
PHYSICAL REVIEW FLUIDS 5, 014305 (2020)

Particle-resolved simulations of shock-induced flow through particle
clouds at different Reynolds numbers

Andreas Nygård Osnes ,1,2,* Magnus Vartdal ,2,†

Marianne Gjestvold Omang ,3,4,‡ and Bjørn Anders Pettersson Reif1,§

1Department of Technology Systems, University of Oslo, P.O. Box 70 Kjeller, NO-2027 Kjeller, Norway
2Norwegian Defence Research Establishment, P.O. Box 25, NO-2027 Kjeller, Norway
3Norwegian Defence Estates Agency, P.O. Box 405 Sentrum, NO-0103 Oslo, Norway

4Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway

(Received 21 June 2019; published 27 January 2020)

This study investigates the Reynolds-number dependence of shock-induced flow through
stationary particle clouds at 10% volume fraction, using ensemble-averaged results from
three-dimensional particle-resolved large eddy simulations. The advantage of using large
eddy simulations to study this problem is that they capture the strong velocity shears
and flow separation caused by the no-slip condition at the particle surfaces. The shock
particle cloud interaction produces a reflected shock wave, whose strength increases with
decreasing particle Reynolds number. This results in important changes to the flow field
that enters the particle cloud. The results show an approximate proportionality between
the mean flow velocity and the flow fluctuation magnitudes. Maximum particle drag
forces are in excellent agreement with previous inviscid studies, and we complement
these results with statistics of time-averaged particle forces as well as the variation of
temporal oscillations. The results of this work provide a basis for development of improved
simplified dispersed flow models.
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I. INTRODUCTION

Interactions between shock waves and dense suspensions of particles occur in many engineering
applications and industrial processes. Some examples are liquid and solid fuel engines [1–3],
heterogeneous explosives [4], blast mitigation [5,6], and dust-explosion safety measures [7]. Natural
occurrences of shock-wave particle cloud interactions include volcanic eruptions [8] and supernovae
[9,10].

The process of shock-wave particle cloud interaction has recently received attention in both
experimental [11–13] and numerical studies [14–19]. Numerical studies have primarily utilized
two different approaches. One approach is to solve an averaged form of the compressible Navier-
Stokes equations. The model equations for the continuous phase are formulated to account for
the volume and density of the dispersed phase and are most commonly solved with Eulerian
descriptions. The dispersed phase can be represented with Eulerian or Lagrangian descriptions, and
these models are therefore referred to as Eulerian-Eulerian or Eulerian-Lagrangian dispersed flow
models. It is also possible to use Lagrangian descriptions for both phases, such as with smoothed
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particle hydrodynamics methods [20]. There are several problems with such simplified dispersed
flow models, such as nonhyperbolic equation sets and erroneous particle dispersal predictions, as
discussed in Lhuillier et al. [21] and Theofanous and Chang [19]. The second approach is to resolve
the particles on the computational grid. This approach circumvents the problems of the simplified
dispersed flow models, since the governing equations for the continuous phase are the standard
compressible flow equations. This is the method utilized in this study. Particle-resolved simulations
are valuable because they provide highly resolved data, in both space and time, which enables
a comprehensive analysis. The primary limitation of such simulations is that only small-scale
problems are computationally feasible.

There is a considerable body of work investigating shock-wave particle cloud interaction using
particle-resolved inviscid simulations [22–27]. The number of studies that have included viscous
effects in such simulations is, however, limited. Particle-resolved studies that have included viscous
effects are, e.g., the two-dimensional simulations of Das et al. [28], Hosseinzadeh-Nik et al. [29],
and Naiman and Knight [30] and the three-dimensional simulations of Osnes et al. [31] and Vartdal
and Osnes [32]. Viscous effects have not been analyzed directly in experimental studies either.
There is, however, a moderate range of particle Reynolds numbers, Rep, where experimental results
exist. Based on the shock-wave strength, the particle Reynolds numbers in Wagner et al. [13] are
approximately 2650−4200. The study of DeMauro et al. [11] spans Rep ≈ 900–5700, whereas
Theofanous et al. [12] investigated configurations in the range Rep ≈ 7000–70000. Since these
studies vary Reynolds number simultaneously with Mach number and ratio of layer thickness to
particle diameter, isolating the Reynolds-number effects is difficult.

The Reynolds number is a measure of the relative importance of inertial to viscous forces within
the flow. Viscosity has an effect on the flow field even at very high particle Reynolds numbers, as
long as the flow remains in the continuum regime. In particular, viscous effects are responsible for
flow separation behind particles. This is in fact an important phenomenon in shock-wave particle
cloud interaction, as will be shown in this study.

This study considers particle Reynolds numbers in the range 500–10 000. In incompressible,
single-particle flows, this particle Reynolds number range spans three different flow regimes, by
their definitions in Tiwari et al. [33]. These flow regimes are commonly labeled the vortex shedding
regime (270 � Rep � 800), the separating vortex regime (800 < Rep � 3000), and the subcritical
regime (3000 < Rep < 3.4×105). Sakamoto and Haniu [34] discuss the flow properties over this
range and draw the following conclusions. In the vortex shedding regime, laminar vortices are shed
periodically. Above Rep = 800, vortex tubes and vortex loops are formed in the vortex sheet and
can interact with the large-scale laminar vortices, introducing irregularity in the vortex shedding.
Above Rep = 3000, the vortex sheet becomes turbulent, and the turbulence intensity increases with
Rep. As a result of this, the Strouhal number, i.e., the nondimensional vortex shedding frequency,
decreases with Reynolds number. At Rep = 6000 and above, the vortex sheet is fully turbulent, and
the Strouhal number is approximately constant.

Compressible flows over isolated particles in this Reynolds number range have not received
nearly as much attention. Nagata et al. [35,36] investigated 50 � Rep � 1000. Notably, the drag
coefficient increases by more than a factor of two when the flow goes from subsonic to supersonic
in this Rep range. The Mach number, Ma, also has a stabilizing effect on the flow, and Nagata et al.
[36] found that at Ma = 2 the flow is stable to at least Rep = 1000.

It is not straightforward to apply these findings to shock-wave particle cloud interaction. Impor-
tantly, the incident flow becomes subsonic due to the generation of a planar, upstream-propagating,
reflected shock [11,13,37]. The strength of this shock determines which flow conditions the particles
are exposed to, and these flow conditions define a particle Reynolds number and a local Mach
number that is not known a priori. These parameters are likely more appropriate for classification
of the flow through the particle cloud after the initial shock-induced transient than the ones based
on flow properties behind the incident shock. Additionally, the flow Mach number increases with
downstream distance within the particle cloud [25,27,31] in a manner similar to that observed in
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Fanno flows [38]. The presence of nearby particles also affects the flow around each particle by
changing the direction of the incoming flow, exposing it to particle wakes, etc.

As will be shown in this study, the particle Reynolds number affects the level of particle-scale
fluctuations within the particle cloud. These fluctuations are defined here as the deviations from the
volume-averaged velocity and need not be turbulent fluctuations; a laminar particle wake generates
significant fluctuations. When the particle concentration increases, the impact of the wake-induced
fluctuations also increases. In particular, particle wakes start to comprise a significant part of the
volume within the cloud. This causes a problem for models based on volume averaging. The volume-
averaged velocity is shifted towards the average particle velocity, and as a result, it represents neither
the flow in immediate proximity of each particle nor the freer flow between them. In the current
work, we explore what this means for the fluctuation levels and particle drag coefficients.

The current study is concerned with how the particle Reynolds number affects shock-wave
particle cloud interaction. To this end, we perform particle-resolved, three-dimensional, viscous
simulations of the passage of a shock wave through a particle layer with volume fraction 0.1. The
particle positions are assumed to be fixed over the time frame considered. The particle Reynolds
numbers in this work are 500, 2000, 5000, and 10 000. For the higher Reynolds numbers, the
turbulent structures in the boundary layers around the particles and in their wakes are not fully
resolved. However, the unresolved scales are unlikely to introduce more than minor alterations to
the main results in this work.

We examine shock-wave attenuation and reflection, mean flow fields, and fluctuation statistics.
We also explore the Reynolds number dependence of forces acting on the fixed particles, including
maximal values, time-averages, and distributions of the drag coefficients. The results from the
current study are important as a baseline for development of closures for simplified dispersed flow
models, as well as the formulation of particle force models for shock-wave particle cloud interaction.

This paper is structured as follows. In Sec. II we describe the equations governing the flow
through the particle cloud, the mathematical framework used in the flow analysis, and the
computational method. Section III specifies the problem under investigation. The simulation results
are presented and discussed in Sec. IV, and Sec. V contains concluding remarks.

II. GOVERNING EQUATIONS AND COMPUTATIONAL APPROACH

The motion of the fluid is governed by the compressible Navier-Stokes equations, which can be
written

∂tρ + ∂k (ρuk ) = 0, (1)

∂t (ρui ) + ∂k (ρuiuk ) = −∂i p + ∂ jσi j, (2)

∂t (ρE ) + ∂k (ρEuk + puk ) = ∂ j (σi jui ) − ∂k (λ∂kT ), (3)

where ρ(x, t ) is the mass density, in which x is the spatial coordinate vector and t denotes time,
u(x, t ) is the velocity, p(x, t ) is the pressure, σi j (x, t ) = μ(∂ jui + ∂iu j − 2∂kukδi j/3) is the viscous
stress tensor, μ(x, t ) is the dynamic viscosity, E (x, t ) = ρe + 0.5ρukuk is the total energy per unit
volume, e(x, t ) is the internal energy per unit mass, λ(x, t ) is the thermal conductivity, and T (x, t )
is the temperature. Here ∂t denotes partial differentiation with respect to time, and ∂i, j,k denotes
partial differentiation with respect to space. The subscripts denote tensor components, and repeated
indices imply summation from 1 to 3. For convenience, we will also use u, v,w without subscripts to
denote the velocity components in the x, y, and z directions, respectively. Internal energy, pressure,
and density are related by the ideal gas equation of state, with γ = 1.4. Temperature and internal
energy are related by a constant specific heat capacity. We assume that the viscosity varies with
temperature as μ(x, t ) = μ0(T/T 0)0.76, where μ0 is the viscosity at T = T 0. We further relate the
thermal diffusivity to the viscosity through a constant Prandtl number of 0.7.
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The analysis in this work is based on the volume-averaged momentum conservation equations.
A discussion of volume averaging for flows containing particles can be found in, e.g., Crowe et al.
[39] and Schwarzkopf and Horwitz [40]. Since the configuration is statistically one-dimensional in
space, only the streamwise momentum equation is relevant. It can be expressed as

∂t (α〈ρ〉ũ1) + ∂x(α〈ρ〉ũ1ũ1 + α〈p〉) = ∂x(α〈σ 〉11) − ∂x(α〈ρ〉R̃11) + 1

V

∫
S

pn1 dS − 1

V

∫
S
σ1knk dS,

(4)
where α is the gas volume fraction, R̃i j (x, t ) = ũ′′

i u′′
j is the velocity fluctuation correlation tensor,

V denotes the averaging volume, n is the normal vector pointing into the continuous phase, and S
denotes the continuous phase boundary. Here 〈·〉 denotes a phase average, ·̃ denotes a Favre average,
and fluctuations from the Favre average are denoted ·′′. Furthermore, we denote the fluctuating
kinetic energy per unit volume, 〈ρ〉R̃ii/2, by k, and mean kinetic energy per unit volume by K . The
particle volume fraction is denoted by αp.

In the analysis of the computational results, the temporal evolution is discussed in terms of a
timescale related to the passage of the shock through the particle layer. This timescale is

τL = L/us, (5)

where us is the speed of the incident shock wave and L is the length of the particle cloud. A second
timescale we will use is related to the passage of the shock over a single particle,

τp = Dp/us, (6)

where Dp is the particle diameter. Furthermore, we use t0 to denote the time point when the shock
wave is at x = 0.

The particle drag coefficient will be used in the discussion of particle forces. It is

CD =
∫

Sp
(pn1 − σ1knk ) dS

0.5〈ρ〉ũ2
1Ap

, (7)

where Sp is the particle surface and Ap is the projected area of the particle in the flow direction.

Computational method

The present simulations are conducted using the compressible flow solver “CharLES” [41],
developed by Cascade Technologies. The compressible, filtered, Navier-Stokes equations are solved
on an unstructured Voronoi-based grid [42]. CharLES is a finite-volume large-eddy simulation code.
It computes fluxes between control volumes based on an entropy-stable modified Lax-Friedrich flux.
A more detailed discussion of the entropy-stable scheme can be found in Masquelet et al. [43]. A
third-order explicit Runge-Kutta scheme is applied to advance the solution in time. The unresolved
scales are modeled with the Vreman model [44].

III. SETUP AND COMPUTATIONAL GRID

We consider the interaction between a planar shock wave and a cloud of particles at different Rep.
Figure 1 shows a sketch of the computational setup. The computational domain is −0.9L � x � 2L,
0 � y � Ly, and 0 � z � Ly, where Ly = 8 3

√
4Dp. The particles are located within 0 � x � L,

and the particle volume fraction is 0.1. In all configurations, the length of the particle layer and
the particle diameter are related by L = 12 3

√
16Dp. The particles are drawn randomly within this

range, and we require that no particle boundary extends outside 0 � x � L. The minimum distance
between each particle is set to roughly 0.05Dp. The shock-wave position is initially −0.1L and is
indicated by the thick line in the figure. Its direction of propagation is from left to right.

The computational grid is an unstructured Voronoi-based grid, which is body fitted to the
particles. We use three different refinement levels, as indicated by the Roman numerals in Fig. 1.
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FIG. 1. Sketch of the computational setup and domain. The particle layer is located between 0 � x � L,
where the particle volume fraction is αp = 0.1. In (a), the thick solid line indicates the initial position of
the shock wave, and the arrow shows its propagation direction. The Roman numerals indicate the level of
grid refinement, where the control volumes in region I are eight times larger than those in region II, and
those in region II are again eight times larger than those in region III (by volume). The dashed lines indicate
the boundaries between the refinement levels. Note that the vertical axis has been stretched for illustration
purposes. In (b) a three-dimensional view is shown, where the particle positions correspond to those used in
one of the simulations.

Refinement level I has control volumes eight times larger (by volume) than level II, and similarly
for levels II and III. The length scale of the smallest control volumes (level III) is roughly 0.036Dp.
The level III regions extend approximately Dp/2 out from each particle surface. Due to the high
particle volume fraction most of the region 0 � x � L contains level III control volumes. The total
number of control volumes is roughly 108. The control volume sizes are similar to those used in
Osnes et al. [31,45]. Those studies investigated grid sensitivity based on the grid convergence of
the particle forces, resolution of viscous shear length scales, and convergence of spanwise velocity
fluctuation correlations.

This study investigates the effect of particle Reynolds number over the range 500–10 000 on the
shock-induced flow through particle clouds. Specifically, we consider particle Reynolds numbers
500, 2000, 5000, and 10 000. The particle Reynolds number is defined as

Rep = ρuDp

μ
. (8)

Throughout this paper, the Reynolds number is based on flow properties behind the incident shock
wave, unless otherwise specified. The subscript “IS” will be used to denote postshock values for the
other flow variables. The Reynolds number is systematically varied by altering the viscosity, rather
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than varying the particle diameter or the shock-wave strength. This enables the use of the same
computational grid for different Reynolds numbers.

The initial conditions consist of two homogeneous spatial regions, which are separated by the
shock wave at x = −0.1L. The preshock conditions are chosen to correspond to air at atmospheric
conditions: ρ0 = 1.2048 kg/m3, u0 = 0 m/s, and p0 = 1.01325×105 Pa. The viscosity μ0, is varied
to obtain the desired particle Reynolds number. At Rep = 5000, this corresponds approximately
to the viscosity of air at standard atmospheric conditions (μ0 ≈ 1.8×10−5 kg/ms). The Mach
number of the incident shock wave is 2.6, and behind it is a homogeneous flow with the postshock
state, which is ρIS = 4.16 kg/m3, uIS = 633 m/s, and pIS = 782 kPa. At the x = −0.9L boundary,
we apply constant inflow conditions, corresponding to the postshock state. At x = 2L, we use a
zero-gradient outlet. The spanwise boundaries are periodic. The spanwise domain lengths are both
roughly 13 particle diameters, and this should be sufficient to hinder any periodic artifacts. The
simulations are run for a total time of 3.75τL .

Flow field statistics are obtained by averaging flow variables over predetermined volumes. In the
current work, we utilize volumes spanning the computational domain in the y and z directions, with
a streamwise length of L/60 ≈ 0.5Dp.

A large number of particles is required in the spanwise directions to achieve well-resolved
statistics of the time-dependent flow field. Since only a limited number of particles is feasible to
include in a single simulation, we perform an ensemble of simulations at each Rep. The gas-phase
variables are presented in terms of volume-averaged quantities. The volume averages from the
simulations are averaged over the ensemble of simulations, so that, for example,

〈ρ〉(x, t ) = 1

Nsim

Nsim∑
i=0

1

V i(x)

Ni
CV(x)∑
j=0

ρ j (t )V j
CV, (9)

where Nsim is the number of simulations (10 in this study), NCV is the number of control volumes
within the averaging volume V (x), and superscripts denote quantities belonging to simulation i or
control volume j. Fluctuation correlations are computed implicitly as the difference between the
products of the averages and the averages of the products. Thus, the velocity correlations are

ũ′′
i u′′

j = ũiu j − ũiũ j . (10)

We consider only statistics up to second-order moments, and we therefore use the convergence
of the fluctuating kinetic energy, k, to estimate the required ensemble size. We find that the tenth
simulation changes the statistics of k by about 0.5% on average. We therefore consider an ensemble
of 10 simulations at each Rep sufficient for the current analysis.

IV. RESULTS

This section presents the simulation results. Section IV A provides a brief overview of the flow
phenomena occurring when the shock wave passes through and interacts with the particle cloud.
Section IV B examines the attenuation of the main shock wave and the strength of the reflected
shock wave. Section IV C discusses mean fields and fluctuations in the gas phase. Finally, Sec. IV D
presents particle drag coefficient trends and distributions.

A. Flow description

The incident shock impacts on the particle cloud at time t0 and starts propagating through it. Each
particle induces a shock-wave reflection, and at the upstream edge, these bow shocks coalesce into
a planar reflected shock wave. The primary shock wave is continuously weakened as it propagates
through the particle cloud. However, the length of the particle layer is insufficient to completely
attenuate the shock wave, and therefore a transmitted shock emerges from the downstream cloud
edge. The shock-induced flow is strongly unsteady, as can be seen in Fig. 2, which shows contours
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FIG. 2. Vorticity magnitude (top half of each contour plot) and local Mach number (bottom half) in a cut
plane at z = Ly/2 for different Reynolds numbers at (t − t0)/τL ≈ 0.83. The highlighted contour is Ma = 1
and separates regions of subsonic and supersonic flow. Note that the vorticity contours have been capped at√

ωiωiDp/us = 10. The vorticity magnitude in the small black regions exceeds this level, and the maximal
value increases with Rep. Only a part of the spanwise domain is shown.

of vorticity magnitude,
√

ωiωi, and local Mach number, at (t − t0)/τL ≈ 0.83 for the different
Reynolds numbers. Behind the primary shock wave, there are large regions of supersonic flow
between the particles. The velocity within the cloud decays over time, and the local supersonic
regions become smaller. At high Reynolds number, however, the flow acceleration around the
particles is strong enough to sustain localized supersonic flow regions, even at late times.

Particle wakes develop quickly after each particle interacts with the shock wave. When the shock
wave has propagated a few particle diameters downstream of each particle, the particle wake can
clearly be identified in both the vorticity and Mach number fields. Within the wake, the flow velocity
is low and the flow is subsonic. The wakes are longer and more coherent at Rep = 500 than they
are at the higher Reynolds numbers. In addition, the wakes are delineated by levels of high vorticity
for Rep = 500. At higher Reynolds numbers, vorticity is still present within these shear layers, but
the wakes are not as clearly delineated by vorticity because the vorticity levels are relatively high
throughout large parts of the cloud. Vorticity is initially generated by baroclinic torque behind the
shock wave, and later in the boundary layers around, and in the wakes of, the particles. Subsequently,
vorticity is amplified by vortex stretching, and this term is about a magnitude larger than both
baroclinic torque and viscous vorticity production. The high levels of vorticity indicate that the
flow becomes more chaotic, or turbulent, with higher Reynolds numbers, but the largest velocity
differences are still caused by the flow separation behind each particle, as indicated by the Mach
number contours in Fig. 2. This motivates a detailed analysis of the flow fluctuations, in order to
identify which microscale flow effects are dynamically important for shock-wave particle cloud
interaction.
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FIG. 3. (a) Main shock and (b) reflected shock position as a function of time for different Rep. As opposed
to the reflected shock, the variation in main shock position with Rep is small and is therefore plotted as the
deviation from the trajectory of a hypothetical Ma = 2.6 shock wave with no attenuation.

B. Shock-wave attenuation and reflection

Figure 3 shows the main shock position as a function of time. The results are plotted as the
deviation from the hypothetical trajectory of a shock wave with constant Mach number 2.6. This
deviation is due to shock-wave attenuation caused by the presence of the particle cloud. Both shock-
wave reflection and particle drag contribute to the attenuation. The arrival time at a given location
is delayed for lower Reynolds numbers.

If there is to be a considerable effect of Rep on the shock-wave attenuation, the impulse from
viscous forces must be non-negligible on a timescale comparable to the passage of the shock wave
over a particle. Viscous forces are caused by the no-slip condition at the particle surface, which sets
up a strong velocity gradient around the particle. An estimation of the importance of viscous forces
on the shock-wave attenuation can be obtained by comparing viscous and pressure forces acting on
the particles during the time when the shock interacts with them. The average ratio of the viscous
to pressure forces on the particles during the shock-particle interaction is given in Table I. It can be
seen that for the lower Reynolds numbers, the viscous forces are appreciable even during the initial
phase.

The Mach number of the transmitted shock wave, based on the average transmitted shock-wave
speed over L � x � 2L, is also given in Table I. The average transmitted shock speed is based on
the shock arrival time at x = L and x = 2L, where the arrival time is defined as the first instant
where the volume-averaged pressure exceeds 2 bar. The Mach number is reduced by 4.7% as
Rep decreases from 10 000 to 500. For the particle layer lengths examined here, the additional

TABLE I. Average ratio of viscous to pressure forces acting on the particles (force ratio) over the time
frame where the shock wave interacts with each particle, the Mach numbers of the transmitted (MaTS) and the
reflected (MaRS) shock waves, the particle Reynolds number based on the flow state behind the reflected shock
wave (Rep,RS), and the local Mach number of the flow behind the reflected shock wave (Ma∗).

Rep Force ratio MaTS MaRS Rep,RS Ma∗

500 0.144 2.069 1.579 361 0.380
2000 0.066 2.130 1.561 1488 0.400
5000 0.038 2.158 1.546 3811 0.417
10 000 0.026 2.171 1.534 7763 0.430
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shock-wave attenuation by viscous effects is only moderate, but it might become significant if longer
layers are considered.

The position of the reflected shock wave as a function of time is also shown in Fig. 3. The
location of the reflected shock wave is identified from the volume-averaged pressure and defined as
the location where the pressure is the average of the upstream pressure and the pressure behind the
reflected shock. Since the incident flow is supersonic, the reflected shock wave moves slowly in this
reference frame. Its strength increases with decreasing Reynolds number. This is expected, since the
magnitude of the particle drag increases with reduced Reynolds number. There is a larger resistance
for the flow to pass through the particle layer due to the viscous forces, which builds up pressure in
the flow. Therefore the reflected shock strength must increase. Note that the strength of the reflected
shock increases with time.

The average Mach number of the reflected shock is given in Table I. It is based on the average
speed of the reflected shock wave over the time frame where it is located upstream of x = −0.1L.
The lower Reynolds numbers have higher reflected shock Mach numbers, and the difference
between Rep = 10 000 and Rep = 500 is 2.9%.

Table I also shows the particle Reynolds number and the local Mach number of the flow based
on the properties behind the reflected shock, assuming a constant reflected shock Mach number.
For classification of the late-time flow field in the particle cloud, these two parameters are more
appropriate than the Mach number behind the incident shock wave and Rep based on ρIS, uIS, and
μIS. The change in Reynolds number is moderate and does not imply any qualitative changes in the
flow, based on the characterization in single-particle studies. The change in local Mach number is
more important because the flow behind the incident shock is supersonic, while the flow behind the
reflected shock is subsonic with a relatively low Mach number.

C. Flow fields and fluctuations

Figure 4 shows the normalized streamwise velocity, pressure, and fluctuating kinetic energy at
three different time points. The fluctuating kinetic energy is normalized by the inflow kinetic energy.
Similarly, Fig. 5 shows the Mach number, particle Reynolds number, and normalized average
streamwise particle forces,

Fp = 1

0.5Np(x)(ρu2)ISAp

Np(x)∑
j=0

∫
S j

(pn1 − σ1knk ) dS, (11)

where Np(x) is the number of particles within the control volume centered at x, and Sj is the surface
of particle j. Figure 5 also shows the ratio of viscous particle forces to total particle forces.

The fluctuating kinetic energy is the only flow quantity in Figs. 4 and 5 that has a nonmonotone
dependence on Rep. The three highest Reynolds numbers have very similar fluctuating kinetic
energies at all times, but at the latest time point Rep = 2000 attains slightly higher fluctuation levels
than Rep = 5000 and Rep = 10 000 in most of the domain. The level of fluctuating kinetic energy
was also considered in inviscid flows by Mehta et al. [22]. Comparison of the current results to
the results reported by Mehta et al. [22] indicates that the fluctuations are higher in viscous than
inviscid flows, which is a result caused by the no-slip condition at the particle surface and the flow
separation. The fluctuation levels are in fact comparable to the levels in the inviscid simulations
at αp = 0.20 and Ma = 1.6 by Mehta et al. [22], i.e. at twice the volume fraction of the current
simulations.

The Mach number plots reveal that the flow becomes sonic just upstream of the downstream
particle cloud edge. Similar observations have been made in other studies [19,27,31], and this
behavior is very similar to that found in Fanno flows. As discussed in Emanuel and Jones [38], the
Mach number increases with downstream distance in Fanno flows due to the decreasing pressure. If
the duct is sufficiently long, the flow chokes at the downstream exit, just like we observe here.
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FIG. 4. Streamwise velocity, pressure, and fluctuating kinetic energy at three times for different Rep. The
first column shows a time where the shock wave is still inside the particle layer, the second where it has recently
exited the layer, and the final column is close to the end of the simulation.

In Fig. 5 it can be seen that the particle forces increase drastically at the downstream layer
edge for the two latest time points shown. The Reynolds number increases slightly as well but
is insufficient for explaining the increase in particle forces. Instead, the higher particle forces are
due to the increased Mach number.

The ratio of viscous forces and total forces on the particles increases when Rep decreases. This
trend has also been reported for single-particle studies [46]. It can be seen that the ratio decreases
in the region where the Mach number increases. Nagata et al. [35] reported that the pressure drag
coefficient increases significantly with Mach number, while the viscous drag coefficient has a more
modest increase. The current results agree with this finding, and it explains the reason for the dip
in force ratio. The results for Rep = 500, which have local Reynolds numbers just below 250 at
(t − t0)/τL = 3.5, are also in good quantitative agreement with the results of Nagata et al. [35].
Linear interpolation of the ratio of viscous and pressure forces from their simulations at Rep = 250
predicts that the ratio should drop from 0.38 at Ma = 0.5 to 0.29 at Ma = 1.0, which is quite similar
to the drop in the current simulations; cf. Fig. 5.

An important part of the high speed flow through particle clouds is the particle-scale fluctuations.
These are commonly neglected in Eulerian-Lagrangian and Eulerian-Eulerian simulations of shock-
wave particle cloud interactions; see, e.g., Houim and Oran [14], Ling et al. [16], Sugiyama et al.
[18], and Theofanous and Chang [19]. The gradient of the streamwise velocity fluctuations is an
integral part of the momentum balance around the particle cloud edges. Osnes et al. [31] showed that
at the upstream particle cloud edge, the streamwise Reynolds stress gradient is of equal importance
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FIG. 5. Mach number, local particle Reynolds number, average normalized particle forces, and ratio of
viscous (Fp,μ) and total particle forces at three time points for different Rep. The first column shows a time
point where the shock wave is still inside the particle layer, the second where it has recently exited the layer,
and the final column close to the end of the simulation.

as the particle forces after the initial shock-related transient. As can be seen in Fig. 4, the fluctuating
kinetic energy has a very sharp gradient, and its magnitude is considerable, especially at early times.
Figure 6 shows the ratio of fluctuating kinetic energy to total kinetic energy, integrated over the
interior of the particle cloud, as a function of time. It can be seen that the ratio exceeds 0.25 for all
Reynolds numbers around (t − t0)/τL = 0.5, i.e., when the shock wave is slightly less than halfway
through the particle cloud. When the shock wave exits the cloud, the ratio decays slowly over time
but remains above 0.2 for all Rep over the time frame considered here. The trend with Rep is not
monotone, which is also the case for the fluctuating kinetic energy; cf. Fig. 4.

Regele et al. [25] showed that the pressure field computed in a one-dimensional Eulerian-
Lagrangian simulation of shock-wave particle cloud interaction corresponded to the sum of the
volume-averaged pressure and the Reynolds stress in their two-dimensional simulations. The
overestimation of the pressure in their one-dimensional simulations is therefore the result of
neglecting the energy deposited in velocity fluctuations. For the current simulations, the ratio k/p
takes values up to 0.25 when the shock wave is inside the particle cloud. It remains non-negligible
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FIG. 6. Ratio of fluctuating to total kinetic energy integrated over the particle layer, as a function of time,
for different Reynolds numbers.

even at late times, where the value is between 0.02 and 0.14 within the particle cloud. The ratio is
lower for Rep = 500 than the other Reynolds numbers, which are quite similar.

The fluctuation levels at any location within the particle cloud are highly transient when, and
for a while after, the shock passes through this location. Figures 7 to 9 show the streamwise
velocity fluctuations over time as well as velocity contours at selected time points at streamwise
locations x/L = 0.1 (Fig. 7), x/L = 0.5 (Fig. 8), and x/L = 0.95 (Fig. 9). The fluctuation level
rises sharply after the shock passes, reaches a peak value after a delay of about 3τp, before decaying

FIG. 7. Streamwise velocity fluctuation correlations over time x/L = 0.1, and streamwise velocity con-
tours for Rep = 2000 at four time points. Grayscale contour levels between −0.7uIS (black) and 1.6uIS (white)
in (�), −0.9uIS (black) and 1.6uIS (white) in (�), −0.5uIS (black) and 1.3uIS (white) in (�), and between
−0.3uIS (black) and 0.8uIS (white) in (�). The solid black lines in the contour plots mark Ma = 1. The minor
ticks denote the streamwise extent of the averaging volume centered at x/L = 0.1.
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FIG. 8. Streamwise velocity fluctuation correlations over time x/L = 0.5, and streamwise velocity con-
tours for Rep = 2000 at four time points. Grayscale contour levels between −0.8uIS (black) and 1.6uIS (white)
in (�), −0.8uIS (black) and 1.8uIS (white) in (�), −0.4uIS (black) and 1.25uIS (white) in (�), and between
−0.35uIS (black) and 1.85uIS (white) in (�). The solid black lines in the contour plots mark Ma = 1. The
minor ticks denote the streamwise extent of the averaging volume centered at x/L = 0.5.

towards a quasisteady fluctuation level at late times. The peak value coincides with the breakdown
of supersonic flow pockets between the particles, as can be seen in the contour plots of the flow
state at the time of the peak. In the averaging volume that contains the transition from subsonic
to supersonic flow, the flow accelerates both in front of and behind each particle due to the area
contraction and expansion. The flow acceleration itself creates large velocity differences within
the averaging volume, as well as amplifying the difference between the velocity in the separated
flow behind the particle and that around it. Prior to the peak, most of the flow is supersonic, with
only small subsonic regions behind the particles. After the peak, the flow becomes predominantly
subsonic at locations within the cloud, while it remains supersonic at late times downstream of the
cloud as seen in Fig. 9.

Comparison of Figs. 7–9 reveals that the peak fluctuation level is higher in the central region of
the cloud than close to the edges. At x/L = 0.95, the difference between the peak fluctuation level
and the later quasisteady value is much smaller, due to the elevated level of the latter. This can be
attributed to the strong flow acceleration over the downstream cloud, which in fact becomes stronger
over time; cf. Fig. 4.

The very sharp first peak in the velocity fluctuation level occurs when the shock wave passes
through the averaging volume. This peak is reduced with downstream distance, consistent with
the attenuation of the shock wave as is passes through the cloud. The exact peak value might
not be well resolved since it is very sensitive to the sampling time. Overall, the temporal
variation of the fluctuation level is similar at all Reynolds numbers, but the levels are highest at
Rep = 2000.

Currently, there are very few models for flow field fluctuations that have been developed
specifically for shock-wave particle cloud interaction. It is therefore useful to accurately identify
flow phenomena that contribute to the fluctuation correlations, so that model development can be
based on a fundamental understanding of the flow. In the current work, we consider only the velocity
fluctuations. Figure 10 shows the contribution to the Reynolds stress by velocity fluctuations of
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FIG. 9. Streamwise velocity fluctuation correlations over time at x/L = 0.95, and streamwise velocity
contours for Rep = 2000 at four time points. Grayscale contour levels between −0.6uIS (black) and 1.5uIS

(white) in (�), −0.6uIS (black) and 1.4uIS (white) in (�), −0.5uIS (black) and 1.7uIS (white) in (�), and
between −0.5uIS (black) and 1.7uIS (white) in (�). The solid black lines in the contour plots mark Ma = 1.
The minor ticks denote the streamwise extent of the averaging volume centered at x/L = 0.95.

different magnitudes at t = 3.75τL . The figure shows the function f , which is defined by

〈ρ〉R̃11 =
∫ ∞

−∞
f (u′′) du′′. (12)

f is a measure of the importance of velocity fluctuations of a given amplitude with regard to the
velocity fluctuation correlations. For Rep = 500, the peak in f is very sharp, and the contribution
from negative fluctuations below the peak is negligible. As the Reynolds number increases, the peak
decreases. It moves towards more negative fluctuations because the mean flow velocity increases.
The peak also broadens, and the contribution from strong negative fluctuations increases. The
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FIG. 10. Contribution to (a) the streamwise Reynolds stress and (b) the spanwise Reynolds stresses by
different velocity fluctuations for different Reynolds numbers. Data for 0.25 � x/L � 0.75 at t = 3.75τL .
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FIG. 11. Contours of f at t = 3.75τL for one realization at each Rep. The color indicates the velocity
fluctuation, and f is used to set the color saturation, as indicated by the curve in each colorbar located below
the plot. Thus areas with high color saturation have the highest contribution to the Reynolds stress.

total contribution by negative fluctuations increases with Reynolds number, comprising 62.8%,
67.0%, 68.7%, and 69.8% for Reynolds numbers 500, 2000, 5000, and 10 000, respectively. The
contribution from positive fluctuations can be seen to have a nonmonotone dependence on Reynolds
number over the range studied here. The peak value is very similar for the two lowest Reynolds
numbers. When the Reynolds number is increased further, the peak value decreases to 90% and
78% of the Rep = 2000 peak for Rep = 5000 and 10 000, respectively. Similarly to the negative
fluctuations, the curve broadens, but the effect is small.

A similar plot of f was used in Osnes et al. [31] to argue that the bulk contribution to the
Reynolds stress was due to the circulation region behind each particle. Those results were for a
flow configuration very similar to the Rep = 5000 case considered here. Figure 11 shows contours
of f in space and confirms that the circulation regions are those with the highest contributions
to the streamwise Reynolds stress. The flow in the circulation region has an average velocity of
zero and therefore differs drastically from the mean flow speed. This implies that the volume of
the circulation region is an important parameter for determining the streamwise Reynolds stress
magnitude. It is also evident that most of the flow volume contains velocities that are higher than
the volume-averaged velocity. This effect arises because the separation regions shift the average
velocity away from the velocity of the flow between the particles. At Rep � 2000 there are very few
areas within the particle cloud that have a velocity equal to the volume-averaged velocity.

Figure 10 also shows the contribution to the spanwise Reynolds stresses by spanwise velocity
fluctuations of different magnitudes. The function g(|w′′|) is the analog to f (u′′) for spanwise
fluctuations and is averaged over the two spanwise velocity components. Additionally, since g(|w′′|)
should be symmetric around w′′ = 0, we plot the contribution as a function of the fluctuation
magnitude. The shapes of the curves are quite similar for all Reynolds numbers, but the magnitude
is significantly lower for Rep = 500. The location of the peak value is at |w′′|/uIS = 0.09 for
Rep = 500 and around |w′′|/uIS = 0.15 for the other Reynolds numbers. The trend with Rep is
nonmonotone, and the highest magnitude is obtained at Rep = 2000. This is similar to the trend for
positive streamwise fluctuations, but the reduction at higher Rep is less significant for the spanwise
fluctuations.

The areas that contribute most to the spanwise Reynolds stress components are shown in Fig. 12.
It can be seen that at Rep = 500, the fluctuations are located in large coherent regions. These are
significantly larger than a single particle, which indicates that it is the interparticle spacing rather
than the particle size that is important for the spanwise Reynolds stress components. The same
phenomenon is seen for the higher Reynolds numbers but to a lesser degree. At Rep = 10 000,
the scale of the coherent regions appears only slightly larger than a single particle. The regions

014305-15



OSNES, VARTDAL, OMANG, AND REIF

FIG. 12. Contours of g at t = 3.75τL for one realization at each Rep. The color indicates the velocity
fluctuation and g is used to set the color saturation, as indicated by the curve in each colorbar located below the
plot. Thus areas with high color saturation have the highest contribution to the Reynolds stress.

contributing to the spanwise fluctuations are not the same as those that are important for the
streamwise fluctuations. The streamwise fluctuations are primarily particle wakes, whereas the
spanwise fluctuations are mostly due to flow deflection around particles and streaming through
channels between them. The spanwise fluctuations are therefore located slightly in front and to the
side of each particle, as well as in the open spaces within the cloud.

In Figs. 13 and 14, the streamwise and spanwise Reynolds stress contributions are plotted
at different streamwise locations within the particle layer. Rep = 2000 and 10 000 have very
similar trends as Rep = 5000 and are therefore not shown. It can be seen that negative streamwise
fluctuations at Rep = 500 have very little variation with streamwise position. On the other hand,
positive fluctuations shift towards higher magnitudes as distance increases, and the curve broadens.
This is also the case for Rep = 5000, although the shifts are slightly lower. The shift in positive
direction is related to the flow acceleration, which is stronger for Rep = 500 than for Rep = 5000.
For Rep = 5000, the shape of the curve for negative fluctuations changes with downstream distance.
Smaller magnitudes become more important, presumably due to increasingly turbulent flow.

For spanwise fluctuations, the first half of the cloud features an increase in the contribution at
most fluctuation levels, and a slight shift of the peak location towards larger fluctuations. Over
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FIG. 13. Contribution to the streamwise Reynolds stress by different velocity fluctuations at t = 3.75τL for
different streamwise positions. (a) Rep = 500. (b) Rep = 5000.
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FIG. 14. Contribution to the spanwise Reynolds stress by different velocity fluctuations at t = 3.75τL for
different streamwise positions. (a) Rep = 500. (b) Rep = 5000.

the downstream half, the peak level diminishes, and its location moves towards larger values. The
importance of fluctuations smaller than approximately 0.1|w′′|/uIS at Rep = 500 and approximately
0.15|w′′|/uIS at Rep = 5000 is reduced, while the contributions by higher values increase.

Osnes et al. [31] found that the streamwise fluctuations in the interior of the particle cloud could
be represented by

〈u′′u′′〉 = ũ2 αsep

α − αsep
, (13)

where αsep is an estimate of the average volume of the circulation region behind each particle. This
model approximates the flow as two constant states. One is the flow between the particles and the
other is the separated flow behind a particle, where the velocity is assumed to be zero. We note
that this model does not predict zero velocity fluctuations when α goes to one, nor is it Galilean
invariant, and therefore it needs modifications if it is to be used in simplified dispersed flow models.
A way to correct this is to replace ũ by the relative velocity between the particles and the gas,
and replace αsep by αpC in Eq. (13), where C is a constant or a function of dimensionless flow
variables. Figure 15 shows αsep at the end of each simulation, estimated from the simulation results
using Eq. (13). αsep changes rapidly close to the cloud edges, but over the interior of the cloud it
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FIG. 15. (a) αsep and (b) the analogous function for spanwise fluctuations for different Rep, at t = 3.75τL .
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has an approximately constant value. Rep = 500 deviates slightly more from a constant value than
the higher Reynolds numbers. The trend with Rep is monotone over this range, and lower Reynolds
numbers have larger values of αsep. The trends found here agree qualitatively with observations from
single-sphere studies in the incompressible regime, where the separation length, i.e., the average
distance from the particle to the end of the separated flow region, was found to be roughly 30%
shorter at Rep = 10 000 than at Rep = 3700 [47]. Indications of a similar trend were also found for
compressible flows, where Rep = 1000 at Ma = 0.8 and 1.2 had a shorter separation length than
Rep = 750 [36].

Figure 15 also shows the analogous function to αsep for the spanwise fluctuations. It can be seen
that this function has little variation over 0.2 � x/l � 0.95. It does not follow from the derivation
of Eq. (13) that the spanwise fluctuations should vary this way. The results should be interpreted as
confirming that 〈v′′v′′〉 and 〈w′′w′′〉 vary proportionally to ũ2 throughout most of the particle layer.
We note that for the spanwise fluctuations, there is a longer distance at the start of the layer where
the function increases with distance. We suspect that this is because spanwise fluctuations are more
related to interparticle distance than particle diameter. If this is the case, it is not surprising that the
build-up distance is longer, since the interparticle distance is larger than the particle diameter on
average. In contrast to the monotonous behavior of αsep with Rep, there is a nonmonotone trend for
the spanwise fluctuations.

The simple relationship between the mean flow velocity and the velocity fluctuations is surpris-
ingly robust across different flow conditions. The flow field within the particle cloud features rapidly
varying velocity, pressure, and density magnitudes as well as varying gradients. Additionally,
the Mach numbers vary from 0.3 to 1. The insensitivity to these variations is encouraging for
development of velocity fluctuation correlation models that can be used as closures for simplified
dispersed flow models.

D. Particle drag

Accurate description of particle forces is of key importance in dispersed flow simulations.
In dense particle suspensions, the local particle configuration can lead to large variations in the
directions and magnitudes of the particle forces. The maximal drag for each particle occurs during
its interaction with the shock wave. The behavior of maximal drag forces has been examined in
inviscid simulations by Mehta et al. [23,24]. We compare the peak streamwise drag forces in the
current simulations to their inviscid simulations in Fig. 16. The figure shows the trend in average
peak streamwise drag forces with downstream distance and the distribution of peak streamwise
drag forces. Note that for the results shown in Fig. 16, the drag forces are presented as a drag
coefficient using ρIS and uIS, rather than the local values of density and velocity. In Figs. 16–19,
subscripts x and y are used to indicate streamwise or spanwise drag coefficients, respectively. The
shock-wave Mach number is 2.6 in the current simulations and 3 in the inviscid simulations. We thus
expect slightly higher drag coefficients in our simulations. The lower Reynolds number simulations
show higher peak drag forces, and this is to be expected because the contribution from viscous
forces increases. It can also be seen that the slope is steeper for the lower Reynolds numbers.
This is due to the stronger shock-wave attenuation occurring for lower Reynolds numbers. The
distribution of the deviation of peak drag forces from the linear trend with x is also shown in
Fig. 16. The results are in excellent agreement with the inviscid simulations. It can also be seen
that the distribution has only an inconsequential dependence on Reynolds number. This means that
the peak drag variation is controlled by processes that are almost unaffected by viscosity, such as
shock-wave focusing and diffraction. After the initial shock-induced transient, the importance of
viscosity increases. It is therefore of interest to investigate how the distributions of instantaneous
and time-averaged drag coefficients depend on Reynolds number. Figure 17 shows the distribution
of the drag coefficients averaged over 1.875 � t/τL � 3.75. Starting at t = 1.875τL ensures that
any shock-related transients have decayed. The linear trend with x has been subtracted from the
drag coefficients, and they are also normalized with that function. For the spanwise distributions, we
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FIG. 16. (a) Least-squares first-order polynomial fit of peak streamwise drag coefficients, denoted
P1

x [max(CD,x )], as a function of x for different Reynolds numbers. (b) Best normal distribution fit to the
deviation of the peak drag coefficients from P1

x [max(CD,x )]. The plots also show the results obtained in inviscid
Ma = 3 simulations by Mehta et al. [24]. In order to compare against those results, only particles between
0 � x/Dp � 12.5 have been included for the simulations in this work. Note that for the results shown, drag
coefficients are based on ρIS and uIS.

have normalized the drag coefficients based on the linear trend of the streamwise drag coefficients.
The distributions are very similar at all Reynolds numbers, but there is an indication that the
distribution is more narrow around Rep = 5000. Since the current distributions are based on a single
data point per particle, the relatively small differences between the Reynolds numbers may not
be physically meaningful. The distributions are slightly skewed towards positive values. The
spanwise distributions are also quite similar for all Rep. The lowest Reynolds number has the most
narrow distribution, while the distributions for higher Rep are almost equal.

Figure 18 shows the distribution of the deviation of the instantaneous drag coefficients from a
linear trend in time. For each particle, the linear trend in time is also used for normalization. Since
the trend in time has been subtracted, these distributions reflect the magnitude and frequency of
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FIG. 17. Distribution of the time-averaged drag coefficients for t > 1.875τL . (a) Streamwise drag coeffi-
cient. (b) Spanwise drag coefficient. The linear trend with x has been subtracted. Note the different scale in the
plots.
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FIG. 18. Distribution of instantaneous drag coefficients for t > 1.875τL . (a) Streamwise drag coefficient.
(b) Spanwise drag coefficient. The linear trend with t for each particle, denoted P1

t (CD), has been subtracted.

temporal oscillations. The trend with Rep is similar for both the streamwise and spanwise drag
coefficients, where higher Rep result in wider distributions. Note that the spanwise drag coefficient
distribution is about twice as wide as that of the streamwise drag coefficient. The trends are more
pronounced for the distribution of instantaneous than mean drag coefficients.

Both mean flow and instantaneous drag coefficient distributions have a dependency on par-
ticle Reynolds number. There are separate implications for drag modeling from each of these
distributions. The distributions of time-averaged drag coefficients imply that drag models should
incorporate terms that depend on the local particle configuration. These models can be based on the
relative position of nearby particles or on the particle density. The PIEP model developed in Akiki
et al. [48] is an example of the former model type. In the latter model type, the distributions shown
in Fig. 17 can be used directly by imposing random fluctuations drawn from these distributions. The
results here also imply that the importance of including such distributions is equally important at all
Reynolds numbers considered here, since the distributions are very similar.

The distribution of instantaneous drag coefficients is a result of temporal flow fluctuations, and
these have strong Reynolds number dependencies. It is likely that a part of these distributions is
related to the shedding of vortices from both the particle itself and the nearby particles. The variation
imposed by vortex shedding from nearby particles could be modeled based on the local particle
configuration, although this is likely quite challenging. In addition to the trends with Reynolds
number observed here, the distributions are likely dependent on the particle volume fraction.
Investigating this effect is a topic for future studies.

Figure 19 shows the streamwise drag coefficient at t = 3.75τL . The figure also shows the drag
coefficients where a modified flow velocity, defined as

ufree = ũ
α

α − αsep
, (14)

is used to calculate the drag coefficient. The modified velocity was suggested in Osnes et al. [31] and
attempts to correct for the contributions of the circulation regions behind the particles, which shift
the average velocity away from the “free” velocity within the particle layer. Also shown in the figure
are the single-particle drag coefficients obtained by Nagata et al. [35,36] and the drag correlation
by Clift and Gauvin [49]. For reference, the average Mach numbers within the particle cloud are
in the range 0.3–0.7; cf. Fig. 5. Here the lower Mach number is for Rep = 500, and the highest
Mach number is for Rep = 10 000, where the velocity correction has also been used for the Mach
number. Even with the correction, which reduces the drag coefficients, the current simulations result
in significantly higher drag coefficients than predicted by models based on single-particle results.
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FIG. 19. Average drag coefficient at t = 3.75τL for various Rep, based on local (volume-averaged) flow
properties. The standard deviation in Rep and CD,x are indicated by the horizontal and vertical error bars,
respectively. The results of Nagata et al. [35,36] as well as the drag correlation of Clift and Gauvin [49] are
also shown.

The single-particle simulation results of Nagata et al. [35,36] cover only the lower two Reynolds
numbers considered here. However, if the trend from these single-particle simulation results can be
extrapolated, it seems that the deviation is larger for low-particle Reynolds numbers than high.

Other studies have found that confinement has a strong effect on the drag on single particles
[50–53]. For Rep up to about 300, Akutsu [51] found that a 30% area blockage increased the drag
coefficient by more than a factor of two. At Rep above 3×104, Achenbach [50] found a 10% increase
for 50% blockage. We expect that a similar effect occurs due to the presence of nearby particles. If a
correction for this is combined with the corrections due to Mach number and separation volume, it
is likely that the average drag coefficients will approach the values seen in isolated particle studies.

V. CONCLUDING REMARKS

This study has investigated the propagation of a Mach 2.6 shock wave through particle clouds
with particle volume fraction 0.1. Particle resolved large-eddy simulations were utilized, and the
particle Reynolds number, based on the incident shock state, was varied between 500 and 10 000.

The results show that the shock-wave attenuation increases with decreasing particle Reynolds
number, but the effect is small over this Reynolds number range. The strength of the reflected shock
wave increases with decreasing Reynolds number. This results in considerable changes in the flow
quantities upstream of and inside the particle layer, i.e., higher pressures, lower velocities, and lower
Mach numbers with reduced particle Reynolds numbers.

We examined the development of fluctuations from the volume-averaged flow quantities within
the particle layer. The velocity fluctuation intensity has a nonmonotone dependency on particle
Reynolds number. The most intense velocity fluctuations were found at Rep = 2000. Streamwise
velocity fluctuations are located in the particle wakes and, most importantly, in the circulation
region behind each particle. Spanwise fluctuations are located in the interparticle regions and
consist of coherent regions that extend further than the size of single particles. As the Reynolds
number increases, the sizes of these regions decrease. We find an approximate proportionality
between the mean flow velocity and the flow fluctuations at late times. This relationship holds for
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both the streamwise and the spanwise fluctuations. Interestingly, the proportionality factor varies
monotonously with Rep for the streamwise fluctuations but not for the spanwise fluctuations.

The distributions of particle forces were examined. Maximal drag forces and their spatial
variation agree well with the inviscid simulations of Mehta et al. [23]. In the late-time flow field,
we find that the variation of time-averaged particle forces is weakly affected by Reynolds number,
while the temporal variation has a strong Reynolds number dependence. These distributions provide
a basis for development of particle force variation models that can be used in simplified dispersed
flow models.

The particle drag coefficients within the particle cloud were found to be higher than isolated parti-
cle drag coefficients on average, and the largest deviation occurred for the lowest Reynolds number.
We demonstrated that utilizing a correction to the mean flow velocity yields drag coefficients
closer to the single-particle results. A combination of this correction with drag correlations that
incorporate Mach number and flow blockage effects can possibly reproduce the observed average
drag coefficients in shock-wave particle cloud interactions.
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