 (2.15).

3 IMPOSING LOCAL ISOTROPY A PRIORI

The theory of isotropic turbulence is essentially based on the fact that all statistical
measures of the flow must display invariance to arbitrary reflections and rotations. The
properties of isotropic tensors can here be put to good use in order to establish if the
postulate is formally consistent with the Navier-Stokes equations. This methodology was
first used by Durbin and Speziale [2] where it was applied to the second-order dissipation
rate equations (2.12) to investigate the impact of mean straining on the small scales. The
objective here is not only to elucidate the impact of density stratification on small scale
turbulence, but also to relate it to the impact of mean straining.

It is well known that, at any given order, a general isotropic tensor can be written as a linear
combination of a set of linearly independent isotropic tensors. The number of independent
isotropic tensors depends on the order of the tensor itself. Here we will consider tensors up
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to fourth rank. The most general isotropic forms of any first, second-, third- and
fourth-order isotropic tensor 3 can be written as® �¯+ � (3.1)® ��� + X ;C° �D� (3.2)® �D� 3 + X �&± ��� 3 + � (3.3)® ��� 3¬² + X � ° �D� ° 3³² 0_X G ° � 3 ° � ² 0¤Xµ´ ° � ² ° � 3 (3.4)

where the fundamental isotropic tensor of rank 2 is the Kronecker delta:

° ���[+a¶ Z - if k + � ;�.- otherwise
(3.5)

and of rank 3 the Levi-Civita alternating tensor:

± ��� 3 + ·¸�¹ Z - if kº�9� is from the sequence Z �O» Z � ;5�Z - if kº�9� is from the sequence »<� Z »�� ;�1- otherwise,
(3.6)

As already alluded to, the implications of the small-scale isotropy postulate can be
elucidated by writing the evolution equations (2.12), (2.15) and (2.19) on their most general
isotropic forms using (3.1) – (3.4).

3.1 First order velocity-temperature correlations

Let us first consider the equation governing the dissipation rate of turbulent heat flux. The
isotropic form of (2.19) is obtained by substituting��¼&½Q¾��� + � (3.7)� ¼&½Q¾��� + � (3.8)��¼&½Q¾� 3 + Z» � L�L ° � 3 (3.9)�|¼&½�¾3 L �� � ±¬3 L �µ+ � (3.10)� ¼&½Q¾� 3 � � ± � 3 �[+ �.- (3.11)

which follows from (3.1) – (3.4). The last two results follows from the symmetry properties� 3 L ��,+ � L 3 �� and ��� 3 �q+j����� 3 , where the former only applies to homogeneous turbulence.
The isotropic form of (2.19) then becomes� +n5 �» � $ �f^�5 � � = �d\S¨�¿ (3.12)

3These are not specific to turbulence correlation tensors, but general valid for first through fourth order
tensors.
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where ��� �� � LSL is the dissipation rate of turbulent kinetic energy. According to (3.12),
isotropy would firstly require that the gravitation ( = � ) must act in the direction of the mean
temperature gradient $ �{^ , which obviously not is genrally true. Secondly, if the direction of
the gravitational acceleration happens to coincide with the mean temperature gradient, e.g.
i=2, the resulting relationship ��� $ � ^j+65 »�� �¬\ = � ¨�¿ seems far too stringent to be generally
true. The implication of local isotropy, i.e. that � ���q+ � , is therefore formally inconsistent
with the Navier-Stokes equations. In fact, a closer examination of the evolution equation
governing the third-order ’generalized’ dissipation tensor � 3 L �� yields the additional
constraints: � $ �i^j+ � if À�Á+ � + k . For À + �¦Á+ k , (3.12) is recovered. The terminology
’generalized’ alludes to the relation # ?�0 � ( � LSL �� �V� ��� . Another interesting observation
that can be made from (2.19) is that mean straining does not formally conflict with the
assumption of local isotropy on this particular level of velocity-temperature correlation.

3.2 Second-order velocity moments

Local isotropy on the second-order moment level requires (2.22) to balance in the isotropic
limit (3.4). The terms in (2.22) are replaced by their most general isotropic counterparts,
and the result is:��¼&½Q¾��� + � (3.13)� ¼&½Q¾��� + �» � ° ��� (3.14)� ¼&½Q¾��� + Z» � L�L ° ����+ �» � ° ��� (3.15)� ¼&½Q¾L 3 ��� + � # X � ° ��� ° 3³² 0_X G ° � 3 ° � ² 0¤Xµ´ ° � ² ° � 3 ( (3.16)

where the coefficients X � 5uXµ´ are determined by imposing (i) homogeneity
( � L 3 ���T+ � 3 L ��� ); (ii) continuity ( � L 3 L ��+ � ) and (iii) the definition � L�L ���[+ ��� . These
constraints yield X � +�t � Z�Â , X � +25�Z � Z�Â�+@X G The resulting isotropic form of (2.12) can
then be written as � / � ° �D�T+�� ° �D�q5 �Â � v ��� - (3.17)

where � � �� � LSL . This is the equation derived by Durbin and Speziale [2] which proves
that the assumption of local isotropy is formally inconsistent with the Navier-Stokes
equation on the second-order moment level when mean straining is imposed, i.e. whenk�Á+ � . Clearly, the imposition of buoyancy does not render the local isotropy assumption
formally invalid on the second-order velocity-moment level. It should further be noted that
the implicit dependence on the stratification contained in the fluctuating pressure term in
(2.23) does not contribute to the scalar � in incompressible flows.

Based on the theoretical arguments in the previous section, � ¼&½�¾��� Á+ � in general. If we retain� ¼&½Q¾��� Á+ � and the assumption of local isotropy for rank 2 tensors, however, (3.17) becomes� / � ° ���T+�� ° ���q5 �Â � v �D��5 »� \ # = � � ��S0 = � � ��� (Ã Ä!Å ÆÇQÈ É E (3.18)
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Figure 3.1: Homogeneous shear flow.

Equation (3.18) then provides us with another fact that strongly supports our assumption
that � ¼&½Q¾��� Á+ � should be true; it implies that the rate of decay of � , in the absence of mean
shear ( v �D�T+ � ) should be unaffected by any imposed density stratification if the small scale
turbulence were truly isotropic. However, there are no numerical or experimental evidence
that this should be the case! On the contrary, it has been observed that even the slightest
effect of buoyancy significantly alters the evolution of � (

� / � ), see e.g. Thoroddsen and Van
Atta [16].

In order to provide an estimate of the nonlinear term � in (3.18) let us consider decaying
grid turbulence unaffected by mean straining and stratification. The evolution equation for
the turbulent time scale � � � is readily obtained by combining (2.13) and (3.17). The results
reads � /~Í � �SÎ +n5 Í Z�0 �� � � Î E (3.19)

There exist experimental evidence that grid-generated turbulent kinetic energy exhibits a
power-law decay, i.e. � �VR �M� , where the decay exponent is ÏÑÐ Z�E » in a large number of
measurements reported in the literature, cf. e.g. [7]. The value of the decay exponent is
reported to increase to ÏÒÐ Â � � in the final period of decay. The power-law behavior of �
requires � �VR �	ÓÔ��Õ,��Ö , and henceforth � � � �VR and

� /&# � � � ( ��×Ø# Z ( . With this, equation
(3.19) provides the estimate �Ù+6Ú Í � �� Î (3.20)

which are widely used, almost without exception, by turbulence modellers.

Let us now consider homogeneous shear flow with $9Ê l@+rÌ�Û � , $�Ê ^V+rË¢Û � andY + `��.- 5 = -C� b , see figure 3.1. The assumption of local isotropy, in terms of an imposed



18

density stratification, would then be a formally justified approximation if we can neglect Ü
as compared to � in (3.18), i.e. if ÝÞÝ Ü�ÝÞÝQß ÝÞÝ � ÝÞÝ , or equivalently if� Ëáà ÝDâ�k{ãC� � � Ý Í Ì �� Î �

(3.21)

by using the estimate (3.20). The gradient Richardson number â�käã�� ¥ � � Ì � and¥ � � \ = Ë is the Brunt-Väisala frequency. If we consider a flow close to equilibrium, it is
reasonable to assume that � � � � � � �q+�Ú # Z ( in (2.16), where � � � � 5 � �ä� Ëå+65 �G � Ë . The last
equality is obtained by substituting the isotropic value � �ä� + �G � . Equation (3.21) can then
be written as Ý â�k�ã<Ý +¯ææææ ¥ �Ì � ææææ ß � �Ì � � � +6Ú # � EÞZ ( E (3.22)

The right hand side of (3.22) has been evaluated using Ì � � � ��ç which typically is reached
in physical and numerical experiments of homogeneous shear flows near equilibrium [15].
The constraint (3.22) thus implies that local isotropy constitutes a justifiable approximation
only at very small Richardson numbers; in fact so small that buoyancy effect can not
essentially be present in practise. The inequality also suggests that the imposition of density
stratification exerts a significantly stronger effect on the dissipative scales than an imposed
mean straining.

Durbin and Speziale [2] further demonstrated, in the absence of density stratification, thatÌ �� ß Ú # Z ( (3.23)

is a necessary condition for local isotropy to constitute a formally justified approximation in
absence of density stratification. This relation is readily obtained by requiringÝºÝ � ÝºÝ à ÝºÝ � Ì ÝºÝ in (3.17). Using this and (3.22) yields the combined constraintææææ ¥ � � �� � ææææ ß Ì � � �� � ß Ú # Z ( E (3.24)

This result implies that the time-scales associated with buoyancy and mean shear must be
much larger than the integral turbulent time scale in order for the local isotropy hypothesis
to constitute a formally justified approximation. In the absence of mean straining, the
magnitude of the Brunt-Väisala frequency is thus required to be much smaller that integral
scale turbulent frequency in order for the hypothesis to constitute a physically plausible
approximation. This is not feasible in homogeneous flows, at least for flows relatively close
to equilibrium.

We can also recast (3.22) in terms of the buoyancy and shear Reynolds numbers frequently
used in the literature; â�è�é + æææ �� ª � æææ + ���Ý \ = Ë Ý - and â�è ½ + �� Ì � (3.25)

by noting that â�k�ã + â�è ½ � â�è�é . The result (3.24) can then be written asZâ�è�é ß Zâ�è ½ ß Zâ�è (3.26)

where â�è���� � ��# ��� ( is the integral scale turbulent â�è or, equivalently.
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3.3 Third-order velocity moments

Let us finally focus our attention on the evolution of the third-order dissipation rate tensor
( � ��� 3 ). If small-scale turbulence on the third-order velocity-moment level were truly
isotropic, the evolution equation (2.15) must be fully consistent with the mathematical
properties (3.4). The terms �T��� 3 , ¡~��� 3 and ¥§��� 3 are all third-rank tensors of the fluctuating
velocity field. Since these terms must be symmetric for any permutation of indices, it
follows from (3.6); ��¼&½Q¾��� 3 +�� ¼&½Q¾�D� 3 +s¡ ¼½�¾��� 3 +u¥ ¼½�¾��� 3 + �.- ê2k-ä��-*� E (3.27)

The term £,��� 3 � = � � �&� 3 differs from the other terms in (2.24) in that it only compromises a
second-rank tensor of fluctuating quantities, i.e.

� �� 3 . The most general isotropic form of� �� 3 can then be written as � ¼&½�¾�&� 3 + Z» % L � �L � ° � 3 Á+ �1- (3.28)

according to (3.2). The result on the third-order velocity-moment level shows that the
assumption of local isotropy is formally consistent with Navier-Stokes equations on the
third-moment level if, and only if, % L � �L � ��� . This requirement is on the other hand
generally not fulfilled.

4 CONCLUDING REMARKS

The present study has demonstrated that the hypothesis of local isotropy is formally
inconsistent with the Navier-Stokes equations in homogeneous stratified turbulence,
irrespectively whether the stratification is stable or not. The imposition of a mean
temperature gradient is shown to essentially affect the small-scale turbulence in the same
manner as an imposed mean shear, but with a significant stronger impact.

George [4] has suggested, based on experimental findings, that the small-scale motion
remain closely linked to the large-scale coherent motion. Anisotropies of the large scales
would thus be reflected over the entire spectral range. These findings are consistent with the
results presented herein.

The outcome of the present analysis is also very similar to the findings of Yeung et al. [22]
although their approach is rather different. They considered the effect of anisotropic
large-scale turbulence on the small-scale anisotropy whereas the present study focuses on
the imposition mean-flow anisotropy. Despite this difference, both cases reach the same
conclusion, namely that the imposition of large-scale anisotropy, be it related to turbulence
or the mean-flow, does not show up on all levels of small-scale velocity-moments.

In particular, density stratification does not formally conflict with the local isotropy
hypothesis on the second-order level, whereas it shows up for the first- and third-order
correlations examined here. Similarly, mean shear does not formally conflict with the
isotropy assumption on the first- and third-order levels, whereas it is formally inconsistent
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on the second-order level. It is however sufficient to show anisotropy on any small-scale
statistics in order for the local isotropy hypothesis to be violated. This was pointed out by
Yeung et al. [22] who also argued that the converse is not true; a single statistical measure
that displays a state of local isotropy is a necessary but not a sufficient condition to
guarantee small-scale isotropy.

A qualitative analysis of the second-order dissipation rate transport equation has indicated
that local isotropy constitutes a physically justifiable approximation, at this particular level
of single-point moments, only if the imposed time scale associated with buoyancy, or mean
straining, is much larger than the integral turbulent time scale. It can therefore be concluded
that local isotropy does not seem to be a physically plausible argument in flows relatively
close to equilibrium since the imposed and the eddy turnover time scales usually are of the
same order. A successful continuation in the development of predictive methods for
turbulent flows relies heavily upon the ability to characterise small-sclae turbulence in terms
of the large scales. The theoretical outcome of this study has shown that it seems necessary
to include information of the mean flow field in models for the small-scale turbulence in
order to retain some consistency with the Navier-Stokes equations.
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