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DETONATION TRANSFER - Summary report, FFI project 803.03     
 

1 INTRODUCTION 

1.1 Background 

The AMRISK code is a tool for calculating risk values for personnel in the vicinity of military 
or civilian ammunition storages. The calculations take into account the complete chain from a 
potential accident to hazards to exposed persons. 
 
AMRISK is the result of a joint Norwegian-Swedish development of the originally Swiss code 
AMMORISK, which has been used in Norway since 1985. The code has been ported from 
DOS to Windows, it will communicate with GIS systems and also be updated with improved 
physical models. 
 
In the early stage of the project, a preferential list of the most important improvements to the 
code was established as follows:  
 

1) Accident probability 
2) Amount of high explosives detonating 
3) Lethality 
4) Physical effect models 

 
The work on point 2) has been performed at FFI under project 803.03. This report gives a 
summary of the obtained knowledge. 

1.2 Main problem areas 

It is an empirical fact that, in many cases, only parts of the stored ammunition detonate in a 
storage accident. This is not taken into consideration in AMRISK or similar codes used today. 
On the contrary, the calculations are based on the assumption that the complete mass of high 
explosives detonates1. Because of this, the results will be overly conservative in many cases. 
 
With the gradual introduction of class 1.4 ammunition to replace class 1.12, the problem of 
mass detonation will be reduced. Still class 1.1 ammunition will be produced, transported and 
stored for several years ahead. Hence, predicting the amount of high explosives that 

 
1 It is also assumed that the propagation of detonation is such in time and space that the generated blast wave 
approximates that of a single source. 
2 Classes refer to UN’s hazard classes; class 1.1 is mass detonating ammunition, class 1.4 is ammunition giving 
moderate fire and no blast. 
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contributes to the effects of an ammunition accident is important to the quality of a risk 
analysis. 
 
The origin of a mass detonation is a detonation in some munition. The first part of finding how 
the mass detonation propagates is to determine if a detonation in one munition (donor) causes a 
detonation in the neighbour munition (acceptor). Then the model must be expanded to include 
the stack (a pallet) of munitions. Finally, to estimate the amount of mass detonating 
ammunition in a storage, the process of sympathetic detonation between different stacks must 
be investigated. The progress of a mass detonation depends on the design and the contents of 
the storage. In addition the process will be different depending on where the detonation starts. 
 
If the storage consists of several caves with one or a few common adits, detonation transfer 
between the caves is of interest. The same goes for detonation transfer between containers in a 
field storage. 
 
Figure 1.1 shows the different detonation transfer processes. The work in this report covers the 
problems of detonation transfer between individual munitions, propagation in a stack and 
transfer between stacks. 
 

Figure 1.1 Approaches to possible detonation transfer processes in an ammunition storage 
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1.3 Structure of the report  
 
Chapter 2 describes a model for predicting detonation between a single donor and an 
acceptor. It is based on an earlier Norwegian work, which has been re-investigated and coded 
in MATLAB; the original program was in Pascal. Some results are presented, and model 
limitations pointed out. 
 
Chapter 3 takes the results from chapter 2 one step further by presenting a model for 
detonation in a stack or a pallet. The model describes one layer of munitions, and includes 
screening and desensitisation effects. Attempts have thereafter been made to analyse the 
statistics of the detonation process by a Monte Carlo procedure employing the probabilities, 
which are the output from the basic propagation model. 
 
Chapter 4 gives a summary of the results of experiment carried out within the project. The 
trials were mainly simple donor - acceptor situations with 155 mm artillery grenades. The 
experimental results are compared to results from the basic propagation model including 
desensitisation effects. 
 
Chapter 5 outlines a simple model describing detonation transfer between stacks or pallets. 
Note that this problem could be solved by modifying the model from chapter 3. However, 
starting out with a more basic approach was useful to investigate the statistical significance of 
the trials described in chapter 4. 
 
Chapter 6 offers some conclusions of the results presented in the previous chapters. 
Shortcomings of the work and recommendations for future investigations are pointed out. 

2 SYMPATHETIC DETONATION MODEL 

2.1 Introduction 

A sympathetic detonation means that a detonation in a donor initiates a detonation in an 
acceptor. Whether a sympathetic detonation occurs depends on the contents and shape of the 
munitions, their relative positions and the ambient conditions. The origin of the first detonation 
is considered irrelevant here. Still the mechanisms leading to the detonation may influence the 
conditions for further propagation of the detonation. For instance, if the initial detonation is 
caused by cook-off, the heating may have changed the sensitivity of the acceptors. 
 
Three categories of initiation mechanisms may be active in a sympathetic detonation (1). The 
first is the shock to detonation transition (SDT) where a shock causes direct detonation in the 
acceptor. The shock may come directly from the donor blast wave or may be induced by 
fragment impacts. The second alternative is that a stimulus causes damage in the acceptor, and 
a subsequent shock initiates the detonation (XDT). A thermal initiation (deflagration) may also 
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lead to a detonation (DDT), normally in predamaged or porous materials. The contributions to 
a mass detonation from XDT and DDT are small compared to SDT, which is the initiation 
mechanism considered here. 
 
The most important cause for shock waves in cased munitions is fragment impact. After a 
detonation in a cased charge the casing ruptures into many fragments while the blast wave 
outruns the fragments. However the blast wave decays much more quickly than fragment 
speed. Therefore the air blast wave from the donor charge may be considered irrelevant for 
initiating a detonation (1),(2). Still it may cause secondary impacts and sensitisation or 
desensitisation of acceptors. 
 
At secondary impacts the acceptor is accelerated by the donor effects and then hits the ground, 
the wall or other objects. The most important effect is probably plastic deformation of the 
acceptor. Hence, the influence of secondary impacts on a mass detonation is insignificant. 
 
As a first approach we are considering cased charges only. When a fragment hits the casing, a 
shock wave is created and propagates into the explosive. If the shock exceeds a certain 
pressure threshold over a specific minimum area, it becomes a detonation wave (3). Fragments 
may also penetrate the casing and then pass through the warhead or stop inside. The result of a 
fragment staying inside can be an ignition leading to a detonation; this depends on the 
fragment speed and the confinement of the munition (3). This initiation mechanism is not 
considered here. In addition to fragments, the expanding case of a donor may cause initiation 
of an acceptor. 
 
The mass, velocity and direction of fragments from a cased charge are usually described 
statistically. From this the probability of one or more hits of fragments with sufficient mass 
and velocity to initiate a detonation in the acceptor can be derived. 

2.2 Model basis 

The basis of our model is adopted from Strømsøe and Ingebrigtsen (4)-(6). They developed a 
model to predict detonation transfer between warheads. The model describes a single donor, 
single acceptor case. 
 
The velocity of the fragments thrown out when the donor detonates, is a function of the angle 
relative to the warhead axis ϕ, 
 
( ) ( )0 vv v Fϕ ϕ= , (2.1) 

 
where v0 is found from Gurney’s formula, 
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0

G

Gv
C k
Q

=
+

. (2.2) 

 
G is Gurney’s constant dependent on the explosive, C is the casing mass, Q is the mass of the 
charge and kG is a geometric constant; for cylinders it is ½. Fv(ϕ) is the distribution function of 
the fragment velocity (7), 
 

( ) 20.6474 0.02636 0.0006095 3.08 10vF 6 3ϕ ϕ ϕ −= − + − ⋅ ϕ  (2.3) 

 
for 5° ≤ ϕ ≤ 95°. For 95° < ϕ ≤ 185°, ϕ is substituted with 190° - ϕ. 
 
There is also an angle distribution of fragment masses, 
 
( ) ( )mm CFϕ ϕ= , (2.4) 

 
where m(ϕ) is the mass of fragments per angle unit at ϕ, and Fm (ϕ) is the fragment mass 
density function, 
 

( ) ( )21
2

m 2
yaF e ϕϕ

π
−= . (2.5) 

 
The empirical parameter a and the function y(ϕ) are different for different calibres, see Table 
2.1. Included in a is the mass of fragments relative to total casing mass. 
 
Calibre a / deg-1 y 
81 mm 8.09 ( )0.0724 84.41ϕ −  

105 mm 8.84 ( )1.523 9.30ϕ −  

155/175 mm 7.57 ( )4 24.08 10 8796.56ϕ−⋅ −  

Table 2.1 Quantities defining the mass distribution function Fm(ϕ) 

 
The distribution of masses is described by the Mott-Linfoot formula, 
 

( ) 1 2
k0

k2
m MMN m e

M
−= , (2.6) 

 
where N(m) is the number of fragments with mass larger than m. M0 is the total mass of 
fragments and may be taken from (2.4). Mk is a fragment distribution parameter expressed as 
(7): 
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(1 35 6
k i 1 )iM B t D t D= + . (2.7) 

 
Here t is the case thickness, Di is the internal diameter and B is an explosive constant. 
 
The fragments will be retarded in air, and the impact velocity is given by  
 

1 3

0

c s
mv v e

−
= , (2.8) 

 
where s is the distance covered by the fragment. The factor c depends on the drag coefficient 
and shape factor of the fragments and the air density and is assumed to be constant with value 
0.00465. The distance s is calculated by supposing that the fragments move along a straight 
line from the donor axis to the acceptor casing. The distance from the donor centre is then 
 

2 2
o o o(s y d x= + − )

d

 (2.9) 

 
giving 
 

o os s R= − , (2.10) 
 
where (x0, y0) are coordinates of the hit point, d is the distance between donor and acceptor and 
Rod is the outer radius of the donor. x0 and y0 are of course connected by 
 

2
o oa

2
ox R y= − , (2.11) 

 
when Roa is the outer radius of the acceptor. Note that the distance does not depend on the polar 
angle ϕ. 
 
The initiation criterion is defined by the least velocity giving initiation as a function of the 
explosive sensitivity (ks), the perforation thickness (tp) and the fragment mass (m) (8). 
 

( )
1 3

p64.5
s

i 2 3 1 3
p

0.00864
m 1 39.6

t mk ev
t m

=
+

. (2.12) 

 
By using (2.8) and (2.12) the smallest fragment mass that will initiate a detonation, can be 
determined. (2.6) then gives the number of fragments with mass larger than this critical mass. 
 
The ammunition is considered to be a cylinder. The acceptor warhead half cylinder is divided 
into nL longitudinal and nW latitudinal zones yielding nLnW area elements for which the hit 
probability is computed, as can be seen in Figure 2.1. 
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Figure 2.1 The basic geometry of the donor-acceptor model 

 
Hit probability is not computed for segments that do not expose the high explosive core of the 
grenade. 
 
When a fragment hits the casing at (xo, yo), it continues in the same direction, and in case of 
perforation, to the inner side of the casing. The distance from the donor centre to this point is 
 

22 2
i ' 's d d d r= − − + i , (2.13) 

 
where 
 

o

o

' d xd d
s
−

= . (2.14) 

 
The distance a fragment has to penetrate through a warhead casing is then 
 

p it s s= − o . (2.15) 

 
(xo, yo) are the coordinates of the element midpoint. In the model the perforation thickness is 
independent of the polar angle. 
 
For an area element (2.4) gives the mass of fragments per polar angle unit, and (2.6) gives the 
corresponding number of fragments larger then the critical mass. The fraction of these hitting 
an element is given as 
 

( )
2

i
w o

sin
2

iLf
n d R a

α ϕ
π

=
−

, (2.16) 

 
where L is the length of the vulnerable part of the acceptor, and αi is the angle defined by the 
longitudinal borderlines of the element. 



 14  
 

 
   

⎟

 
In this way the number of fragments of those with sufficient mass and velocity to initiate the 
acceptor, that hit an area element, is determined. If these fragments are distributed uniformly 
across the acceptor, the number may be considered as the expectation value of a Poisson 
distribution. If the elements are indexed by i and j, the probability of detonation transfer 
becomes 
 

WL

ij
1 j=1

N

1 1

nn

ip e =

−∑∑
= − . (2.17) 

 
Here it is supposed that multiple impacts work independently. To allow for the effect of the 
reinforcement when two or more impacts are close, it is supposed that when two or more 
fragments with at least half of the critical mass impact the same area element, they will initiate 
a detonation of the acceptor. Varying the size of the elements changes the synergistic effect. 
With Nij’ as the number of fragments with mass between the half and the whole critical mass, 
the probability of detonation increases to 
 

( ) ( )1
1 1

1 1 1 '
WL

ij

nn
N

ij
i j

p p N e−

= =

⎛ ⎞
= − − +⎜

⎝ ⎠
∏∏  (2.18) 

 
The model described above was originally implemented in a Pascal program. Based on this, 
we have programmed the calculation procedures in MATLAB code. 

2.3 Results 

The outcome of the model is the probability of sympathetic detonation between two warheads 
of a given calibre. This is shown in Figure 2.2 for different centreline distances. 
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Figure 2.2 Probability of detonation transfer between two warheads with Comp B or TNT 

(155 mm) as a function of the distance between the warhead axes 

Strømsøe and Ingebrigtsen (6) compared their results with experimental data from tests with 
81 mm, 105 mm and 175 mm warheads. The agreement is best for the 175 mm grenades. In 
the experiments with 81 mm and 105 mm there seems to be a relatively sharp distance limit for 
detonation transfer, whereas the calculations predict an increase in the probability from 0 to 1 
over a much longer interval. 

2.4 Model limitations 

Strømsøe and Ingebrigtsen (6) suggest that the deviation between experiments and calculations 
can be explained by the neglect of direct shock and synergism between direct shock and 
fragment impact. They refer to results (2) giving critical distances for sympathetic detonation 
induced by direct shock. The distances are 16 cm for 81 mm calibre, 22 cm for 105 mm and 37 
cm for 175 mm. However, increasing the probability to 1 at these distances, only give small 
changes in the curves, see Figure 2.2. 
 
A significant effect of direct shock or a previous impact may be sensitisation or desensitisation 
of the explosive. The sensitivity is increased when the shock breaks up the charge and makes it 
more porous. On the other hand a shock can close up voids in the charge and reduce the 
sensitivity (3). If there are sensitisation effects they may give better correspondence to the 
experiments at small distances. 



 16  
 

 
   

 
The donor warhead is considered as a point source of fragments when the polar angle to the 
acceptor zones is determined. The error in this assumption is largest at short distances. 
 
The effect of more than one fragment impacting simultaneously is treated somewhat 
primitively in the model. It is possible to adjust the parameters, but Strømsøe and Ingebrigtsen 
(5) found that the contribution from multiple impacts was minor for the warheads they studied. 
 
The model is founded on Rindner’s formula (eq. (2.12)) from 1968, which is based on large-
scale experiments carried out at Picatinny Arsenal before 1960. Both the impact and the 
resulting initiation are comprised by the simple formula. More recent models (9), (10) for 
initiation of high explosives have a more physical basis and will probably be in better 
agreement with observed results. These models are similar in the way they describe the 
fragmentation, propagation of fragments, and fragment impact. The main difference is in the 
initiation criteria. Victor’s model (9) uses a failure diameter criterion, while Annereau (10) 
uses a constant Pn T-value criterion for the shock initiation. Both models include corrections 
for cylindrical geometry and diagonal effects that are not included in the current model. 
 
As regards the fragment mass distribution there are alternatives (11)-(16) to Mott’s formula. 
The influence on the model output from changing to another formula remains unexplored. 
Another point that may be considered is that rotating fragments probably cause smaller shocks 
(17). They penetrate the casing more easily, however, and can initiate deflagration. 

3 PROPAGATION OF DETONATION IN A STACK 

When the probability of detonation transfer between one donor and one acceptor is established, 
the next step is to find what will happen in a stack of ammunition, see for instance Figure 3.1. 
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Figure 3.1 155 mm projectiles awaiting delivery 

3.1 Simulation model 

A simple 3D discrete-event model for sympathetic detonation in a layer of cylinders 
representing grenades in an ammunition stack has been established. The stack is modelled as a 
single layer of ammunition. To improve the prediction of sympathetic detonation in a stack, 
periodic border conditions should be imposed. This means that the fragment distribution from 
other layers is modelled by allowing the single layer to be initiated from above by fragments 
thrown out below by the single layer. A typical stack configuration is shown in Figure 3.2. 
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Figure 3.2 A stack of ammunition 

 
The ammunition in the stack closest to the donor will screen out ammunition further away 
from the donor. At close stacking distances the screening will be total and only the closest 
ammunitions will be exposed. As the detonation propagates through the stack, the screening 
effect will diminish. The initial exposed area for different ammunitions is shown in Figure 3.3. 
 

 
Figure 3.3 Parameters used for calculating screening effects 
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First we consider the fragment trajectories projected on a plane normal to the grenade axes. 
After a detonation the fragments travel radially out from the donor centre. 
 
The donor is assigned coordinates (0,0), and the acceptor has coordinates (iA,jA). The size of 
the angle in which the donor fragments must be sent to strike the acceptor when there are no 
grenades between, is 
 

( )
0 2 2

12 2arcsin
2 1A Ai j k

α
⎛ ⎞
⎜=
⎜ ⎟+ +⎝ ⎠

⎟  (3.1) 

 
where 
 

2
dk
R

=  (3.2) 

 
In Figure 3.3 d/2R = 0,67, so iA = 2 and jA = 1 give 2α0 = 15.4°. 
 
In a stack grenades between the donor and the acceptor may reduce the angle that leads to hit. 
The angle at the left side of the line between the donor centre and the acceptor centre, where 
the fragments propagate unobstructed, is denoted α1. The angle at the right side is α2. The size 
of the angle of departure of the fragments hitting the acceptor thus becomes 
 

( ) (0 1 0 2min , min , )α α α α α= +  (3.3) 

 
α2 is calculated as 
 

( )
2

2 2 2
2 2 2

1arctan arctan arcsin
2 1

A

A

i i
j j i j k

α
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ + +⎝ ⎠

⎟  (3.4) 

 
where (i2, j2) are the coordinates of the grenade closest to the line between (0,0) and (iA, jA): 
 

( ) A
2 2 A

, A

, max
i j

i i ii j j j
j j j

⎛ ⎞
= ∈ < ∧⎜ ⎟

⎝ ⎠
≤  (3.5) 

 
With iA = 2 and jA = 1, (0,1) and (1,1) satisfy the conditions. Thus (i2, j2) = (1, 1) and α2 = 6.2°. 
 
For α1 the corresponding expressions are 
 

( )
A 1

1 2 2
A 1 1 1

1arctan arctan arcsin
2 1

j j
i i i j k

α
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ + +⎝ ⎠

⎟  (3.6) 
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( ) A
1 1 A

, A

, max
i j

j j ji j i i
i i i

⎛ ⎞= ∈ < ∧⎜ ⎟
⎝ ⎠

≤  (3.7) 

 
In our example only (1,0) satisfies the conditions, and α2 becomes 9.1°, yielding α = α0 + α1 = 
16.8°. 
 

3.2 Desensitisation effects 

Desensitisation effects are reported by several sources (18)-(21). Homogeneous explosives 
require stronger shocks to detonate than heterogeneous. Shock loads below initiation threshold 
may reduce heterogeneities. The data reported does not allow detailed modelling of the effect. 
In the current model a simplified representation of the effect has been tested. Desensitisation is 
assumed to take effect for stacking distances that are smaller than the fragmentation limit for 
the casing of the ammunition. 

3.3 Simulations 

Previously attempts have been made to analyse the statistics of the detonation process without 
addressing the temporal properties of the process (22). In our model we have simulated 
detonation in a stack using a discrete-event model. The process starts with detonation in one 
donor. For each step the probabilities of detonation transfer from donors to possible acceptors 
are calculated. The acceptors getting initiated are picked randomly by a Monte Carlo 
procedure. Detonated grenades are removed. 
 
The simulation code given in appendix A may briefly be described by the following pseudo-
code: 
 
Initiate the first donor ammunition 
Calculate the first hit probabilities 
While acceptors are being initiated 
     Find detonated ammunition and change the screening 
     Find desensitised ammunition 
     Acceptors that are not desensitised and not already detonated may be initiated 
     Calculate new hit probabilities 
     Select at random acceptors to be initiated the next cycle 
Compile statistics 
 
In Figure 3.4 the results are shown as the fraction of ammunition that has detonated. 
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Figure 3.4 Fraction of ammunition detonated as a function of the stacking distance 

(between casing surfaces) for 9 x 9 TNT filled 155 mm artillery grenades 

 
With typical stacking distances the resulting fraction detonated is found to be in the area 
between 10% and 30%. This would give considerable reductions in the effects from the 
explosion. A typical detonation pattern for a stacking distance of 25 mm is shown in Figure 
3.5. 
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Figure 3.5 Detonation pattern for a stacking distance of 25 mm 

 
Figure 3.5 is an example of results from the simulation model. It should be noted that the 
validity of the results depends heavily on the sympathetic detonation model including 
desensitisation effects. 

4 EXPERIMENTS 

To investigate detonation transfer between grenades, and particularly the sympathetic 
detonation model, a series of full-scale experiments were carried out (23). Witness plates, 
pressure transducers and video were used to document the results. 
 
In addition to calibration and demolition bursts 33 test explosions with 70 NM28 (155 mm) 
grenades were made. For each of the case distances 0 mm and 25 mm 10 tests were 
accomplished, and all of them gave detonation in the acceptor. Of the nine tests with 150 mm 
distance, eight lead to deflagration and one to partial detonation. One test was made with the 
acceptor at 86 mm distance, and this resulted in detonation. 345 mm distance was also tested 
once without any reaction. 
 
Moreover, two special tests were conducted. In the first the donor was initiated sideways as 
opposed to the others where the initiation was at the nose. The result was detonation in the 
acceptor. In addition there was a test to investigate the effect of deflagration in a donor 25 mm 
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from the acceptor. The deflagration was initiated by detonating a grenade 150 mm from the 
donor. There was no reaction in the acceptor as a result of the deflagration in the donor. 
 
Based on the experiments the probability of detonation transfer can be estimated to 1 at casing 
distances of 0 mm and 25 mm and to 0.1 at 150 mm. The casing distances of 0 mm, 25 mm 
and 150 mm correspond to centreline distances of 0.155 m, 0.180 m and 0.305 m. The 
uncertainty of these estimates can be expressed by their confidence interval. The ten tests at 
each of the three distances are a binomial test series. When the estimate is 1 the interval is one-
sided, otherwise it is two-sided. In Figure 4.1 the experimental estimates are compared with 
the probabilities calculated by the basic propagation model. 
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Figure 4.1 Experimental estimates with 90 % confidence intervals of probability of 

detonation transfer between two 155 mm warheads compared with values from 
the sympathetic detonation model 

 
The agreement with the experimental results is poor at the largest distance. As pointed out in 
section 2.3, the calculated probability decays too slowly. Figure 4.1 also shows that the 90 % 
confidence intervals become quite large when they are based on no more than 10 trials. 
 
Sensitisation effects could influence the results at distances where the direct shock wave 
reaches the donor before the fragments. The results indicate that desensitisation is not a 
dominating effect for this ammunition type. 



 24  
 

 
   

 
Critical distance for deflagration is considerably smaller than supposed. 
 
Because of the quite weak correlation between the experimental and theoretical results, the 
Management Group of the AMRISK upgrade project decided to terminate the efforts to 
implement a model for detonation transfer in the AMRISK code. 

5 PROPAGATION OF DETONATION BETWEEN STACKS 

In this chapter an outline of a procedure for calculating detonation transfer between stacks in 
an ammunition storage is drawn up. These considerations do not include the model for 
detonation in a stack. However it should be straightforward to combine the models at a later 
stage. 
 
 rs i j 
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d 
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3 
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1 

 

rij 

Figure 5.1 Two stacks of ammunition 

 
We consider two stacks of grenades where the distance between is rs. The vertical distance 
between the stack layers is d, and the grenade calibre is 2R. 
 
Here all the grenades in the left stack are supposed to detonate. We want to find the probability 
of detonation in the right stack or the probability of at least one detonation transfer from the 
left to the right. Only the grenades in the outer layers are considered. 
 
The fragment velocity is assumed constant and does not depend on the distance from the donor 
or the direction. Likewise the fragment masses are supposed to be uniformly distributed. The 
fraction of fragments causing initiation is then independent of direction and distance. The 
probability of detonation transfer depends on the number of fragments hitting the acceptor 
grenades, and this number is proportional to the solid angle defining the acceptor’s hit area. 
 
The fragments from a grenade are supposed to be sent from one point. When the problem is 
reduced to two dimensions, as in Figure 5.1, the number of fragments sent in the direction 
given by the angle φ is 
 

2
n N φ

π
= , (5.1) 
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where N is the number of fragments sent out in the observed plane and able to initiate a 
detonation, and 
 

2R
r

φ = , (5.2) 

 
when r is the distance between donor and acceptor. Hence the specific hit point on the acceptor 
is not considered. 
 
Again n is interpreted as the expectation value of a Poisson distribution. The probability of at 
least one fragment hit is then 
 

1
NR

rp e π
−

= − . (5.3) 
 
The value of N is not known. However if the value of p at a given distance is p0, i.e. p(r = r0) = 
p0, the expression may be written 
 

( )
0

01 1
r
rp p= − − . (5.4) 

 
In the experiments presented in chapter 4 a partly detonation was initiated in one of the ten 
experiments with the acceptor 15 cm from the donor. Accordingly the transfer probability at 
this distance is estimated to 0.1 with 90 % confidence interval [0.005 0.39]. 
 
The distance between two grenades at positions i and j can be written as 
 

2 2 2
s ( )ijr r i j d= + − . (5.5) 

 
When the probability of detonation transfer between those is denoted pij, the probability of no 
detonation transfer becomes 
 

( )

( ) ( )
0

22 2
s

1 1

0
1 1

1 1

1 1

n n

ij
i j

n n r

r i j d
i j

p p

p

= =

+ −
= =

= − −

= − −

∏∏

∏∏
 (5.6) 

 
If any of the grenades in the left stack does not detonate, the corresponding factors are left out 
(pij = 0). That is not assumed to be the case here. The results are as shown in Figure 5.2 for p0 
= 0.1. 
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Figure 5.2 Probability of detonation transfer with p0 = 0.1 as a function of stack distance 

for different number of layers 

 
Setting p0 to the lower limit of the confidence interval, 0.005, gives the results shown in Figure 
5.3. 
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Figure 5.3 Probability of detonation transfer with p0 = 0.005 as a function of stack distance 

for different number of layers 

Using the upper limit for p0, 0.394, the results become as Figure 5.4 shows. 
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Figure 5.4 Probability of detonation transfer with p0 = 0.394 as a function of stack distance 

for different number of layers 

 
The probability of p0 inside a given interval is the same as the probability of p being within the 
values calculated using the limit values of p0. With six layers and a stack distance of 1 m the 
probability of detonation transfer is estimated to 0.41, and the 90 % confidence interval is 
[0,02 0,92]. Hence, the uncertainty gets quite large when the estimates are based on such a few 
results. 
 
It can also be useful to calculate the distance giving a certain critical probability. Figure 5.5 
shows the distances giving probability 0.1 as a function of number of layers. In addition to 
values calculated with p0 = 0.1 the figure shows results using the limits of the chosen 
confidence interval for p0. 
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Figure 5.5 Stack distances giving 10 % probability of detonation transfer with p0 = 0.1, and 

with upper and lower limits corresponding to the 90 % confidence interval of p0 

 
The results show the need for more experiments to get better estimates for the probability of 
detonation transfer between munitions. An alternative to using experimental results is to make 
use of calculated values of (r0, p0) with an improved single donor/single acceptor model. 
 
Then this model for detonation propagation between stacks can be combined with the model 
for propagation in a stack. The resulting model can also be applied to several stacks. It is of 
course essential to validate the model against experiments. 
 
An obvious alternative to this procedure is to extend the discrete-event model for detonation 
propagation in a stack to propagation between stacks. Essentially this only requires an 
expansion of the considered geometry. It should be kept in mind that the experiments indicate 
(chapter 4) that at a fairly short distance deflagration is a very probable event, the propagation 
in time may therefore also be important. This is not considered in the model described in this 
chapter, in contrast to the discrete-event model. 
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6 CONCLUSIONS 

A model for predicting the amount of explosives in an ammunition storage contributing to a 
mass detonation remains uncompleted. Still the main elements are developed on which it is a 
manageable task to build up the overall model. 
 
The experiments carried out indicate that detonation transfer takes place only at short distances 
between the donor and the acceptor. The upper limit for the 155 mm grenades is approximately 
15 cm, and at this distance deflagration clearly seems to be a more probable outcome. The 
experiments also indicate that a deflagrating munition does not initiate its neighbours. Further 
experimental studies are needed to establish more certain estimates of the results after a 
detonation in a donor. 
 
A comparison of the model for sympathetic detonation with experiments shows that the model 
is not good enough. The shortcomings seem mainly due to the initiation model, which is very 
simple. Better models are described in the literature and should be implemented in the 
sympathetic detonation model. 
 
Another aspect of the model, which should be subject to further investigation, is sensitisation 
or desensitisation. A desensitisation model is included, but experiments do not confirm that 
this is in correspondence with real effects. At short distances between donor and acceptor an 
increase in sensitivity would give better correspondence with experiments. 
 
Models for detonation propagation in a stack and between stacks are developed. When a new 
model for detonation transfer between a single donor and acceptor has been verified 
experimentally, these models could be implemented. The model results will most likely be a 
probability distribution of the amount of explosives detonated in a number of stacks. The 
extension to an entire ammunition storage requires treatment of more ammunition types. This 
should be followed by experimental verification in full-scale. 
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APPENDIX 

A PROGRAM CODE FOR THE MODEL FOR DETONATION PROPAGATION IN A 
STACK 

 
function [SD]=sim_det(Nmax,d,xip,yip,tm,DTYPE,ATYPE); 
 
% 
% function [SD]=sim_det(Nmax,d,RY,xip,yip,tm,DTYPE,ATYPE); 
% 
% Example >>[SD]=sim_det(5,0.2,5,5,100e-6,155,155); 
% 
% 2*Nmax-1 is the number of ammunitions in each side of the stack 
% 
% d is the distance between the surfaces of the ammunitions in the stack 
% 
% d_space is the maximum centre to centre separation distance at which 
% desensitisation occurs 
% 
% Initiation point [xip,yip] 
% 
% Average time for detonation transfer tm 
% 
 
clear 
 
global BLENG LSONER BSONER RI RY MNULL KF k2 
 
% 
% Data to be preserved in between calls to fsolve to speed up the simulation 
 
global fsolve_ix fsolve_param fsolve_Mcrit 
 
% 
% Create *.avi file for later 
 
mov = avifile('sim_det.avi','COLORMAP',[0 0 0; 1 1 1; 0.8 0.8 0.8; 0.8 0.5 0.5]) 
 
% 
% Keep track of the run time 
 
C1=clock; 
 
% 
% Radial limit for fragment attack (fragmentation distance). 
 
d_space=0.26; 
 
% 
% Resolution for the cylindrical representation of acceptor ammunitions 
 
LSONER = 4; % number of length zones 
BSONER = 16; % number of width zones 
 
% gets other geometrical and explosive data 
[MK,VNULL] = data(DTYPE, ATYPE); 
 
% 
% Init fsolve data 
 
fsolve_ix=1; 
fsolve_param={}; 
fsolve_Mcrit(:,:,1)=ones(LSONER,BSONER); 
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% 
% Initiate fixed random series (or series seeded by the clock) 
 
rand('state',0); 
%rand('state',sum(100*clock)); 
 
% 
% Generate mesh grid for ammunition stack coordinates (NB: swap XY to allow 
% convention (x,y,z) to be used in matrix indexing. 
     
k = d/(2*RY); 
g = 2*RY+d; 
 
[Y,X]=meshgrid([-(Nmax-1).*g:g:(Nmax-1).*g],[-(Nmax-1).*g:g:(Nmax-1).*g]); 
xp=g.*(xip-Nmax); 
yp=g.*(yip-Nmax); 
X=X-xp; 
Y=Y-yp; 
GRID_D=sqrt(X.^2+Y.^2); 
DSENS=GRID_D<d_space; 
 
D=zeros(size(GRID_D)); 
D(xip,yip)=1; 
SAV(1).D=D; 
 
% 
% Graphics initiation 
 
clf; 
 
% 
% The outline of the ammunition-stack is plotted 
 
dd=(2*RY+d)/2; 
xy=(2*Nmax-1)*g/2; 
 
plot([-xy,xy],[-xy,-xy],'k-'); 
hold on 
plot([xy,xy],[-xy,xy],'k-'); 
plot([-xy,xy],[xy,xy],'k-'); 
plot([-xy,-xy],[-xy,xy],'k-'); 
 
axis equal; 
 
for ix=1:2*Nmax-1 
   for jx=1:2*Nmax-1 
      xp=g.*(ix-Nmax); 
      yp=g.*(jx-Nmax); 
      fillcircle(xp,yp,RY,[0.8 0.8 0.8]); 
   end  
end 
 
% 
% The initiation point is marked red 
 
xp=g.*(xip-Nmax); 
yp=g.*(yip-Nmax); 
fillcircle(xp,yp,RY,[0.8 0.5 0.5]); 
 
sx=1; 
 
% 
% The subsequent detonation points are found. A logical variable is generated 
% for all grid points, indicating whether the probability is above or 
% below the p(d) value (This is the Monte Carlo-step). 
 
disp(sprintf('iteration: %d  initiated at  : %d %d \n',sx,xip,yip)); 
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init_det=(vuln(GRID_D, matrix(X,Y,xip,yip,D,d,GRID_D), DTYPE, ATYPE))>rand(size(D)); 
 
% 
% Detonated points (D) and points at which detonation has been initiated (ID) 
% are set 
 
ID=and(init_det,~DSENS); 
 
% 
% Fragment path indications 
% 
 
linecircle(xp,yp,X+xp,Y+yp,ID); 
 
% 
% Desensitisation is initiated 
for ix=1:2*Nmax-1 
   for jx=1:2*Nmax-1 
      if ID(ix,jx) 
         [Y,X]=meshgrid([-(Nmax-1).*g:g:(Nmax-1).*g],[-(Nmax-1).*g:g:(Nmax-1).*g]); 
         xp=g.*(ix-Nmax); 
         yp=g.*(jx-Nmax); 
         X=X-xp; 
         Y=Y-yp; 
         GRID_D=sqrt(X.^2+Y.^2); 
         DSENS=or(DSENS,GRID_D<d_space); 
      end 
   end  
end 
 
% 
% Store a list with the number of new detonations each turn 
 
SD(1)=1; 
 
% 
% Initial configuration in movie file 
 
F = getframe(gca); 
mov = addframe(mov,F); 
 
% 
% Loop while new points are still initiated and while all ammunition is not 
% initiated 
 
while max(max(ID))~=0 & min(min(ID))~=1 
 
   NID=zeros(size(GRID_D)); 
   NDSENS=zeros(size(GRID_D)); 
    
   % Double loop through the mesh to find points that are detonated this turn 
   for ix=1:2*Nmax-1 
      for jx=1:2*Nmax-1 
          
          % Points that are detonated this turn may detonate nabours the next turn 
           
          if ID(ix,jx) 
             [Y,X]=meshgrid([-(Nmax-1).*g:g:(Nmax-1).*g],[-(Nmax-1).*g:g:(Nmax-
1).*g]); 
             xp=g.*(ix-Nmax); 
             yp=g.*(jx-Nmax); 
             X=X-xp; 
             Y=Y-yp; 
             GRID_D=sqrt(X.^2+Y.^2); 
             NDSENS=or(NDSENS,GRID_D<d_space); 
             disp(sprintf('iteration: %i  sub ammunition: %i %i fsolve_ix: %i 
\n',sx+1,ix,jx, fsolve_ix)); 
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        init_det=(vuln(GRID_D, matrix(X,Y,ix,jx,D,d,GRID_D), DTYPE, 
ATYPE))>rand(size(D)); 
        NID=and(or(NID,init_det),~or(NDSENS,DSENS)); 
        fillcircle(xp,yp,RY,[0.8 0.5 0.5]); 
       linecircle(xp,yp,X+xp,Y+yp,and(init_det,~or(NDSENS,DSENS))); 
              
             F = getframe(gca); 
             mov = addframe(mov,F); 
             
          else 
             disp(sprintf('iteration: %i  sub ammunition: %i %i \n',sx+1,ix,jx)); 
          end 
      end 
   end 
    
   % Overlay the points detonated on the mesh containing the points detonated so far 
   D=or(ID,D); 
     
   % Advance the points to be initiated the next turn to the currently initiated 
   ID=NID; 
       
   % Overlay the points desensitised on the mesh containing the points desensitised 
   % so far 
   DSENS=or(NDSENS,DSENS); 
 
   % Increment the turn counter and store the number of points detonated 
   sx=sx+1; 
   SAV(sx).D=D; 
   SD(sx)=sum(sum(D)); 
       
end 
 
SAV(sx+1).D=or(ID,D); 
 
% 
% Fill the last acceptors 
 
for ix=1:2*Nmax-1 
   for jx=1:2*Nmax-1 
       if ID(ix,jx) 
          [Y,X]=meshgrid([-(Nmax-1).*g:g:(Nmax-1).*g],[-(Nmax-1).*g:g:(Nmax-1).*g]); 
          xp=g.*(ix-Nmax); 
          yp=g.*(jx-Nmax); 
          X=X-xp; 
          Y=Y-yp; 
     fillcircle(xp,yp,RY,[0.8 0.5 0.5]); 
       end 
   end 
end 
 
% 
% Establish the time axis 
 
T=ones(size(SD)); 
T=tm*cumsum(T); 
 
% 
% Compute the run time 
 
C2=clock; 
 
CS=C2(6)-C1(6)+60.*(C2(6)<C1(6)); 
CM=C2(5)-C1(5)+60.*(C2(5)<C1(5))-(C2(6)<C1(6)); 
CH=C2(4)-C1(4)+24.*(C2(4)<C1(4))-(C2(5)<C1(5)); 
CD=C2(3)-C1(3)+30.*(C2(3)<C1(3))-(C2(4)<C1(4)); 
 
display(sprintf(' %i days : %i hours : %i minutes : %i seconds' ... 
        ,CD,CH,CM,round(CS))); 
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% 
% Save results 
 
save sim_det.mat 
 
% 
% Display the percentage detonated 
 
msg=sprintf('%d %%',round(100*sum(sum(D))/((2*Nmax-1).^2))); 
text(Nmax.*g+dd,0,msg); 
 
% 
% Add the last frame and close movie file 
 
F = getframe(gca); 
mov = addframe(mov,F); 
 
mov = close(mov); 
hold off 
 
pause; 
 
% 
% Plot the number of detonations each turn as a function of time 
 
plot(T,horzcat([1],diff(SD))./tm); 
 
% 
% Display the percentage detonated, and mark the initiation point green 
 
xlabel('t [s]'); 
ylabel('Detonations per unit time [Hz]'); 
 
F = getframe(gca); 
imwrite(frame2im(F),'sim_det_f.tif','tif'); 
 
pause; 
 
% 
% Plott the cumulative number of detonations as a function of time 
 
plot(T,SD./(2*Nmax-1).^2); 
xlabel('t [s]'); 
ylabel('Mass fraction detonated [-]'); 
 
F = getframe(gca); 
imwrite(frame2im(F),'sim_det_mf.tif','tif'); 
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function [ANGLE_EXP]=matrix(X,Y,xip,yip,DET,d,GRID_D) 
 
global BLENG LSONER BSONER RI RY MNULL KF k2 
 
g = 2*RY+d; 
IA=round(X./g); 
JA=round(Y./g); 
k = d/(2*RY); 
Nmax=(length(DET)+1)/2; 
 
% Compute the [-pi:pi] angles for the line between donor and acceptor 
ANGLE=atan2(Y,X); 
 
% Store necessary values inside a representation of the matrix that can be sorted 
% and manipulated (a meta matrix). 
iz=1; 
meta=[]; 
for ix=1:2*Nmax-1 
   for jx=1:2*Nmax-1 
      meta(iz,1)=ANGLE(ix,jx); 
      meta(iz,2)=GRID_D(ix,jx); 
      meta(iz,3)=DET(ix,jx); 
      meta(iz,4)=IA(ix,jx); 
      meta(iz,5)=JA(ix,jx); 
      iz=iz+1; 
   end 
end 
 
% Remove donor from the meta matrix 
meta=meta([meta(:,4)~=0 | meta(:,5)~=0],:); 
 
% Sort according to angle and distance 
[meta,imeta]=sortrows(meta,[1,2]); 
 
% Concatenate with self to account for periodicity 
meta_p=meta([meta(:,1) < 0],:); 
meta_p(:,1)=meta_p(:,1)+2*pi; 
if isempty(meta_p) 
   meta_p=meta([meta(:,1) > 0],:); 
   meta_p(:,1)=meta_p(:,1)+pi/2; 
end 
meta_n=meta([meta(:,1) >= 0],:); 
meta_n(:,1)=meta_n(:,1)-2*pi; 
meta=vertcat(meta_n, meta, meta_p); 
 
% Remove all detonated ammunition 
meta=meta([meta(:,3)~=1],:); 
 
% Prepare arrays to receive exposed angles from above and below 
Angle1=zeros(size(DET)); 
Angle2=zeros(size(DET)); 
 
% If there are undetonated sub ammunitions and screening is relevant 
 
if ~isempty(meta) 
 
% Check only between -pi and pi 
iz=1; 
 
while meta(iz,1)<-pi 
   iz=iz+1; 
end 
 
while meta(iz,1)<pi 
 
   % Keep current acceptor 
   cmeta=meta(iz,:); 
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   % Check above and below separately and keep acceptors with the same screening 
   % angle as the current acceptor for further investigation 
   screen_a=meta([meta(:,1)>cmeta(1)],:); 
   screen_b=meta([meta(:,1)<cmeta(1)],:); 
   screen_c=meta([meta(:,1)==cmeta(1)],:); 
   
   % Only those acceptors that are closer to the donor than the current acceptor can 
   % participate in the screen 
   screen_a=screen_a([screen_a(:,2)<cmeta(2)],:); 
   screen_b=screen_b([screen_b(:,2)<cmeta(2)],:); 
   screen_c=screen_c([screen_c(:,2)<cmeta(2)],:); 
     
   % Compute the unscreened angle 
   alpha_0=asin(1./(2.*sqrt(cmeta(4).^2+cmeta(5).^2).*(1+k))); 
 
   % Select the acceptors with angles that are closest to the current acceptor from 
   % above, compute their exposed angle, to be used for computing the screening 
   % angle, and generate logical index for selecting the dominant screening acceptor 
   % (the one that is closest to the donor). 
   alpha_a=screen_a([screen_a(:,1)==min(screen_a(:,1))],:); 
   betha_a=asin(1./(2.*sqrt(alpha_a(:,4).^2+alpha_a(:,5).^2).*(1+k))); 
   la=[alpha_a(:,2)==min(alpha_a(:,2))]; 
 
   % Repeat the procedure for acceptors that are closest from below 
   alpha_b=screen_b([screen_b(:,1)==max(screen_b(:,1))],:); 
   betha_b=asin(1./(2.*sqrt(alpha_b(:,4).^2+alpha_b(:,5).^2).*(1+k))); 
   lb=[alpha_b(:,2)==min(alpha_b(:,2))]; 
 
 
   % Depending om the initiation point the logical indexes may be empty. This 
   % depends on whether there are any acceptors above or below the donor. 
   if isempty(la) & isempty(lb) 
      alpha1=alpha_0; 
      alpha2=alpha_0; 
   elseif isempty(la) & ~isempty(lb) 
      alpha1=alpha_0; 
      alpha2=min(alpha_0, cmeta(1)-min(alpha_b(lb,1))-min(betha_b(lb,1))); 
   elseif isempty(lb) & ~isempty(la) 
      alpha1=min(alpha_0, -cmeta(1)-min(alpha_a(la,1))-min(betha_a(la,1))); 
      alpha2=alpha_0; 
   else 
 
      % The angle is equal to the minimum of the unscreened and the screening angle, 
      % and the screening angle is selected as the largest among the ones in the 
      % same direction 
      alpha1=min(alpha_0, -cmeta(1)+min(alpha_a(la,1))-min(betha_a(la,1))); 
      alpha2=min(alpha_0, cmeta(1)-min(alpha_b(lb,1))-min(betha_b(lb,1))); 
       
      % When there are acceptors closer to the donor than the current acceptor, the 
      % current will be screened out 
      alpha1=alpha1.*isempty(screen_c); 
      alpha2=alpha2.*isempty(screen_c); 
   end 
 
   % The exposed angles are inserted into the matrixes Angle1 and 2. 
    
   Angle1(meta(iz,4)+xip,meta(iz,5)+yip)=alpha1; 
   Angle2(meta(iz,4)+xip,meta(iz,5)+yip)=alpha2; 
 
   iz=iz+1; 
 
   %display(sprintf('matrix  %d %d %d %d \n',iz,meta(iz,1),length(meta),pi)); 
 
end 
 
ANGLE_EXP(:,:,1)=Angle1; 
ANGLE_EXP(:,:,2)=Angle2; 
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else 
 
     
alpha_0=asin(1./(2.*sqrt(cmeta(4).^2+cmeta(5).^2).*(1+k))); 
 
ANGLE_EXP(:,:,1)=alpha_0; 
ANGLE_EXP(:,:,2)=alpha_0; 
 
end 
    
% 
% 
SIGN_SCREEN=[sum(ANGLE_EXP,3)>0]; 
ANGLE_EXP(:,:,1)=ANGLE_EXP(:,:,1).*SIGN_SCREEN; 
ANGLE_EXP(:,:,2)=ANGLE_EXP(:,:,2).*SIGN_SCREEN; 
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function [MK,VNULL] = data(DTYPE,ATYPE) 
 
% The constants MK and VNULL depend on the properties of the grenades. 
% The parameters DTYPE and ATYPE can have the values 175, 155, 105 or 81 which 
% correspond to four grenade types. 
% The explosive properties are valid for TNT. 
 
global RI RY BLENG KF MNULL k2 
 
switch DTYPE 
 
case 175 % 175 mm artillery grenade 
 
 DRI = 0.067056; % donor inner radius (m) 
 DRY = 0.08128; % donor outer radius (m) 
 MNULL = 46689; % total fragment mass (grams) 
  
 G = 2370; % parameter for calculating VNULL (m/s), Gurney's energy 

% constant 
 B = 0.3; % explosive constant 
 EVEKT = 1630; % density 
 
case 155 % 155 mm artillery grenade 
 
 DRI = 0.060452; 
 DRY = 0.0762; 
 MNULL = 35154; 
 
 G = 2370; 
 B = 0.3; 
 EVEKT = 1630; 
 
case 105 % 105 mm artillery grenade 
 
 DRI = 0.041148; 
 DRY = 0.052070; 
 MNULL = 10965; 
 
 G = 2370; 
 B = 0.3; 
 EVEKT = 1630; 
 
case 81 % 81 mm mortar grenade 
 
 DRI = 0.031242; 
 DRY = 0.03683; 
 MNULL = 2092; 
 
 G = 2370; 
 B = 0.3; 
 EVEKT = 1630; 
 
end 
 
DONORDI = DRI * 2;  % donor diameter 
DONORTY = DRY - DRI; % donor case thickness 
 
T = DONORTY * 39.37; % donor case thickness (in) 
D = DONORDI * 39.37; % donor diameter (in) 
 
MK = B * T ^ (5/6) * D ^ (1/3) * (1 + T / D ); % fragment distribution parameter 
(oz^1/2) 
MK = MK * 5.32447; % (g^1/2) 
 
EKSPMAS = pi * DRI ^ 2 * BLENG * EVEKT; % explosive mass (kg) 
STALMAS = pi * ( DRY ^ 2 - DRI ^ 2 ) * BLENG * 7840; % case mass (kg) 
 
% VNULL = maximum fragment velocity (polar angle = 95) (m/s), Gurney formula 
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VNULL = G * (( EKSPMAS/STALMAS)/(1 + ( EKSPMAS / ( 2 * STALMAS )))) ^0.5; 
 
switch ATYPE 
 
case 175 % 175 mm artillery grenade 
 
 RI = 0.057404; % acceptor inner radius (m) 
 RY = 0.07493; % acceptor outer radius (m) 
 BLENG = 0.6477; % acceptor length (m) 
 
 KF = 8600000; % initiation criterion 
        k2 = 0.0874887; 
  
case 155 % 155 mm artillery grenade 
 
 RI = 0.051562; 
 RY = 0.06985; 
 BLENG = 0.43688; 
 
 KF = 8600000; 
        k2 = 0.0874887; 
 
case 105 % 105 mm artillery grenade 
 
 RI = 0.035814; 
 RY = 0.04826; 
 BLENG = 0.29972; 
 
 KF = 8600000; 
        k2 = 0.133428; 
 
case 81 % 81 mm mortar grenade 
 
 RI = 0.029464; 
 RY = 0.03556; 
 BLENG = 0.1829; 
 
 KF = 8600000; 
        k2 = 0.1998197; 
 
end 
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function P = vuln(AVST, ANGLE, DTYPE, ATYPE) 
 
% 
% function P = vuln(AVST, ANGLE, DTYPE, ATYPE) 
%  
% Vuln calculates probability of detonation transfer between donor of type DTYPE and 
% acceptor of type ATYPE 
% 
% AVST is the 2D matrix giving the distances from the donor to the acceptors 
% ANGLE is the 3D matrix giving the exposed angles for the acceptors. The  
%       angles are separated in two components due to asymetries in the 
%       screening effect. The dimensionality is ANGLE(:,:,1:2) where the last 
dimension 
% is used to indicate angle 1 or 2. 
% DTYPE is the donor ammunition type 
% ATYPE is the acceptor ammunition type 
% 
 
 
% 
% BLENG length of ammunition 
% LSONER number of length zones 
% BSONER number of width zones 
% RI, RY inner and outer radius 
% MNULL mass of the casing 
% KF explosive dependent sensitivity constant 
% k2 
 
global BLENG LSONER BSONER RI RY MNULL KF k2 
 
% 
% Data to be preserved in-between calls to fsolve to speed up the simulation 
 
global fsolve_ix fsolve_param fsolve_Mcrit 
 
% 
% Reset the probability of hit matrix 
 
P = zeros(size(AVST)); 
 
% 
% gets geometrical and explosive data 
 
[MK,VNULL] = data(DTYPE, ATYPE);    
 
% 
% Double loop to investigate 2D stack 
 
for i = 1:length(AVST) 
   for j = 1:size(AVST,2) 
 
      A = AVST(i,j); 
    
      % 
      % The hight array and the polar angles for the zones 
       
      X = BLENG / BSONER;      
      IANT = BSONER / 2; 
      C = [1:IANT]; 
      HOEYDE = X * (C - 1/2);    
      FIMERK = atan( HOEYDE / ( A - RY ) );    
      FIMERK = FIMERK * 180 / pi; 
      FIVINK = [90-fliplr(FIMERK) 90+FIMERK]; 
 
      % 
      % Setting fragment distribution parameters according to 
      % equ. 3.7 and Appendix A in FFI/RAPPORT-86/4002 
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      switch DTYPE 
      case {175, 155} 
         Y = 4.08E-04 * ( FIVINK.^2 - 8796.56 ); 
         a = 0.708; 
      case 105 
         Y = 1.523 * ( sqrt(FIVINK) - 9.30 ); 
         a = 1.18; 
      case 81 
         Y = 0.0724 * ( FIVINK - 84.41 ); 
         a = 1.513; 
      end 
      NORFUNK = a / (( 2 * pi )^ 0.5 ) * exp(- (Y.^2/2)); 
   
      % 
      % Velocity distribution according to equ. 3.3 and 3.4 in FFI/RAPPORT-86/4002 
       
      L = FIVINK > 95; 
      XVINK = L .* (190 - FIVINK) + ~L.*FIVINK; 
      FUNK = 0.6474 - 0.02636 * XVINK + 0.0006095 * XVINK.^2 - 3.08E-06 * XVINK.^3; 
  
      % 
      % Establish velocity and mass distributions  
       
      V0 = VNULL * FUNK; 
      M0 = MNULL * NORFUNK; 
    
      % 
      % Reset accumulators for probability of initiation by one large or two small 
fragments 
    
      PEN=[]; 
      PTO=[]; 
       
      % 
      % For all acceptors the exposed angle, as seen from the donor, has to be 
utilized 
      % separately to compute the probability of hit. This is due to asymetry. 
       
      for iangle=1:2 
    
 % 
 % If the acceptor is exposed the fraction of fragments hitting 
 % the acceptor zones is computed 
  
 if ANGLE(i,j,iangle)~=0 
     
    % 
    % The resolution in the width direction is determined by the exposed angle 
     
    DELTA = min(RY, A.*tan(ANGLE(i,j,iangle))) / LSONER; 
       Y = DELTA * [1:LSONER]'; 
       X = sqrt(RY^ 2 - Y.^2); 
       BETA = atan( Y ./ ( A - X ) ) * 180/pi; 
 
       % 
       % Angle interval array in degrees and angle in the width direction in 
radians 
        
       alfa1 = [BETA(1); BETA(2:LSONER) - BETA(1:LSONER-1)]; 
       vink = FIVINK * pi / 180; 
       [VINK, ALFA] = meshgrid(vink, alfa1); 
        
       F = BLENG * ALFA .* (sin(VINK).^2) ./ ( 360 * BSONER * ( A - RY ) * k2); 
 
       % 
       % Thickness of the wall a fragment must penetrate in acceptor 
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       Youter = Y - DELTA/2;   % height to the middle of the zones 
       Xouter = sqrt(RY^ 2 - Youter.^2);  % 
       alfa2 = atan( Youter ./ ( A - Xouter )); % angle to the zones in y-
direction 
       b = 2 * cos(alfa2) * A;   % calculation variable 
    
       SS = Youter./sin(alfa2);    % distance between donor 
centre and outside acceptor wall 
       % SS = (b - sqrt(b.^2 - 4 * (A^2 - RY^2)))/2; 
       SMERK = (b - sqrt(b.^2 - 4 * (A^2 - RI^2)))/2; % distance between donor 
centre and inside acceptor wall 
    
       r = b.^2 - 4 * (A^2 - RI^2) > 0; % condition for real thickness value 
       Tykk = r .* (SMERK - SS);  % penetration length 
       S = r .* (SS - RY);   % fragment track length 
    
       TYKK = Tykk*ones(1,BSONER); 
 
       [V0M,SM] = meshgrid(V0,S); 
 
    % 
    % Check if the calculation has been carried out before 
     
    lfound=logical(0); 
    if ~isempty(fsolve_param) 
       for ifound=1:fsolve_ix-1 
          if (fsolve_param(ifound).tykk==TYKK & fsolve_param(ifound).v0m==V0M & 
fsolve_param(ifound).sm==SM) 
             lfound=logical(1); 
             break; 
          end 
       end 
    end 
   
           % 
           % If calculation has been carried out with the same parameters 
previously, the previous result is used 
           % otherwise the calculation is carried out with the last Mcrit as the 
first approximation. 
            
           if lfound 
              Mcrit = fsolve_Mcrit(:,:,ifound); 
           else 
              fsolve_param(fsolve_ix).tykk=TYKK; 
              fsolve_param(fsolve_ix).v0m=V0M; 
              fsolve_param(fsolve_ix).sm=SM; 
              Mcrit = fsolve('vd',fsolve_Mcrit(:,:,max(1,fsolve_ix-
1)),optimset('TolX',1e-4,'Display','off'),TYKK,V0M,SM); 
              fsolve_Mcrit(:,:,fsolve_ix)=real(Mcrit); 
              fsolve_ix=fsolve_ix+1; 
           end 
      
       Mcrit = (TYKK > 0) .* real(Mcrit); 
 
       % Number of dangerous fragments 
       M0M = ones(LSONER,1)*M0; 
       N = M0M/(2*MK^2).*exp(-((Mcrit*1000).^0.5)/MK); % number of fragments 
with mass > Mcrit 
       NHALV = M0M/(2*MK^2).*exp(-((Mcrit*500).^0.5)/MK); % number of fragments 
with mass > Mcrit/2 
    
       L = Mcrit > 0; 
       SPLINT = L .* N .* F; % fraction of N that hit the zones 
       SPLHAL = L .* NHALV .* F; % fraction of NHALV that hit the zones 
    
       SPLSUM = sum(SPLINT,2); 
       SHASUM = sum(SPLHAL,2); 
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       % Probability of detonation transfer 
       KLADD = SPLHAL - SPLINT; 
       PMERK = (1 + KLADD) .* exp(-KLADD); % probability of max one hit of a 
fragment with mass between Mcrit/2 and Mcrit 
       PTO(iangle) = 1 - prod(prod(PMERK)); % probability of initiation by 
fragment witn mass between Mcrit/2 and Mcrit 
    
       SU = sum(SPLSUM); 
       PEN(iangle) = 1 - exp(-SU);  % probability of initiation by 
fragment with mass > Mcrit 
    else 
       PTO(iangle) = 0; 
       PEN(iangle) = 0; 
    end 
       
      end 
       
      P(i,j) = 1 - ( ( 1 - sum(PEN) ) .* ( 1 - sum(PTO)) ); % probability of 
initiation 
 
   end 
end 
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function DELV = vd(MASSE,T,V0M,SM) 
 
% Vdiff gives the difference between the critical velocity and the fragment impact 
velocity. 
 
global BLENG LSONER BSONER RI RY MNULL KF k2 
 
 
SPHAST = 
sqrt(0.008637*KF*exp(64.465*T./MASSE.^(1/3))./(MASSE.^(2/3).*(1+39.615*T./MASSE.^(1/
3)))); 
REHAST = V0M .* exp ( -0.00456 * SM ./ MASSE.^(1/3)); 
     
DELV = SPHAST - REHAST; 
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