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Abstract

There is an expected growth in underwater acoustic data traffic. To meet the demand of high

data throughput, a migration towards the very high frequency band (>100 kHz) will be necessary. The

increment in frequency comes with two problems; high propagation losses and rapid channel fluctuations.

One solution addressing both of these obstacles is the use of large hydrophone arrays in combination

with multi-channel equalizers. We will in this paper examine and compare tracking properties and

convergence rate of the RLS and LMS adaptive algorithm for use in large multichannel equalizers.

Using data from a very high frequency (250 kHz) channel we will show that in our channel, for large

hydrophone arrays, RLS does not offers a significant advantage over LMS when it comes to tracking

channel variations nor convergence rate.

I. INTRODUCTION

The interest for coherent mid-range high-speed underwater acoustic communications is ex-

pected to grow over the next few years. To meet the demand for high data-rates, a migration

towards the very high frequency band (>100 kHz) will be necessary in order to make available

wider bandwidths.

In addition to the common traits of underwater acoustic channels [1], the very high frequency

channel is characterized by rapid channel fluctuations and a high attenuation which significantly

reduces the achievable communication range. In order to batter these effects large hydrophone

arrays can be used. This work is about the use of large hydrophone arrays at receiver side.
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The higher attenuation can be compensated for through receiver array gain, coherently com-

bining the received signals. A suitable method for combining signals is a multi-channel equalizer,

that in addition will compensate for the acoustic channel inferred multi-path propagation and

time variability. A commonly used equalizer design for underwater acoustic communication is

the decision feedback equalizer [2], [3], [4], [5]. The filter taps are typically updated using the

recursive least square (RLS) algorithm, well known for its rapid convergence rate. But the RLS

algorithm, is also very processing intensive and has a complexity that increases quadratic with

the number of filter taps. This is not necessarily a problem for single hydrophone solutions or

when the size of the hydrophone array is small, but will become a significant problem increasing

the number of hydrophones inevitable resulting in unachievable processing demands.

To come around those obstacles it has been suggested to divide the hydrophone array into

subarrays each processed by an multichannel equalizer [6], or by prebeamforming to reduce the

number of channels (beams) into the equalizer [7]. The first method has a drawback considering

the weak signals whereas the latter explicitly requires knowledge of the spatial distribution of

the pressure field. Further for very large arrays the number of beams may also grow large in

order to avoid highly directive beams which may worsen the performance.

A less processing intensive alternative to the RLS algorithm is the least mean squares (LMS)

algorithm, whose processing complexity increases linearly with the number of filter taps. The

drawback of LMS is the potentially slower convergence rate, sensitive to the eigenvalue spread of

the recieved signals correlation matrix. The reduction in convergence rate could be problematic

especially for single hydrophone systems, leaving the receiver unable to track the changes in the

channel, with loss of performance as a result.

It should be noted that there are other implementations of the RLS algorithm which are less

processing demanding; for example lattice and fast transversal filter based implementations of

the RLS algorithm. These implementations are still more complex than LMS which also has the

advantage of being possible to implement using solely multiplication and accumulators making

it more suitable for real time implementation. Since these less processing intensive versions

of RLS algorithm has no extra advantages over RLS [8], besides being just less processing

intensive, they will not be considered in this paper whose scope is to compare the tracking

and convergence performance of RLS and LMS based multichannel equalizers. The emphasis

is on large hydrophone arrays, examining how an increasing number of hydrophones in a fixed

aperture affects the choice of receiver adaptive algorithm.
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Fig. 1. Multichannel decision feedback equalizer, using either LMS or RLS algorithm for feed-forward filter tap update.

Using a 64 hydrophone line array we will examine, using the same dataset, how the tracking

capability and initial convergence rate is effected by the use of the RLS and LMS algorithm.

For the comparison we are using real data recorded in slanted very high frequency, 250 kHz,

rapid fluctuating acoustic channels under various conditions and ranges.

II. TRACKING RANDOM TIME-VARYING CHANNELS

In this section a model for the time varying acoustic channel and the used multichannel

receiver tracking the channel variations will be described. It is assumed that all signals have

been brought to complex baseband, that constant Doppler shifts have been compensated for

by means of resampling and that carrier recovery has been properly done. A sketch of the

depicted system can be seen in Fig. 1. Let zptq � rzpt � Lq . . . zpt � L � 1qsT be a column

vector representing the transmitted complex baseband symbols sampled at time instant t. L is

the length of the acoustic channel in number of samples. The received symbol ymptq measured at

hydrophone m in an M hydrophone array is then a distorted version of zptq, where the distortion

is determined by the propagation conditions for the specific acoustic channel. The channel is

typically modeled as a time-varying linear filter. Doing so the received symbol at hydrophone
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m can be expressed as

ymptq � hH
mptqzptq � nptq , (1)

where, hH
mptq is the time-varying acoustic channel impulse response valid at time instant t in

vector form of length L and nptq is the ambient noise.

Typically the channel impulse response will contain several multipath components spread both

in time, space and possibly frequency [1], which will significantly distort the symbol.

A. Multichannel equalizer

In order to recover the transmitted data, the channel impulse response must be compensated

for. This can be done by filtering the received symbols with the inverse impulse response gmptq

of the acoustic channel experienced by hydrophone m. The soft symbol estimate, ẑ, can for a

multichannel equalizer be expressed as

ẑptq �
M̧

m�1

gmptq
Hymptq , (2)

where ymptq � rymptqpt�Lq . . . ymptqpt�L� 1qsT. However, there are two practical problems

doing so, 1) the inverse impulse response, gmptq is of infinite length and 2) time variability of

the channel limit validity of the inverse filter to a finite time.

The solution to the first problem is to truncate the inverse filter constraining its duration to the

specified channel length, L. The solution to the latter is to adaptive update the inverse filter taps.

In this paper we are considering the RLS and LMS algorithm for finding the inverse filter which

minimize the minimum mean-square error (MMSE) of the misadjustment eptq � zptq� ẑptq. The

transmitted symbols zptq are typically unknown at the receiver and are fed back to the equalizer

based on decision made on the soft symbol estimate. However in order to compare solely the

performance of the different algorithms, the equalizer will in this work be in training mode,

knowing all of the transmitted symbols zptq.

1) LMS algorithm: The main steps of the LMS algorithm can be summarized as

ẑptq �
M̧

m�1

gmptq
Hymptq ,

eptq � zptq � ẑptq ,

gmptq � gmpt� 1q � 2µymptqeptq ,

where µ is the learning rate. Further implementation details of the LMS algorithm can be seen

in for example [8].
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2) RLS algorithm: The main steps of the RLS algorithm can be summarized as

ẑptq �
M̧

m�1

gmptq
Hymptq ,

eptq � zptq � ẑptq ,

R�1
m ptq �

1

α

�
R�1

m ptq �
R�1

m ptqymptqy
H
mptqR

�1
m ptq

αyH
mptqR

�1
m pt� 1qymptq



,

gmptq � gmpt� 1q �R�1
m ptqymptqeptq .

The forgetting factor α is typically chosen close to unity and Rmptq represents the estimate of

the correlation matrix for the filter input ymptq. Further implementation details can be seen in

for example [8].

B. Discussion based on RLS and LMS algorithms

The most obvious characteristic that distinguish the LMS algorithm from the RLS algorithm

is the simplicity of implementation which requires only multiplications and accumulations.

However, the simplicity has its price, namely slower convergence compared to RLS and a

possibility for being unstable, using inappropriate learning rates.

By using a small value of the learning rate µ the adaption of the LMS algorithm will be

slow. On the other hand assigning a large µ will increase the convergence rate at the cost of

noise amplification. Assigning a too large µ will cause the algorithm to diverge. In order for the

LMS algorithm to be convergent µ must not exceed the largest eigenvalue of R, the (ensemble

averaged) filter input correlation matrix; µ   2λmax [8]. Or equivalently µ   2{
°M

m�1 Pmptq

where Pmptq is the instantaneous input power at hydrophone m.

The LMS algorithm is therefore not only sensitive to the eigenvalue spread of R. Which

causes filter taps corresponding to small eigenvalues to converge at slower rate, leading to

long convergence times for channels with a large eigenvalue spread and further making the

convergence time channel dependent. But also sensitive to variations in the instantaneous input

power, where steep variations of the input signal strength may cause the algorithm to have

unpredictable convergence rate, or even worse diverge.

The stability and convergence rate of the RLS algorithm on the other hand is basically

insensitive to both variation in the input signal strength and eigenvalue spread. Although the

eigenvalue spread affects steady state error, but at a much less extent [8]. The price for this is

a higher computational cost, which increases quadratic with the channel length, L.
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These advantages makes the RLS algorithm superior of LMS in most situations, although it

has been shown that in system identification problems for short varying channels and white input,

the RLS and LMS algorithm would have the same tracking performance [9], with a carefully

selected learning rate, µ, of the LMS algorithm. The problem is that the underwater acoustic

channel is rarely short, nor the input is white. Why RLS often show a higher or equivalent

performance compared to LMS in single hydrophone systems and is not an uncommon choice

among underwater communication receivers.

For single hydrophone systems and small arrays, RLS would be the natural choice consider its

advantages. However, as the number of hydrophones increases the extra computational cost with

RLS will eventually be difficult to handle, and LMS should be used. This is not as problematic

as it first may seams. First the channel fluctuations will reduce as an effect of spatial averaging

where uncorrelated channel fluctuations are averaged over all hydrophones, although being most

prominent in short channels, it can reduce the most rapid input power variations. Secondly is

the fact that the magnitude of uncorrelated errors among the hydrophones will reduce as 1{M

compared to the symbol, and effectively diminish when M grows large. Consequently the mean-

square error (MSE) is expected to decrease as 1{M . This suggest that even though the difference

between RLS and LMS may be large for small hydrophone arrays, the effective difference will

be small for large hydrophone arrays, as we will show in this paper.

III. DATA COLLECTION

The experiment was conducted during 2016 in the Oslo fjord. The set-up consisted of a single

transmitter with a α � 30� opening angle orientated β � 45� from the seabed, attached to a rigid

steel frame placed at the seabed. The receiver with 64 hydrophones arranged in a line array with

a spacing ensuring no grating lobes, was mounted on a surface vessel. Fig. 3 depicts the slanted

horizontal channel. The transmitter was oriented so that it was pointing in the same direction

as the wind, this to allow the surface vessel to slowly drift off with the wind while recording

of data was made. The transmitted waveform was binary phase-shift keying (BPSK) modulated

using a bit rate of 78.125 kbps and a carrier frequency of 250 kHz. For additional details of the

experiment the reader is referred to [10].

Shown in Fig. 2 is the power delay profile summarizing the conditions in some of the measured

channels. Channels A–C are shallow water channels of increasing range, where the shortest

ranges have a direct arrival, followed by a long energy rich tail of reflected arrivals. In channel
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TABLE I

EXPERIMENT CONDITIONS AND PARAMETERS

Channel A B C D

r, range (m) 130 190 570 700

d, depth (m) 18 18 18 200

Input SNR (dB) 45 37 -2.5 -0.7

τ90 (ms) 9.6 1.3 20 21.4

τ50 (ms) 0.04 0.4 1.4 3.6

f90 (Hz) 23.7 19.6 29.8 32.7

f50 (Hz) 2.1 7.5 10.3 10.3

θ90 (degrees) 36.6 23.9 150.5 154.7

θ50 (degrees) 9.8 7 40.7 45

C the direct arrival is hidden in a diffuse arrival of scattered paths. Channel D is the only deep-

water channel, here there is a direct arrival followed by only a nearby surface reflection arriving

1 ms later. The reason for this is the high attenuation at 250 kHz, which strongly attenuates

the sound traveling over longer distances. Channels D and C are low input signal-to-noise ratio

(SNR) channels.

A summary of the conditions for the various experiments can be seen in Table I. The range is

the horizontal distance from the transmitter to the receiver, the input SNR is defined as the ratio

between background noise power measured before the signal and the signal power, averaged over

the array. The delay (τ90 and τ50), Doppler (f90 and f50) and angular spread (θ90 and θ50) are

defined as the shortest intervals that respectively contain 90% and 50% of the received energy.

IV. RESULT AND DISCUSSION

We will in this section present our result comparing the initial convergence and tracking

capabilities for the RLS and the LMS algorithm.

A. Comparison of tracking capabilities

Fig. 4 shows the average stead state receiver output MSE for channel A–D, as function of

the number of hydrophones after removing initial training and the minimum mean-square error
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Fig. 2. Normalized power delay profile for channel A–D.
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Fig. 3. Sketch of system setup, r the horizontal range, d the depth, α is the transducer opening angle, and β the angle between

the transducer center line and seabed.

equalizer bias. The array was populated within a fixed aperture. This gives a constant spatial

resolution, in addition to the array gain but with the drawback of grating lobes potentially

resulting in spatial under-sampling for the cases with few active hydrophones. The reason for

populating a fixed aperture is to have as low spatial correlation as possible among the active

hydrophones.

For all four channels the RLS equalizer has the best result, however the difference is only

significant in channels A and B, and only when the number of active hydrophones are small.

For channels C–D the difference is negligible, these channels are low SNR channels resulting

in a failure of both the LMS and RLS algorithm to converge for few active hydrophones. For

all channels, A–D, the reduction in MSE is fastest for the first number of added hydrophones.

Channel B flattens out whereas the remaining channels have a steady reduction in MSE, although

in the case of channel B the decrease is highly marginally. The reason for this is the spatial

correlation, which is lowest for the first number of added hydrophones. In channel B no new

information is added above 10 added hydrophones and it is also interesting to note that here the

MSE increases slightly using RLS. For channel C and D that is low input SNR channels, a part

of the continued reduction in MSE can be explained by array gain, this is however not the case

for A which is a high input SNR channel suggesting that received signals are at-least partially

uncorrelated within a few cm range. The reason for low spatial correlation in channel A can be

explained via the energy rich and uncorrelated surface reflection arriving 1 ms after the direct

arrival, Fig. 2.

The results presented in this section is as previously predicted, the difference in tracking
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Fig. 4. Comparison of MSE using RLS and LMS for updating the receivers adaptive filter coefficients.

capability between RLS and LMS are reduced with increasing number of active hydrophones,

to a level where they perform almost identical. Suggesting that for large arrays using adaptive

equalizers LMS is a more suitable choice, both in high and low input SNR channels.

B. Comparison of convergence

A comparison for the initial convergence of channel A–D, can be seen in Fig. 6, the MSE has

been filtered with a 100 tap boxcar filter in order to give a more readable appearance. We will

here define convergence time as the time it takes to reach the mean value of the steady state

MSE. Doing so the convergence rate has been plotted in Fig. 5, showing that the convergence

rate is almost the same for both the RLS and LMS algorithm when the number of hydrophones

increases. It is also interesting to note that the convergence rate in channel A, B and D increases

with number of added hydrophones.

March 17, 2020 DRAFTDette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: http://dx.doi.org/10.1109/OCEANSE.2019.8867313



11

Fig. 5. Initial convergence rate comparison for RLS and LMS.

V. CONCLUSION

We have in this paper compared the tracking performance and convergence rate of a multi-

channel equalizer using either the RLS or LMS algorithm to update its filter taps, for increasing

number of contributing hydrophones in a line array. Evaluation of four different very high

frequency acoustic channels suggests that when the number of contributing hydrophones is large,

decisions feedback equalizers using less computationally demanding algorithm such as LMS

perform similar to computationally heavy RLS algorithms. It does not seem that RLS offers

neither a significant advantage over LMS when it comes to tracking channel variations, nor

convergence rate, in multi-hydrophone equalizing systems.
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Fig. 6. Initial convergence comparison for RLS and LMS, for different number of hydrophones. a), b), c), d) represents A, B,

C, D respectively.
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