
Noname manuscript No.
(will be inserted by the editor)

Solving Non-linear Boolean Equation Systems by
Variable Elimination

Bjørn Greve · Øyvind Ytrehus · H̊avard
Raddum · Gunnar Fløystad

Abstract In this paper we study Boolean equation systems, and how to elimi-
nate variables from them while bounding the degree of polynomials produced.
A procedure for variable elimination is introduced, and we relate the tech-
niques to Gröbner bases and XL methods. We prove that by increasing the
degree of the polynomials in the system by one for each variable eliminated,
we preserve the solution space, provided that the system satisfies a partic-
ular condition. We then estimate how many variables we need to eliminate
in order to solve the resulting system by re-linearization, and show that we
get complexities lower than the trivial brute-force O(2n) when the system is
overdetermined.

Keywords Systems of Boolean equations · Elimination of variables ·
Syzygies · Gröbner bases · Solving algorithm

1 Introduction

We consider non-linear systems of Boolean equations,

f1(x0, . . . , xn−1) = 0
f2(x0, . . . , xn−1) = 0

...
fm(x0, . . . , xn−1) = 0

(1)

Bjørn Greve
Norwegian Defence Research Establishment, Kjeller, Norway

Øyvind Ytrehus · H̊avard Raddum
Simula UiB, Bergen, Norway

Gunnar Fløystad
Department of Mathematics, University of Bergen, Norway

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



2 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

where each fi is of bounded degree. How to solve such systems has been studied
extensively, and it is well known that the problem of solving (1) is NP-hard in
the general case. However, since the solving process has numerous important
applications, many attempts have been made to derive algorithms that can
provide solutions within a practical time frame for moderate-sized versions of
the problem.

In the literature on solving systems of Boolean equations it is customary to
consider quadratic systems of equations, despite the fact that most proposed
algorithms also work on systems of equations with higher degrees than 2. The
motivation for focusing on quadratic equations is that this is the simplest case
beyond linear equation systems, as well as the fact that there exist general
methods to transform a system of arbitrarily high degree equations, into an
equivalent quadratic system by introducing new ”auxiliary” variables [28, p.
47].

1.1 Previous work

In [6] and [7] the authors introduce the XL and XSL algorithms, respectively.
The basic idea in these papers is to multiply equations with enough monomials
to re-linearize the whole system of Boolean equations, i.e. to solve a linear
system of equations where each monomial is considered as an independent
variable. The best known solving method for Boolean equation systems is
Faugère’s F4 algorithm [8]. This algorithm is similar to XL in the sense that
equations are multiplied with monomials, but F4 cleverly avoids multiplying
equations with ”useless” monomials that will result in redundant equations.

The application of Gröbner base theory in connection with Boolean poly-
nomial rings F2[x0, . . . , xn−1]/(x2i + xi) was first considered by [5] and by
[14]. Computations with Boolean Gröbner bases have been implemented in
Singular [4] and PolyBoRi [1]. However, computations to find Gröbner bases
become computationally heavy since the polynomials quickly grow in degrees
and number of terms.

In [11] the authors instead consider Boolean border bases. Border bases
exist for ideals I in polynomial rings k[x0, . . . , xn−1] such that the quotient
ring is finite dimensional as a k-vector space. For an ideal I in a Boolean
polynomial ring, the quotient ring is always finite. Since a Boolean polynomial
ring is different from an ordinary polynomial ring, this suggests an approach
using a tailored version of Boolean border bases, which is followed in [11]. A
rationale for this approach is that the resulting algorithm controls and slows
the growth of the ”computational universe”, the set of terms involved in all
the linear algebra and computations. Nevertheless one must also here expect
to get polynomials of large degrees.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 3

1.2 Contributions

The approach in our paper is also to multiply equations with monomials, but
we bound the degree at ≤ d for some d to control the complexity, and we do
not multiply all the fi’s with all monomials. In this paper we are focused on
variable elimination, which is not the approach taken in the Buchberger’s, XL,
or F4 algorithms. A system of polynomial equations in relatively few variables
can be solved by simple exhaustive search. In this paper, we try to extract
such systems, by investigating how to eliminate variables while working only
with polynomials of degree ≤ d.

When we limit the degree and the number of variables decreases, the re-
sulting equation systems become easier to solve and they require less memory
to keep in storage. When enough variables have been eliminated, we may in-
crease the allowed degree without needing more memory than what we used
to start with.

We propose and investigate an elimination procedure, where the degrees
of the modified equation sets grow slowly. The main contribution is a proof
that, under some mild conditions, eliminating k variables from a quadratic
equation system and increasing the degree of the modified equations by k, the
solution space of the system will be preserved. This leads to a new algorithm
for solving Boolean equation systems, with favorable complexity analysis. The
algorithm has been tested on some cases of random equation systems, and it
is verified that theory and practice align very well.

1.3 Paper structure

The paper is structured as follows: Section 2 introduces the basic notation
used in the paper and elaborates on prior work. In Section 4 we introduce
normalization, resultants, coefficient constraints and syzygies, the basic tools
and concepts we use for variable elimination. In Section 5 we combine the tools
to construct a method for variable elimination, which leads to a procedure
for solving a system of Boolean equations. Section 6 follows an alternative
approach, with the motivation to limit the growth of degrees. We show that
when using the resulting algorithm, no false solutions will enter the modified
systems, given some mild condition. Complexity issues including experimental
results are presented in Section 7, while Section 8 contains a conclusion and
sketches some avenues for further research.

2 Notation and preliminaries

2.1 Table of notation

For reference, we list some of the notation that will be used throughout the
paper.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



4 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

Term Meaning
n Number of variables
m Number of polynomials or equations

x0, . . . , xn−1 The variables of the set of equations
B[xj , . . . , xn−1] F2[xj , . . . , xn−1]/(x2i + xi|i = j, . . . , n− 1)

t Monomial term
f i Polynomial of degree i
F Set of polynomials, or equations on the form f = 0
F i Set of polynomials, or equations, all of degree i
F≤i Set of polynomials, or equations, all of degree ≤ i
Li Set of all monomials of degree i
L≤i Set of all monomials of degree ≤ i
〈F 〉 The linear span of the polynomials in F
Fxi

Maximal subset of F so that no f ∈ Fxi
depends on xi

Fxi
Maximal subset of F so that 〈Fxi

〉 ∩ Fxi
= ∅

Z(F ) Set of zero points for all polynomials in F
I(F ) The ideal generated by F
πi Projection omitting coordinates 0, . . . , i, that is,

πi : Fn2 → Fn−i−12

M(F ) or Md(F ) Macaulay matrix corresponding to F or F≤d

2.2 Definitions and notation

A monomial is a product xi1 · · ·xid of d distinct (because x2 = x) variables,
where d is the degree of this monomial. The degree of a polynomial

p =
∑
i

mi

where the mi’s are distinct monomials, is the maximum degree over the mono-
mials in p. Given a set of polynomial equations

F = {fi(x0, . . . , xn−1) = 0|i = 1, . . . ,m},

our objective is to find its set of solutions in the space Fn2 . The approach we
take in this paper is to solve the system of equations by eliminating variables.

Consider the projection which omits the first coordinate:

π0 : Fn2 → Fn−12

(a0, a1, . . . , an−1) 7→ (a1, . . . , an−1),

We also consider a sequence of k projections

Fn2 → Fn−12 → · · · → Fn−k2 ,

where the i’th projection is denoted πi : Fn−i2 → Fn−i−12 for 0 ≤ i < k.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 5

2.3 Other algorithms for solving non-linear systems of Boolean equations

For completeness, we end this section by outlining alternative approaches,
which to the best of our knowledge collectively represent the state of the art
of solving sets of Boolean quadratic equations. Most of these approaches are
rather different from ours. Hence, the terminology used in the rest of this
section is inherited from the respective papers, and is less convenient for our
approach and not always consistent with the terminology that we use from
Section 4 and onwards. Readers who are already familiar with this prior work,
or who want to focus on our contributions, may skip to Section 4.

1. An algorithm faster than exhaustive search: In [23] the authors pro-
posed an algorithm where they use the following techniques. We note that
although the work from [23] also considers larger finite fields, we will restrict
ourselves to F2 which is our case of interest.

The authors of [23] observe that the single polynomial

Ps(x) = 1−
m∏
i=1

(1− fi(x))

is equivalent to the set of equations in (1), in the sense that for any a ∈ Fn2 ,
Ps(a) = 0 iff f1(a) = · · · = fm(a) = 0. For some appropriately chosen n′ < n,
we may define a polynomial R ∈ F2[x0, . . . xn−n′−1] as

R(x0, . . . xn−n′−1) =
∏
c∈Fn′

2

Ps(x0, . . . xn−n′−1, c).

It is easy to see that there is an a = (b|c) ∈ Fn2 such that Ps(a) = 0 if and

only if there is a b ∈ Fn−n
′

2 such that R(b) = 0. In [23], it is noted that we

can evaluate R on all 2n−n
′

points b in 2n−n
′ · poly(n,m) time by applying

probabilistic polynomial constructions presented in [27,13], together with an
algorithm for efficient sums-of-monomials evaluation. The complexity of solv-
ing a system of m equations over F2 is shown in [23] to approach O(20.8765n)
(assuming that the number of solutions is less than 20.8765n), which is faster
than the brute force approach. This asymptotic behavior is independent of
any heuristic hypothesis on the system of equations.

The approach of [23] has several limitations. First of all we note that the
values of n must be large for the estimated complexity to hold, which means
that it seems unlikely that the method will outperform exhaustive search for
systems that are anywhere close to be solvable on a computer. Another draw-
back of this approach is that it cannot take advantage of large values of m
compared to n since the method of [23] assumes independence between the
polynomials.

2. Algebraic methods and Macaulay matrices [22,12]:

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



6 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

Let I = (f1, . . . , fm) ⊆ B[x0, . . . , xn−1] be the ideal describing the system of
equations in (1) and let d be the maximum degree in F , with the corresponding
Macaulay matrix Md(F ) as introduced in the end of Section 4.

It was shown in [22] that one can use the Macaulay matrix to compute
the Gröbner basis of I. If a system of equations is inconsistent, the constant
1 is a linear combination with polynomial coefficients, of the generators of the
ideal, and if a system of equations has k solutions, then there exist at least
n − k linearly independent linear forms in the corresponding ideal. It follows
that the low degree equations describing the solutions of the system can be
obtained by reducing a Macaulay matrix in which the columns are sorted by
total degree. The smallest D for which we can deduce linear equations from
MD(F ) is called the degree of regularity of the system of equations, formally
defined as follows [16].

Definition 1 Let F = (f1, . . . fm) ⊆ F2[x0, . . . , xn−1] be a system of equations
with finite number of solutions where m ≥ n defining a zero dimensional ideal
I(F ). The degree of regularity of I(F ) is defined by

dreg = min{d ≥ 0,dimK({f ∈ I, deg(f) = d}) =

(
n+ d− 1

d

)
}

Determining the degree of regularity of a system of equations is not an
easy problem. A special case is when a system of equations is semi-regular.
In this case, [18] gives asymptotic estimates of the degree of regularity dreg
for semi-regular systems. In particular it can be shown that for semi-regular
system, if m ≈ αn for some fixed α ≥ 1, then dreg ≈ M(α)n where M(α)
is an explicit decreasing function of α as n goes to infinity. This implies that
when α = 1 and if matrix reduction can be done with complexity O(n2), the
authors obtain an asymptotic complexity of O(20.8728n) for solving a system
of m equations in n variables.

Note that the algorithm depends on the system being semi-regular in con-
trast to [20,23], which means that particular systems may be harder to solve
with this technique. It is conjectured that the complexity holds with a proba-
bility converging to 1 as n grows. It has also been estimated that these methods
will not outperform exhaustive search before n ≥ 200 ([20]).

3. Hybrid algorithms: To make algorithms better than the pure algebraic
ones, hybrid algorithms combining exhaustive search and linear algebra on the
Macaulay matrix have been proposed, including the BooleanSolve algorithm
([17]). The idea is to reduce the search space combined with the information
provided by the Macaulay matrix, and can formally be described as follows:

1. Let F = (f1, . . . fm) ⊆ B[x0, . . . , xn−1] and choose a parameter k ≤ n.
2. For each a = (ak, . . . , an−1) ∈ Fn−k2 and each i, compute the specialized

polynomials fi,a = fi(x0, . . . , xk−1, ak, . . . , an−1), corresponding to each fi
evaluated at a. This provides us with a system Fa = {f1,a, . . . , fm,a} ⊆
B[x0, . . . , xk−1].

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 7

3. Let Mdreg (Fa) be the Macaulay matrix of Fa in degree dreg. Using this
matrix, check if the system Fa admits a solution.

4. If no solution is found, continue with the next value of a ∈ Fn−k2 .
5. If Fa admits a solution, find the solution of Fa by for example exhaustive

search on the remaining variables x0, . . . , xk−1.

The benefit from fixing values for some of the variables is that the size of
the corresponding Macaulay matrices is reduced in addition to a reduction in
the complexity to O(2n−k). Note that the degree of regularity decreases while
m/(n − k) increases, so the algorithm is conditional on how many times one
has to check for new points a ∈ Fn−k2 . This means that for most values of a, the
system will not have any solution. Despite this, when running the algorithm
one only needs to test whether the constant polynomial can be found in the
Macaulay matrix, which means that one does not need to compute the full
echelon form of the matrix.

In [17], the authors show that if one assumes that semi-regular systems
behave like random systems and remain semi-regular during the algorithm,
one can obtain a complexity of O(2(1−0.208α)n). The values here are m ≈ αn
where α ≥ 1 and n goes to infinity. With α < 1.82 together with best choice of
k = 0.55αn, the authors give an asymptotic complexity estimate of O(20.792n).
If α ≥ 1.82, the best choice is n = k which means that no variables are
specialized and the algorithm does not improve over the standard reduction
of the full Macaulay matrix.

4. Crossbred algorithm optimizing the BooleanSolve algorithm: In
[19] the authors present an algorithm which is an optimization of the Boolean-
Solve algorithm from [17]. The main observation is to avoid the most costly
step of the algorithm when reducing the Macaulay matrix which is performed
2n−k times. The idea is to perform the specialization of n − k variables after
working with the Macaulay matrix, which means that we can reduce a partial
Macaulay matrix before specifying parts of the variables. The algorithm from
[19] depends on three parameters: D ≥ 2 (global degree), 1 ≤ d < D (local
degree) and 1 ≤ k ≤ n (number of variables to specialize). To make distinc-
tion on the degrees, for a polynomial p ∈ B[x0, . . . , xn−1] the total degree of
p in the variables x0, . . . , xk−1 is denoted by degk(p). The description of the
algorithm from [19] is as follows:

1. First construct the submatrix MD,d,k(F ) of the full degree D Macaulay
matrix Md(F ), where the rows consists of products ufi where degk(u) ≥
d− 1.

2. Then construct the submatrix M ′D,d,k(F ) of MD,d,k(F ), where the columns
consist of monomials m with degk(m) > d.

3. Search for elements v1, . . . , vr in the kernel of M ′D,d,k(F ), and compute the
polynomials pi = vi ·MD,d,k(F ). Note that the total degree of pi is at most
D, and degk(p) ≤ d.

4. For all a = (ak, . . . , an−1) ∈ Fn−k2

(a) Create the degree d Macaulay matrix Md(F
∗) corresponding to the

polynomials in F evaluated at a.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



8 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

(b) Evaluate pi at a and append them to Md(F
∗). Check if the resulting

system in degree d can be solved in x0, . . . , xk−1.

When d = 1, the idea is to generate new equations that are linear in
x1, . . . , xk from the degree D Macaulay matrix with the implication that all
monomials of degree larger than 1 in these variables are eliminated. This
is achieved by computing elements in the kernel of M ′D,1,k(F ), from which
the monomials containing more than one of the variables x0, . . . , xk−1 have
been removed. In practice there is a trade-off when choosing D: It has to be
large enough for the reduced equations to exist, and small enough such that
the Macaulay matrix does not become too large. Note that we only need k
of the linear equations created from the equations pi that are evaluated at
xk, . . . , xn−1, to check whether the system is solvable in x0, . . . , xk−1.

When d > 1, the idea is similar: Construct new equations but of degree at
most d in the variables x0, . . . , xk−1, where the number of equations needed in
order to solve the system at the end becomes larger. When d is larger than the
degree din of the initial system, the initial equations can be included with the
equations kept for specialization. In [19] the analysis for the optimal choices
of parameters D, d, k for given m,n, din is only carried out in the case when
d = 1 and the initial systems are quadratic. However, the authors demonstrate
in practice that the algorithm beats exhaustive search when n = m already at
n = 37, which is lower than the previously expectation of n ≥ 200 from [20].

3 Systems of Boolean equations and ideals

Any Boolean function f : Fn2 → F2 can be written as a polynomial in the ring
B[x0, . . . , xn−1] (see [21, p. 346] for the basics on Boolean functions). Such a
function is uniquely determined by the zero set

Z(f) = {a ∈ Fn2 |f(a) = 0}.

Conversely, for any given subset Z of Fn2 there is a unique Boolean function
with this as zero set. So there are one-to-one correspondences between Boolean
functions, Boolean polynomials, and subsets of Fn2 .

Lemma 2 Let f and g be Boolean polynomials. Then:

f is a multiple of g ⇔ the zero sets Z(f) ⊇ Z(g).

Proof The implication ⇒ is clear. Suppose Z(f) ⊇ Z(g) and let H be the
difference set. It corresponds then to a Boolean polynomial h with zero set
Z(h) = H. Then f and hg have the same zero set, and hence are equal. ut

On the other hand, for f ∈ B[x0, . . . , xn−1] we may write f on the form

f =
∑
α∈A

n−1∏
i=0

xαi
i , where α = (α0, . . . , αn−1) is a binary vector of length n

and A ⊂ Fn2 specifies the monomials occurring in f . Any Boolean function

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 9

can be written in this form, which gives a different one-to-one correspondence
between Boolean functions and subsets of Fn2 . This establishes the following
relationship

A↔ f ↔ Z.

For a given function f , the relationship between the sets A and Z is however
far from trivial.

For a set of polynomial equations (1), let F = {f1, . . . , fm}. The polynomi-
als in F generate an ideal I = (f1, . . . , fm) = I(F ) in the ring B[x0, . . . , xn−1].
Let Z(I) denote the zero set of this ideal, i.e, the set of points

Z(I) = {a ∈ Fn2 |f(a) = 0 for every f ∈ I}.

Lemma 3 Let f, g be Boolean functions in B[x0, . . . , xn−1]. Then the follow-
ing ideals are equal:

(f, g) = (fg + f + g).

Proof Note that it is easy to verify that they have the same zero set. But it is
not a priori clear that they are equal as ideals of Boolean polynomials. Clearly
(f, g) ⊇ (fg + f + g). We also have Z(f, g) = Z(fg + f + g), since it is easy
to check that f(a) = g(a) = 0 if and only if f(a)g(a) + f(a) + g(a) = 0. Thus
the zero set Z(f) ⊇ Z(fg + f + g). By Lemma 2 the Boolean function f is a
multiple h(fg+ f + g) for some other Boolean function h, and similarly for g.
Thus

(f, g) ⊇ (fg + f + g) ⊇ (f, g),

which shows that these ideals are equal. ut

Corollary 4 Any ideal I = (f1, . . . , fm) in B[x0, . . . , xn−1] is a principal
ideal. More precisely I = (f) where

f = 1 +
m∏
i=1

(fi + 1).

Proof Let I = (f1, . . . , fm). By Lemma 3 this is equal to the ideal (f1f2 +f1 +
f2, f3, . . . , fm), with one generator less. We may continue the process for the
remaining generators providing us in the end with I = (f), where

f = 1 +
m∏
i=1

(fi + 1).

ut

Corollary 5 For two ideals in B[x0, . . . , xn−1] we have I ⊇ J if and only if
Z(I) ⊆ Z(J). In particular I = J if and only if Z(I) = Z(J).

Proof By Corollary 4 we have I = (f) and J = (g), where f and g are the
respective principal generators. Clearly if (f) ⊇ (g) then Z(g) ⊇ Z(f). If the
zero set of g contains the zero set of f , then g = fh for some polynomial h.
Hence (f) ⊇ (g). ut

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



10 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

Given an ideal I ⊂ B[x0, . . . , xn−1], our aim is to find the ideal I1 ⊂
B[x1, . . . , xn−1] such that Z(I1) = π0(Z(I)). More generally, when eliminat-
ing more variables we aim to find the ideal Ik ⊂ B[xk, . . . , xn−1], such that
Z(Ik) = πk−1 ◦ (· · · ◦ (π0(Z(I)))). Since the degree of the polynomials can
grow very quickly when eliminating variables, in practice we have to settle for
computing an ideal J , as large as possible given computational restrictions,
which is contained in Ik.

Let us first describe precisely the ideal Ik whose zero set is the sequence
of projections πk−1 ◦ (· · · ◦ (π0(Z(I)))). This corresponds to what is known as
the elimination ideal I ∩ B[xk, . . . , xn−1].

Lemma 6 Let Ik ⊆ B[xk, . . . , xn−1] be the ideal of all Boolean functions van-
ishing on πk−1 ◦ (· · · ◦ (π0(Z(I)))). Then Ik = I ∩ B[xk, . . . , xn−1].

Proof We show this for the case when eliminating one variable, the general case
follows in a similar manner. Clearly I1 ⊇ I∩B[x1, . . . , xn−1]. Conversely let f ∈
B[x1, . . . , xn−1] vanish on π0(Z(I)). Then f must also vanish on Z(I), where f
is regarded as a member of the extended ring B[x0, . . . , xn−1]. Therefore f ∈ I
by Corollary 5. ut

A standard technique for computing elimination ideals is to use Gröbner
basis computation, which iteratively eliminates one monomial at the time. In
fact, to compute elimination ideals via Gröbner bases one has to compute the
full Gröbner basis before performing elimination. Computing Gröbner bases
is computationally heavy because the degrees of the polynomials grow rapidly
over the iterations. To deal with this problem, we propose new tools which
also restrict the degree of the polynomials.

Our solution is to not use all polynomials during elimination but only
compute with those that do not produce new polynomials of high degree. We
denote an ideal where the degree is restricted to some d by Id, whereas I≤n

means that we allow all degrees. The benefit from our approach is that the
elimination process has much lower complexity, at the cost of the following
disadvantage.

Discarding polynomials of degree > d gives an ideal I≤d that is only con-
tained in the elimination ideal I≤n = I∩B[xj , . . . , xn−1]. It follows that Z(I≤d)
of the eliminated system contains all the projected solutions of the original set
of equations, but it will also contain “false” solutions which will not fit the
ideal I when lifted back to Fn2 , regardless of which values we assign to the
eliminated variables. Since the proposed procedure expands the solution space
to include false solutions, the worst case scenario is when we end up with an
empty set of polynomials after eliminating a sequence of variables. This means
that all constraints given by the initial I have been removed, and we end up
with the complete Fn−k2 as a solution space.

It is important to note that not discarding any polynomials will provide,
by Lemma 6, only the true solutions to the set where variables have been
eliminated. Hence the solutions can then be lifted back to the solutions of

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 11

the initial ideal I. The drawback of this approach is that we must be able to
handle arbitrarily large polynomials, i.e., high computational complexity.

Thus there is a tradeoff between the maximum degree d allowed, and the
proximity between the “practical” ideal I≤d and the true elimination ideal
I≤n. In the following, we are going to dig deeper into this trade-off.

In the remainder of the paper we adopt the following non-standard no-
tation: For a polynomial f i, the superscript i indicates that f has degree i,
and does not mean f raised to the power i. The reason for this is that since
we bound the degree of polynomials we work with, it is important to keep in
mind which degree the various polynomials and monomials have. Therefore we
indicate this with a superscript. Similarly, F i for a set of polynomials indicates
that all polynomials in F have degree i.

We can split the initial system F into d sets according to degree:

F d = {fd1 , . . . , fdrd}, F
d−1, . . . , F 2, F 1 = {f11 , . . . , f1r1},

The polynomials in F d, F d−1, . . . , F 1 together generate the ideal

I = (F d, F d−1, . . . , F 1)

. The focus in this paper is to eliminate variables from a system of Boolean
equations. From here on we therefore always assume that F 1 = ∅ and omit it
from further analysis, since otherwise we could just use any (linear) polynomial
in F 1 to eliminate a variable without changing the degree of the system.

For a set of polynomials F , we use the notation Fx0
to mean that all

polynomials in F depend on the variable x0. Similarly, Fx0
indicates that x0

does not appear in any of the polynomials in F .

4 Elimination Techniques

Our approach to solve the system (1) is to eliminate variables so that we
find degree ≤ d polynomials in Ik, in smaller and smaller Boolean rings
B[xk, . . . , xn−1]. Our objective is to find as many polynomials in the ideal
I(F ) as possible computing only with polynomials of degrees ≤ d. This limits
both storage and computational complexity.

Let F = (f1, . . . , fm) be a set of Boolean equations in B[x0, . . . , xn−1] of
degree ≤ d, and denote by 〈F 〉 the vector space spanned by the polynomials in
F , where each monomial is regarded as a coordinate. Let L≤i = Li∪. . .∪L1∪L0

be the set of monomials of degree ≤ i, that is, L0 = {1}, L1 = {x0, . . . , xn−1},
etc. Then 〈L≤i〉 is the vector space spanned by the Boolean polynomials of
degree ≤ i.

For the set of polynomials F i, (i = 2, . . . , d − 1) we consider the sets
L≤jF i of all products lf where l ∈ L≤j and f ∈ F i. Since we are bounding
the maximal degree to be d, we can be certain to form any such product
provided that i+ j ≤ d. With this constraint, the total set of polynomials we
can construct in our analysis is the vector space generated from the following
basis:

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



12 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

F d ∪ L≤1F d−1 ∪ L≤2F d−2 ∪ · · · ∪ L≤d−2F 2.

For the purpose of this paper, we shall need two types of total orders on
the monomials in a Boolean ring.

1. An x0-elimination order: If t1 and t2 are monomials where t1 contains x0
while t2 does not, then t1 > t2. An example is the lexicographic order.

2. A degree order: If t1 has degree larger than t2 then t1 > t2.

As part of the variable elimination process, it will be necessary to split a
set of polynomials according to dependency on x0 and possibly according to
degree. The procedures for this can be implemented in terms of row reduc-
tion on the Macaulay matrix of the given set: Its columns are indexed by the
monomials according to the total order we use, and the rows are indexed by
the polynomials in our set. The entries are the coefficients of the monomials
of the polynomials. A basic procedure is:

SplitV ariable(F, x0): We use an x0-elimination order. We perform Gaussian
elimination on the Macaulay matrix of F on all the columns indexed by mono-
mials containing x0 (which form an initial segment of columns) to get these
columns in row-reduced echelon form. The rest of the columns are not of con-
cern in this procedure. The outputs are sets of polynomials Fx0

consisting of
polynomials which containing x0-terms (the upper rows of the resulting ma-
trix), and Fx0

consisting of those polynomials not containing x0-terms (the
remaining lower rows of the resulting matrix).

4.1 Normalization

The purpose of normalization is to eliminate many monomials containing x0
from a given polynomial, using a set of lower-degree polynomials depending
on x0 as a basis. Suppose we have an x0-elimination ordering. Let f i ∈ F ix0

be
given, and let Gx0

= {g1, . . . , gr} be a set of polynomials of degree ≤ i which
all contain x0. In general we say that f i is normalized with respect to Gx0

if no
term in f i is divisible by any leading term (with respect to the x0-elimination
order) of the polynomials in Gx0 , and we write f i,norm when we need to stress
that f i is normalized (with respect to some basis).

Without restriction on the degree, it is easy to create f i,norm from f i and
Gx0

. Simply run through the polynomials in Gx0
and check if some monomial

mf in f i is divisible by a leading term of some gj ∈ Gx0
. If mf = q ∗ in(gj),

eliminate mf by adding qgj to f i. Doing this successively for all polynomials
in Gx0 will produce f i,norm.

Since we need to restrict the degree of the polynomials we work with to
be at most d, extra care has to be taken. The leading term in(gj) of some gj
may not be of the highest degree among the monomials in gj , for instance if
gj = x0x3 + x1x3x4. When this happens we can only eliminate the mf in f i

where deg(q) + deg(gj) ≤ d, since we do not want to possibly introduce terms

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 13

of degree larger than d. We, therefore, give the following definition of what
normalization means in this paper.

Definition 7 Let f i ∈ F ix0
and d ≥ i be given, and let Gx0

be a set of poly-
nomials all depending on x0 with an x0-elimination ordering. We say that
f i is normalized with respect to Gx0 if no term mf in f i can be written as
mf = q ∗ in(g) for any g ∈ Gx0 where deg(q) + deg(g) ≤ d. When writing
F i,norm for a set of polynomials we mean that every polynomial in F i is nor-
malized with respect to some basis, and that all the polynomials have distinct
initial terms.

In our algorithm, we combine normalization and Gaussian reduction to
get polynomials with distinct initial terms. We start with F 2

x0
and perform

Gaussian reduction. Denote the new set of polynomials F 2,norm
x0

. The general
procedure is as follows.

Normalize(F ix0
)

1. The polynomials of F ix0
are put into the rows of a Macaulay matrix. Per-

form SplitVariable(F ix0
, x0) to get new set F ix0

where the x0-part is in row-
reduced echelon form. If there are polynomials without x0-terms, put these
into F ix0

.

2. For each f i in F ix0
normalize it with respect to ∪i−1j=2F

j,norm
x0

.

3. Again perform SplitV ariable(F ix0
, x0) to get the x0-part in row-reduced

echelon form. The polynomials containing x0 form the set F i,normx0
. If any

polynomials do not contain x0, then add these polynomials to the set F ix0
.

4.2 Resultants

The second tool for elimination we use is resultants, which eliminates x0 from a
pair of polynomials. Let f1 = a1x0 +b1 and f2 = a2x0 +b2 be two polynomials
in B[x0, . . . , xn−1]. The variable x0 has been factored out so the polynomials
ai and bi are in B[x1, . . . , xn−1]. In order to find the resultant, form the 2× 2
Sylvester matrix of f1 and f2 with respect to x0

Syl(f1, f2, x0) =

(
a1 a2
b1 b2

)
The resultant of f1 and f2 with respect to x0 is then simply the determinant

of this matrix, and hence a polynomial in B[x1, . . . , xn−1]:

Res(f1, f2, x0) = det(Syl(f1, f2, x0)) = a1b2 + a2b1

We note that Res(f1, f2, x0) = a2f1 + a1f2, too, which means that the re-
sultant is indeed in the ideal generated by f1 and f2. Moreover, Res(f1, f2, x0)
is in the elimination ideal I1.

When both f1 and f2 are quadratic, then the ai’s are linear so the de-
gree of the resultant Res(f1, f2, x0) is at most 3. More generally, since we are

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



14 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

restricting the degree to at most d we can not take the resultants between
all pairs of polynomials from F . Say f1 ∈ F i and f2 ∈ F j . Then we have
deg(a1) ≤ i− 1, deg(a2) ≤ j− 1, deg(b1) ≤ i and deg(b2) ≤ j. Hence it follows
that deg(Res(f1, f2, x0)) ≤ i + j − 1, which is certain to respect the degree
bound only when i+ j ≤ d+ 1. Hence we can take resultants of all polynomial
pairs from the sets F i, F j as long as i+ j ≤ d+ 1:

Res(F i, F j , x0) = {Res(f, g, x0)|f ∈ F i, g ∈ F j , i+ j ≤ d+ 1}.

For a set F of polynomials of differing degree, we split F into F d, . . . , F 2

and denote
Res(F, x0) = ∪i+j≤d+1Res(F

i, F j , x0).

It is easy to see that Res(F, x0) is contained in the elimination ideal I(F ) ∩
B[x1, . . . , xn−1], but this inclusion is in general strict.

Relation to Gröbner bases: Computing a resultant may be realized in terms
of Gröbner bases, by running a slightly modified Buchberger’s algorithm. We
show this in the case of quadratic polynomials for ease of exposition, and the
general case follows the same reasoning. Assume we have a lexicographic order
on the monomials, where x0 > x1 > x2 and all other variables are smaller than
x2. Let

f1 = (x1 + a1)x0 + b1
f2 = (x2 + a2)x0 + b2

,

where a1 and a2 are linear combinations where neither x1 nor x2 appears,
and b1, b2 do not depend on x0. The first step of Buchberger’s algorithm is
to compute the S-polynomial of f1 and f2, and then reduce it modulo the
polynomials already in the basis. Here we only consider reduction modulo the
sub-basis consisting of (f1, f2). The leading monomial of f1 is x0x1 and the
leading monomial of f2 is x0x2. The S-polynomial is then

S = x2f1 + x1f2 = x0x1a2 + x0x2a1 + x1b2 + x2b1.

The next step is to divide S on the two polynomials (f1, f2) to find the re-
mainder that should be added to the sub-basis. The highest monomials in S
are x0x1xk, for the various xk appearing in a2. All of these monomials are di-
visible by the leading monomial of f1. After a number of steps in the division
we arrive at

S = a2f1 + x0x2a1 + x0a1a2 + x1b2 + (x2 + a2)b1.

The remainder now has x0x2xk as the highest monomials, for the different xk
appearing in a1. All of these terms are divisible by the leading monomial of f2.
When continuing the division algorithm the x0a1a2-terms will appear twice
and cancel, so we arrive at

S = a2f1 + a1f2 + (x1 + a1)b2 + (x2 + a2)b1.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 15

We see that the remainder (the last two terms) when reducing the S-polynomial
only modulo the sub-basis (f1, f2) is exactly the resultant.

In a full implementation of an algorithm computing Gröbner bases the
resultant would be reduced against all other polynomials in the basis. We are
only interested in eliminating the terms containing x0, so computing resultants
are more efficient and straight to the point for our purpose than computing
S-polynomials followed by a full reduction.

4.3 Coefficient constraints

The next object we introduce is what is exactly required to close the gap that
the resultants leave in the elimination ideal.

Definition 8 Let I(F ) = (f1, . . . , fm) ⊆ B[x0, . . . , xn−1], and write each fi as
fi = aix0+bi, where neither ai nor bi depends on x0. We define the coefficient
constraint ideal as

Co(F, x0) = (b1(a1 + 1), b2(a2 + 1), . . . , bm(am + 1)).

We note that the degrees of the generators of Co(F, x0) have the same
degrees as the generators of Res(F i, x0), and it follows that we can form the
coefficient constraints for F i as long as 2i ≤ d + 1 ⇐⇒ i ≤ (d + 1)/2. In the
case when I(F ) consists of quadratic polynomials, the generators of Co(F, x0)
will be polynomials of degree ≤ 3.

Similarly to resultants, the coefficient constraints can also be realized through
familiar Gröbner basis computations when we make use of the field polyno-
mials x2i + xi. We show this for a quadratic polynomial. Consider when we
have the lexicographic order where x0 > x1 and x1 is bigger than all other
variables. Let

f = (x1 + a)x0 + b,

where all terms in a are smaller than x1. Compute the S-polynomial of f and
x21 + x1:

S = x1f + x0(x21 + x1) = x0x1a+ x0x1 + x1b.

The highest monomials in S are x0x1xj for the different xj appearing in a, all
of which are divisible by the leading monomial in f . We also have the quadratic
monomial x0x1 in S. Dividing S by f then gives

S = (a+ 1)f + x0(a2 + a) + (x1 + a+ 1)b.

All cross-terms xjxk in the squared linear combination a2 will cancel since
our base field has characteristic 2. Hence x0(a2 + a) will be a sum of terms
x0x

2
j+x0xj where the highest monomials are the x0x

2
j given by the elimination

order. These are all divisible by the leading monomials of the field polynomials

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



16 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

x2j+xj . Continuing the division algorithm using the field equations will remove

all terms in x0(a2 + a). Assuming a starts with xj + xk + . . . we get

S = (a+ 1)f + x0(x2j + xj) + x0(x2k + xk) + . . .+ (x1 + a+ 1)b.

This gives a remainder (x1 + a + 1)b that does not depend on x0, and it
is exactly the coefficient constraint. In the same way as with resultants, co-
efficient constraints allow us to jump straight to the answer of reducing an
S-polynomial modulo a given basis, instead of going through all the steps of
the division in a Gröbner basis algorithm.

An important fact is that the zero set of Co(F, x0) contains the projection
of the zero set of I(F ) onto Fn−12 .

Lemma 9 Z(Co(F, x0)) ⊇ π0(Z(I(F ))).

Proof A point p ∈ Fn−12 is not in the zero set Z(Co(F, x0)) when for some i we
have ai(p) = 0 and bi(p) = 1. For both the two liftings of p to Fn2 : p0 = (0,p)
and p1 = (1,p) we have fi(pj) = 1. Therefore p /∈ π0(Z(I(F ))), and so we
must have Z(Co(F, x0)) ⊇ π0(Z(I(F ))). ut

By the Lemmas 6 and 9, it follows that the coefficient constraint ideal
lies in the elimination ideal. We can now use this ideal to describe the full
elimination ideal, which turns out to be generated precisely by Res(F, x0) and
Co(F, x0).

Theorem 10 Let I(F ) = (f1, . . . , fm) ⊆ B[x0, . . . , xn−1] be an ideal generated
by a set F of Boolean polynomials. Then

I(F ) ∩ B[x1, . . . , xn−1] = I(Res(F, x0), Co(F, x0)).

Proof By Lemma 6 we have

π0(Z(I(F ))) = Z(I(F ) ∩ B[x1, . . . , xn−1]).

We know that

I(F ) ∩ B[x1, . . . , xn−1] ⊇ I(Res(F, x0),Co(F, x0)),

which implies that

π0(Z(I(F ))) = Z(I(F ) ∩ B[x1, . . . , xn−1]) ⊆ Z(Res(F, x0)) ∩ Z(Co(F, x0)).

Conversely, let a point p ∈ Z(Res(F, x0)) ∩ Z(Co(F, x0)) be given. Then
p has two liftings to points in Fn2 : p0 = (0,p) and p1 = (1,p). We will show
that at least one of p0 or p1 is contained in Z(I(F )). Let fi = x0ai + bi be
an element in F . Since p vanishes on Co(F, x0), the following are the possible
values for the terms in fi.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 17

ai(p) bi(p)
0 0
1 0
1 1

Note that Co(F, x0) excludes (ai(p), bi(p)) from taking the value (0, 1).
Since p also vanishes on the resultant ideal, there cannot be two fi and fj
such that (ai(p), bi(p)) takes the value (1, 0) and (aj(p), bj(p)) takes the
value (1, 1), since in that case the resultant aibj + ajbi would not vanish.
This means that either 1) : {(ai(p), bi(p))|1 ≤ i ≤ m} ⊆ {(0, 0), (1, 0)}, or
2) : {(ai(p), bi(p))|1 ≤ i ≤ m} ⊆ {(0, 0), (1, 1)}. In case 1), the lifting p0 is in
the zero set Z(I(F )). In case 2) the lifting p1 is in the zero set of Z(I(F )).
This shows that Z(Res(F, x0)) ∩ Z(Co(F, x0)) lifts to Z(I(F )), which means
that

π0(Z(I(F ))) = Z(I(F ) ∩ B[x1, . . . , xn−1]) ⊇ Z(Res(F, x0)) ∩ Z(Co(F, , x0))

as desired. ut

In general, this process can be iterated eliminating more variables. We de-
note by Res(F, x0, . . . , xk−1) and Co(F, x0, . . . , xk−1) the iterative application
of the resultant and the coefficient constraint ideal with respect to a sequence
x0, . . . , xk−1 of variables to be eliminated. Note that both Lemma 9 and Propo-
sition 10 easily generalize to this case. We can also generalize Theorem 10 as
follows.

Corollary 11 For I(F ) = (f1, . . . , fm) in B[x0, . . . , xn−1], then

I(F ) ∩ B[xk, . . . , xn−1] = I(Res(F, x0, . . . , xk−1), Co(F, x0, . . . , xk−1)).

This enables us to actually compute the elimination ideal independent of
monomial order, in contrast to approaches using Gröbner bases (see [2,3]).
Moreover, one could find the elimination ideal by successively eliminating
x0, . . . , xk−1 using Corollary 11 by the following algorithm:

0. F0 = F ,
1. F1 = generators of Res(F0, x0) + Co(F0, x0),
2. F2 = generators of Res(F1, x1) + Co(F1, x1),
· · ·

i. Fi = generators of Res(Fi−1, xi−1) + Co(Fi−1, xi−1),
· · ·

We show that this simple solving algorithm already gives a complexity that
is better than the trivial O(2n).

Lemma 12 If the degree of the polynomials in F0 is 2, then the maximal
degree of the polynomials in Fi is at most 2i + 1.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



18 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

Proof We show this by induction. The statement is clearly true for i = 0.
Assume the statement is true for i = j, so the maximal degree of the poly-
nomials in Fj is 2j + 1. The generators for both Res(Fj , xj) and Co(Fj , xj)
are computed by multiplying two polynomials, where the first has degree at
most 2j (because xj has been factored out), and the other has degree at most
2j + 1. The generators of Res(Fj , xj) and Co(Fj , xj) then get maximal degree
2 · 2j + 1 = 2j+1 + 1, as desired. ut

Theorem 13 The maximal degree of any polynomial in any Fi when running
the elimination algorithm above is upper bounded by n − log2(n) + 1 and F0

only has quadratic polynomials.

Proof Let D be the maximal degree encountered during the elimination algo-
rithm. From Lemma 12 we know that D = maxi:0≤i≤n(min{2i+1, n−i}). For
small i, 2i + 1 < n− i, but the function 2i + 1 is increasing and the function
n − i is decreasing when i increases, so there will be an integer i0 such that
2i0 +1 ≤ n−i0 and 2i0+1+1 > n−i0−1. Then D = max{2i0 +1, n−i0−1}. It
is easy to see that 2log2(n)−1 + 1 = n/2 + 1 ≤ n− log2(n) + 1 and 2log2(n) + 1 =
n+ 1 > n− log2(n) when n ≥ 1, so i0 = log2(n)−1. The theorem then follows
since D ≤ max{2log2(n)−1 + 1, n− log2(n) + 1} = n− log2(n) + 1. ut

In [15, p. 315] it is stated that the maximal degree of polynomials occurring
in the computation of Gröbner bases over B[x0, . . . , xn−1] is n. Theorem 13
improves on this, in the sense that a solving algorithm using elimination of
variables only needs to consider polynomials of degree up to n− log2(n) + 1.

Applying the straightforward elimination of variables in practice leads to
problems, however, due to the initial exponential growth of degrees from the
resultants and coefficient constraints with each elimination. With many vari-
ables, the number of monomials quickly becomes too large for a computer to
work with, which is why we suggest in this paper to only compute polynomials
of degree ≤ d, where d is a free parameter. Note that Corollary 11 is only valid
if we do not restrict the maximum degree allowed.

4.4 Syzygies

The last concept we will define is that of syzygies. In fact, syzygies will give a
more general view on resultants and coefficient constraints. The reason for this
extension is that for degree d, in general both deg(Res(F d, F d, x0)) = 2d − 1
and deg(Co(F d, x0)) = 2d−1. This means that computation of the generators
for I(∪di=2F

i)∩B[x1, . . . , xn−1] produces polynomials of degree ≤ 2d−1. When
restricting the maximum allowed degree, resultants and coefficient constraints
are not sufficient to generate the full elimination ideal. nontrivial syzygies fill
this gap.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 19

Definition 14 Let a1, . . . , a` be boolean polynomials in B = B[x0, . . . , xn−1].
Let

B` = Bε1 ⊕ · · · ⊕ Bε`
be the free B-module of rank `, where ε1, . . . , ε` is an (abstract) basis. The
syzygy module S for polynomials ai is the submodule of B` consisting of all
r1ε1 + · · ·+ r`ε` ∈ B` which form a relation

r1a1 + · · ·+ r`a` = 0.

We may also specify natural numbers d1, . . . d` such that deg ai ≤ di. We
let the module B` be graded by letting εi have degree di. Then the syzygies of
degree ≤ d, S≤d consists of the syzygies

∑
i riεi such that deg(ri) + di ≤ d.

Syzygies are connected to Gröbner bases in the literature concerning op-
timizations of Buchberger’s algorithm. In fact, most known approaches to
Gröbner bases (for example [8,9]), reduce to computing the module of syzygies
over the polynomial ring K[x0, . . . , xn−1] for some field K.

In [10, Ch.3] it is shown that whenever we get a reduction to 0 for an S-
polynomial in Buchberger’s algorithm, this reduction corresponds to a syzygy.
One way to find the syzygies of some polynomials (f1, . . . , fm) is therefore
to save the ones encountered when reducing S-polynomials in Buchberger’s
algorithm for computing Gröbner bases. In our work we also consider syzygies,
but we generate a basis for them directly, without going through reductions
of S-polynomials. Note that it is known that one can compute the elimination
ideal by using Gröbner bases ([2,3]). Our approach is related but differs from
the Gröbner bases approaches considered in the literature: We attempt to find
more efficient ways of computing the vector space

〈F d ∪ L1F d−1 ∪ L2F d−2 ∪ · · · ∪ Ld−2F 2〉 ∩ B[x0, . . . , xn−1].

Let us indicate how syzygies enter here. Given a set of polynomials

F : x0a1 + b1, x0a2 + b2, . . . , x0am + bm,

let V be the linear space of all expressions

l1(x0a1 + b1) + · · ·+ lm(x0am + bm)

with certain degree restrictions deg(li) ≤ di or equivalently li ∈ 〈Ldi〉. We
want to eliminate x0 and compute the space V ∩B[x1, . . . , xn−1]. By a suitable
reduction process we shall obtain a set of polynomials

F ′ : x0a
′
1 + b′1, x0a

′
2 + b′2, . . . , x0a

′
k + b′k.

Let V ′ be the linear space of all expressions

l′1(x0a
′
1 + b′1) + · · ·+ l′l(x0a

′
k + b′k) (2)

where l′i now is a polynomial in 〈Leix0
〉 (for appropriate ei). The essential step

in computing the elimination space V ∩ B[x1, . . . , xn−1] turns out to be to

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



20 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

compute V ′∩B[x1, . . . , xn−1]. But we see that if an element (2) is in the latter
intersection, we must have

l′1a
′
1 + · · ·+ l′ka

′
k = 0,

so l′1ε1 + · · ·+ l′kεk is a syzygy for the a′i. For each such syzygy we get by (2)
a corresponding element in the intersection V ′ ∩ B[x1, . . . , xn−1]:

l′1b
′
1 + · · ·+ l′kb

′
k

and this intersection is the space of all such elements as we vary over the
syzygies of the a′i.

The following illustrates how the approach in this paper differs from Gröbner
bases.

1. We compute the syzygies directly in the Boolean ring B[x1, . . . , xn−1],
which means that the field equations are encoded into our computations in
contrary to Gröbner bases which are computed over the polynomial ring
F2[x1, . . . , xn−1], thus needing the field equations to be added to the system
of equations.

2. In the approach of this paper we only need to compute syzygies on the
ai−1j terms. These have degree one less than the f i’s.

3. The approach here avoids the chain of reductions as done in Buchberger’s
algorithm since syzygies are computed directly. The trivial syzygies are
Koszul syzygies aj−1l εi−1k − ai−1k εj−1l , and Boolean syzygies(ai−1k + 1)εi−1k

and any multiples of these allowed by the degree restriction d.
4. The approach is ”straight to the point” meaning that we eliminate variables

in a straightforward way avoiding precise term orderings apart from the
elimination order x0 > x1 > . . ., which can be arbitrary.

The Boolean syzygies are unique because they only occur for characteristic
2. In the following, we show that these two types of trivial syzygies give the
resultants and coefficient constraints when applied to the f i’s.

4.5 Syzygies between linear polynomials

Let a1, · · · , a` be Boolean polynomials in 〈L≤1x0
〉. After suitable Gaussian elim-

ination we may assume that they are ordered so that the intial terms (in this
case a variable or simply the constant 1)

in(a1) > in(a2) > · · · > in(a`). (3)

Proposition 15 Let S ⊆ Bε1 ⊕ · · · ⊕ Bε` be the syzygy module for a1, . . . , a`,
where each εi has degree 1. There are the following syzygies in S:

1. Koszul syzygies ajεi + aiεj,
2. Boolean syzygies (ai + 1)εi.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 21

Let K (resp. B) be the linear spaces generated by the Koszul (resp. Boolean)
syzygies, and let d ≥ 2. Then S≤d is 〈Ld−2x0

〉K + 〈Ld−2x0
〉B.

Proof Let r =
∑
i riεi be a syzygy of degree ≤ d so each deg(ri) ≤ d − 1.

Suppose a term in ri is t · in(aj) where i ≤ j and deg(t) + 1 ≤ d − 1 (so
t ∈ 〈Ld−2x0

〉). If i < j we subtract t · (aiεj + ajεi) from r, and if i = j we
subtract (ai + 1)εi. Continuing this way we get a syzygy r′ =

∑
i r
′
iεi such

that r′i contains no term in(aj) where j ≤ i. We show that r′ = 0. This will
prove the proposition. So we have the relation

∑
i r
′
iai = 0. Let in(a1) = x1,

say. Then no aj for j ≥ 2 contains the variable x1 by the assumption (3). But
also no r′j contains the variable x1 by construction. Hence the only terms in
the relation above that contains x1 are the terms in r′1x1. Hence we must have
r′1 = 0. In this manner we may continue and we get that all r′i = 0. ut

When considering a system of independent quadratic polynomials F 2 =
{f1, . . . , fm} where each fi = x0ai + bi or fi = bi (if f does not contain x0),
it follows that the ai are polynomials of degree ≤ 1. By Proposition 15 we
know that the syzygy module is generated by Koszul and Boolean syzygies,
which implies that if we map εi to bi and εj to bj in the Koszul syzygies we
generate exactly the resultant Res(fi, fj , x0) = ajbi+aibj . Similarly, mapping
εi to bi in the Boolean syzygies, we generate exactly the Coefficient constraint
Co(fi, x0) = (ai + 1)bi. This implies the following result.

Corollary 16 Let x0ai + bi for i = 1, . . . ,m be quadratic polynomials in
B[x0, . . . , xn−1]. The linear span of the resultants and coefficient constraints
in B[x1, . . . , xn−1] is precisely the image of the composition

K +B ⊆ (B[x1, . . . , xn−1]m)2
φ−→ 〈L3

x0
〉,

where φ sends εi 7→ bi.

Note how this relates to computing the intersection

〈L≤1x0
F 2
x0
〉 ∩ B[x1, . . . , xn−1].

By Proposition 15 the above is equivalent to find all solutions (l1, . . . , lm),

where li ∈ 〈L≤1x0
〉 that satisfy l1a1 + l2a2 + · · ·+ lr2ar2 = 0. This is the linear

span of the Koszul and Boolean syzygies. Corollary 16 above gives that the
intersection is generated by the resultants and the coefficient constraints.

Syzygies between polynomials of degree ≥ 2: When the degree of
some ai’s are greater than 1, there may be other syzygies that are not generated
by the Koszul and Boolean syzygies. We discuss these nontrivial syzygies in
the Appendix.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



22 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

5 Elimination of variables from systems of Boolean equations

Previous work on solving Boolean equation systems in ANF form include the
XL and XSL algorithms [6,7]. In those approaches, one multiplies all equations
with all monomials up to some fixed degree. If the degree is large enough, one
could hope to have more equations than monomials in the system, and hence
solve the system by re-linearization.

One can also use the approach of multiplying all polynomials with all mono-
mials up to some degree to eliminate the variable x0. Indeed, after generating
the Macaulay matrix of the full set of polynomials one can perform Gaussian
elimination on terms containing x0. If we have more independent polynomials
than x0-terms we are certain to end up with some equations with no terms
depending on x0. This procedure can be iterated to eliminate a sequence of
variables x0, x1, . . . just by using Gaussian elimination on the set of polyno-
mials after multiplying with all allowed monomials.

When we have polynomials of low degree in F , the complexity of multi-
plying all of them with all monomials of allowed degree quickly becomes very
large when d increases. We aim to eliminate x0 for the sets F d, F d−1, . . . , F 2 in
a more efficient way motivated by the tools developed in the previous sections.

5.1 Bounding the degree to d = 3

The lowest degree possible to make meaningful use of the elimination tech-
niques is to set the degree bound at d = 3. Here the input polynomials are
cubic and quadratic, which means that we consider the sets F 3 and F 2. In the
following procedure, these sets will be modified to only include polynomials
respecting the degree constraint d ≤ 3 while eliminating the variable x0. The
elimination procedure proceeds as follows:

1. We start by splitting the set F 2 into subsets F 2,norm
x0

and F 2
x0

using the
procedure SplitV ariable(F 2, x0). We increase F 3, by adding x0F

2
x0

and
(x0 + 1)F 2,norm

x0
to F 3. Note that we only multiply the sets F 2,norm

x0
and

F 2
x0

with (x0 + 1), resp. x0 and not with all linear polynomials.
2. With the new sets, we normalize F 3 with F 2,norm

x0
as basis, producing

F 3,norm
x0

and F 3
x0

. Since all initial terms in F 2,norm
x0

depend on x0, all terms
removed in the normalization process will depend on x0. Hence we get
rid of many terms containing x0 in this step. The Gaussian elimination in
SplitV ariable allows us, however, to perform the reductions with these ”all
at once” in analogy with the F4 algorithm, [8]. The normalization process
removes a lot of the degree ≤ 3 monomials depending on x0 in F 3

x0
and

may eliminate x0 completely from some polynomials.
3. The final step is to compute resultants and coefficient constraints from

the set F 2,norm
x0

. We create Res(F 2,norm
x0

, x0) and Co(F 2,norm
x0

, x0) and join
these sets with F 3

x0
.

The outputs of the procedure are F 3
x0

and F 2
x0

, sets of cubic and quadratic
polynomials that do not depend on x0. The following theorem shows that by

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 23

following this procedure we have not lost anything essential, in the sense that
all polynomials in F 2

x0
multiplied with Lx0 = {x1, . . . , xn−1} together with F 3

x0

still generate the whole 〈F 3 ∪ LF 2〉 ∩ B[x1, . . . , xn−1].

Theorem 17 Let F 3 and F 2 be the input sets of polynomials, and F 3
x0

and
F 2
x0

be the outputs of the elimination procedure.
a. The linear span

〈F 3 ∪ L≤1F 2〉 = 〈F 3,norm
x0

∪ L≤1x0
F 2,norm
x0

∪ F 3
x0
∪ L≤1x0

F 2
x0
〉.

b. The elimination space

〈F 3 ∪ L≤1F 2〉 ∩ B[x1, . . . , xn−1] = 〈F 3
x0
∪ L≤1x0

F 2
x0
〉.

Proof a. It is clear that we have the inclusion ⊇. Let us now prove that we
have inclusion ⊆. First note that we have the following decompositions

〈F 2〉 = 〈F 2,norm
x0

∪ F 2
x0
〉

and
〈L≤1〉 = 〈x0〉+ 〈L≤1x0

〉
This gives

〈L≤1F 2〉 = 〈L≤1F 2,norm
x0

〉+ 〈L≤1F 2
x0
〉

= (x0 + 1)〈F 2,norm
x0

〉+ 〈L≤1x0
F 2,norm
x0

〉+ x0〈F 2
x0
〉+ 〈L≤1x0

F 2
x0
〉. (4)

Now by the normalization procedure in Part 2. above:

〈F 3〉+ (x0 + 1)〈F 2,norm
x0

〉+ x0〈F 2
x0
〉 ⊆ 〈F 3,norm

x0
∪ F 3

x0
∪ L≤1x0

F 2,norm
x0

〉. (5)

Hence putting (4) and (5) together we obtain

〈F 3〉+ 〈L≤1F 2〉 ⊆ 〈F 3,norm
x0

〉+ 〈L≤1x0
F 2,norm
x0

〉+ 〈F 3
x0
〉+ 〈L≤1x0

F 2
x0
〉,

which gives part a.

b. By the identity in a. we see that

〈F 3 ∪ L≤1F 2〉 ∩ B[x1, . . . , xn−1] (6)

= 〈F 3
x0
∪ L≤1x0

F 2
x0
〉+ 〈F 3,norm

x0
∪ L≤1x0

F 2,norm
x0

〉 ∩ B[x1, . . . , xn−1].

Let x0a
1
i + b2i be the elements of F 2,norm

x0
and x0a

2
i + b3i be the elements of

F 3,norm
x0

. Then any element of the intersection on the right side of (6), comes
from an expression ∑

i

li(x0a
1
i + b2i ) +

∑
i

ci(x0a
2
i + b3i ),

where the li are linear polynomials in B[x1, . . . , xn−1] and the ci constants.
We must have the relation ∑

i

lia
1
i +

∑
i

cia
2
i = 0.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



24 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

But due to the elements of F 3,norm
x0

being normalized with respect to F 2,norm
x0

,
for any such relation we have each ci = 0 and the syzygy

∑
i liε

1
i is a linear

combination of Koszul and Boolean syzygies. By Corollary 16 the last intersec-
tion in (6) is then a linear combination of resultants and coefficient constraints,
and these have already been put into F 2

x0
. This proves part b. ut

Example: The following small example illustrates how the elimination
procedure works. Let F 2 be the initial system with quadratic equations in the
five variables x0, x1, x2, x3, x4:

F 2 =


x2x4 + x1x4 + x0x3 + x0x1 + x4 + x0
x2x4 + x0x3 + x1x2 + x0x2 + x2 + 1
x1x4 + x0x4 + x3 + x2
x3x4 + x0x2 + x0x1 + x4 + x3 + x0


We will eliminate x0 from F 2, by allowing the degree of polynomials to increase
by one. First we split the set into F 2,norm

x0
and F 2

x0
, by doing Gauss elimination

on terms depending on x0. We then get

F 2,norm
x0

=

x1x4 + x0x4 + x3 + x2
x2x4 + x1x4 + x0x3 + x0x1 + x4 + x0
x1x4 + x1x2 + x0x2 + x0x1 + x4 + x2 + x0 + 1


F 2
x0

= {x3x4 + x1x4 + x1x2 + x3 + x2 + 1}

The next step is to compute (x0+1)F 2,norm
x0

and x0F
2
x0

and add to the complete
F 2-set. We then get

F 2 ∪ x0F 2
x0
∪ (x0 + 1)F 2,norm

x0
=

x0x1x4 + x1x4 + x0x3 + x0x2 + x3 + x2
x0x2x4 + x0x1x4 + x2x4 + x1x4 + x0x4 + x4
x0x1x4 + x0x1x2 + x1x4 + x0x4 + x1x2 + x0x2 + x4 + x2 + x0 + 1
x0x3x4 + x0x1x4 + x0x1x2 + x0x3 + x0x2 + x0
x1x4 + x0x4 + x3 + x2
x2x4 + x1x4 + x0x3 + x0x1 + x4 + x0
x1x4 + x1x2 + x0x2 + x0x1 + x4 + x2 + x0 + 1
x3x4 + x1x4 + x1x2 + x3 + x2 + 1


Normalizing this set with respect to F 2,norm

x0
gives us F 3,norm

x0
and F 3

x0
:

F 3,norm
x0

=


x1x4 + x0x4 + x3 + x2
x2x4 + x1x4 + x0x3 + x0x1 + x4 + x0
x1x4 + x1x2 + x0x2 + x0x1 + x4 + x2 + x0 + 1
x2x4 + x1x2 + x0x1 + x2 + x1 + 1
x1x2 + x4 + x3 + x1 + x0 + 1


F 3
x0

=

x1x2x4 + x4
x2x4 + x1x3 + x3 + 1
x3x4 + x1x4 + x1x2 + x3 + x2 + 1



Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 25

The next step is to compute the resultants and coefficient constraints of the
set F 2,norm

x0
. In this example we have three polynomials in F 2,norm

x0
so we will

get three polynomials in each of Res(F 2,norm
x0

, x0) and Co(F 2,norm
x0

, x0) These
sets are

Res(F 2,norm
x0

, x0) =

x1x3x4 + x2x4 + x1x4 + x2x3 + x1x3 + x1x2 + x4 + x2
x1x2x3 + x3x4 + x1x4 + x1x3 + x4 + x3 + x1 + 1
x2x4 + x1x4 + x2x3 + x1x3 + x1x2 + x3


Co(F 2,norm

x0
, x0) =

x2x3x4 + x1x3x4 + x1x2x4 + x3x4
x1x2x4 + x2x4 + x1x2 + x1
x3x4 + x2x4 + x3 + x2


Finally we join F 3

x0
, Res(F 2,norm

x0
, x0) and Co(F 2,norm

x0
, x0) together, and do

Gaussian elimination with respect to degree to remove any linearly dependent
polynomials. In this case there were no dependencies, and the final set returned
from the elimination procedure is

F 3
x0
∪Res(F 2,norm

x0
, x0) ∪ Co(F 2,norm

x0
, x0) =

x2x3x4 + x1x3x4 + x1x2x4 + x3x4
x1x3x4 + x2x4 + x1x4 + x2x3 + x1x3 + x1x2 + x4 + x2
x1x2x4 + x4
x1x2x3 + x3x4 + x1x4 + x1x3 + x4 + x3 + x1 + 1
x3x4 + x1x4 + x1x2 + x3 + x2 + 1
x2x4 + x1x2 + x4 + x1
x1x4 + x4 + x1 + 1
x2x3 + x1x3 + x3 + 1
x1x3 + x1x2 + x4 + x3 + x1 + 1


With this small example we see that eliminating x0 using our procedure

we generate nine polynomials of degree 3, in four variables. The final set is
Gaussian eliminated with respect to degree, and we also observe that we ac-
tually get five quadratic polynomials in x1, x2, x3, x4, one more polynomial
than we started with, in one variable less. This gives a small taste of why this
algorithm can be good for solving Boolean equation systems.

Optional addition to the algorithm.
The normalization process may produce polynomials in F 3,norm

x0
of degree

2. We could test for this and if so, add this to F 2
x0

and start the algorithm for
eliminating x0 over again. The new

〈F 3 ∪ LF 2〉

will normally be larger than the original one, and so we normally get a larger
elimination space than in Theorem 17b. This allows us to ”compute with terms
of degree 4 by only computing with terms of degree 3”: Suppose we produce
a polynomial of degree 2

h =
∑
i

cif
3
i +

∑
i

lif
2
i

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



26 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

where the ci are constants and the li are linear. Putting h in F 2, we can then
multiply it with a linear polynomial l′ to produce

h · l′ =
∑
i

cil
′f3i +

∑
i

lil
′f2i ,

and we see that the terms in the right expression will generally be of degree 4.

In the example above, we see that the F 3,norm
x0

we produced contains only
quadratic polynomials. Adding these to F 2,norm

x0
before computing resultants

and coefficient constraints yields all five x0-terms as initial monomials, and
hence

(
5
2

)
= 10 polynomials in Res(F 2,norm

x0
, x0):

Res(F 2,norm
x0

, x0) =

x2x3x4 + x1x2x3 + x2x4 + x2x3 + x1x3 + x1x2 + x3 + x2 + x1 + 1
x1x3x4 + x1x2x3 + x3x4 + x2x4 + x2x3 + x1x2 + x3 + x2 + x1 + 1
x1x2x4 + x1x3 + x1x2 + x4
x1x2x3 + x3x4 + x1x4 + x1x3 + x4 + x3 + x1 + 1
x3x4 + x1x3 + x1x2 + x4 + x3 + x2
x2x4 + x1x4 + x2x3 + x1x3 + x1x2 + x3
x1x4 + x1
x2x3 + x1x2 + x4 + x3
x1x3 + x4 + x2 + 1
x4 + x2 + x1 + 1


For the coefficient constraints, one of the polynomials in F 2,norm

x0
is of the

form x0 + b, where b ∈ B[x1, . . . , x4]. For this particular polynomial a = 1,
and hence the coefficient constraint (a+ 1)b = 0, so we only get four non-zero
polynomials in Co(F 2,norm

x0
, x0). These are

Co(F 2,norm
x0

, x0) =


x3x4 + x2x4 + x3 + x2
x2x3x4 + x1x3x4 + x1x2x4 + x3x4
x1x2x4 + x2x4 + x1x2 + x1
x1x2x4 + x2x4 + x1x2 + x2 + x1 + 1


Joining these two sets with F 3,norm

x0
and doing Gauss reduction with respect

to degree gives the following set.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 27

F 3
x0
∪Res(F 2,norm

x0
, x0) ∪ Co(F 2,norm

x0
, x0) =

x2x3x4 + x1x2x3 + x2x4 + x2x3 + x1x3 + x1x2 + x3 + x2 + x1 + 1
x1x3x4 + x1x2x3 + x3x4 + x2x4 + x2x3 + x1x2 + x3 + x2 + x1 + 1
x1x2x4 + x4
x1x2x3 + x3x4 + x1x4 + x1x3 + x4 + x3 + x1 + 1
x3x4 + x1x4 + x1x2 + x3 + x2 + 1
x2x4 + x1x3 + x3 + 1
x1x4 + x1x3 + x4 + 1
x2x3 + x1x3 + x1x2 + x4
x1x3 + x1x2
x1x2 + x4 + x1 + 1
x4 + x3 + x1 + 1
x3 + x1
x2 + x1
x1 + 1


Using the additional optimization, we are able to ”squeeze” out additional
low-degree polynomials compared to the initial F 2,norm

x0
. In this example we

get four independent linear polynomials after Gauss elimination in the four
remaining variables, and therefore easily solve the system. The solution in the
example is x1 = x2 = x3 = x4 = 1, and substituting these values into the
initial system immediately also gives the value for x0, which is also equal to 1.

Theorem 17 generalizes easily to eliminating several variables using the
elimination procedure.

Corollary 18 Let L≤1x0,...,xk−1
= {1, xk, . . . xn−1} be the subset of L≤1 not

containing the variables x0, . . . , xk−1. Let F 2
x0,...,xk−1

and F 3
x0,...,xk−1

be the
result of applying the elimination procedure above k times to the input sets
F 3, F 2, eliminating one variable at the time in the sequence x0, . . . , xk−1.
Then

〈F 3
x0,...,xk−1

∪ L≤1x0,...,xk−1
F 2
x0,...,xk−1

〉 = 〈F 3 ∪ L≤1F 2〉 ∩ B[xk, . . . , xn−1].

Proof The output after eliminating x0, . . . , xi−1 are the sets F 3
x0,...,xi−1

and

F 2
x0,...,xi−1

. These sets form the input for eliminating xi, and applying Theorem
17 on these input sets gives

〈F 3
x0,...,xi

∪ L≤1x0,...,xi
F 2
x0,...,xi

〉 =

〈F 3
x0,...,xi−1

∪L≤1x0,...,xi−1
F 2
x0,...,xi−1

〉 ∩ B[xi+1, . . . , xn−1],

for each i in {0, . . . , k−1}. Substituting these equations into each other creates
the stated relation between the original F 3, F 2 and F 3

x0,...,xk−1
, F 2

x0,...,xk−1
. ut

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



28 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

5.2 Degree bound d ≥ 4

We explain here how the elimination procedure needs to be generalized when
we increase the degree bound to d = 4. The construction is essentially the
same as in the previous section, but there will be more syzygies than Koszul
and Boolean syzygies, as pointed out in Theorem 26 in the Appendix.

Elimination procedure:

1. We split the set F 2 into subsets F 2,norm
x0

containing x0 and F 2
x0

not contain-
ing x0 by using SplitVariable(F 2, x0). These sets can be used to increase
F 3, by adding (x0 + 1)F 2,norm

x0
and x0F

2
x0

to F 3.
2. Normalize F 3 with respect to F 2,norm

x0
, producing F 3,norm

x0
and F 3

x0
.

3. Compute the resultants and coefficient constraints from F 2,norm
x0

and add
to F 3

x0

4. Add the sets (x0 + 1)F 3,norm
x0

and x0F
3
x0

to F 4.
5. Normalize F 4 with respect to F 3,norm

x0
∪ F 2,norm

x0
, giving the sets F 4,norm

x0

and F 4
x0

.
6. Compute resultants and coefficient constraints of the sets F 3,norm

x0
and

F 2,norm
x0

that respect the degree bound d = 4, and add these to F 4
x0

or F 3
x0

,
according to degree.

7. Compute the syzygies R3 of degree 3 from F 4,norm
x0

∪ F 3,norm
x0

. These gen-
erate a set T 4 of polynomials of degree ≤ 4 in B[x1, . . . , xn−1]. Add T4 to
F 4
x0

. This step is the main difference with respect to the case d = 3, and
finding the nontrivial syzygies is not straightforward.

The outputs of the procedure are the sets F 2
x0
, F 3

x0
and F 4

x0
.

If we increase to d = 5 or higher, the elimination procedure follows the
same lines as for d = 3 and d = 4. We normalize the F ix0

using the already
normalized sets of lower-degree polynomials as a basis, compute resultants and
coefficient constraints, as well as any nontrivial syzygies needed for eliminating
x0. When d grows, the space for possible nontrivial syzygies increases. A topic
for further research is to investigate how large fraction of all syzygies that are
covered by Boolean and Koszul syzygies when d increases.

6 An alternative approach to eliminating variables from quadratic
Boolean equations

In this section we develop an alternative algorithm for solving systems of
Boolean equations by eliminating variables, where the degree of polynomials
produced does not grow too fast. To guarantee that no false solutions are
added during the elimination steps, certain conditions (stated in Theorem 20)
must be satisfied.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 29

6.1 Eliminating variables with no cross-terms

We intend to eliminate the k variables x0, . . . , xk−1 from F . We shall as-
sume that F does not contain any quadratic terms between the variables
x0, . . . , xk−1, i.e. no terms xixj where 0 ≤ i < j < k. Then any polynomial in
F may be written uniquely as

x0a0 + · · ·+ xk−1ak−1 + b

where each ai and b are in B[xk, . . . , xn−1].
Let

fi = x0a0,i + · · ·+ xk−1ak−1,i + bi, i = 1, . . . ,m

be the polynomials of F . We have L≤1 = {1, x0, . . . , xn−1} and more gen-
erally, L≤k denotes the set of all monomials of degree less than or equal to
k. Moreover, L≤1x0,...,xj−1

= {1, xj , . . . , xn−1}. Define the following elimination
sets, realized by Gauss elimination on the Macaulay matrix of the polynomials:

1. F≤k+2
x0,...,xk−1

= (L≤k · F ) ∩ B[xk, . . . , xn−1].

2. G≤2 = F and inductively for j = 0, . . . , k− 1 define G≤j+3 = (L≤1x0,...,xj−1
·

G≤j+2) ∩ B[xj , . . . , xn−1].

3. G̃≤2 = F and inductively for j = 0, . . . , k− 1 define G̃≤j+3 = (L≤1x0,...,xk−1
·

G̃≤j+2) ∩ B[xj , . . . , xn−1].

Let A be the m × k-matrix with entries ai,j for j = 0, . . . , k − 1 and i =
0, . . . ,m−1. The column vectors of A will be denoted by aj , for j = 0, . . . , k−1.
Let b be the m × 1 column vector consisting of the bi’s, and denote by A|b
the concatenation of A and b.

4. Let c be a binary 1 ×m vector with Hamming weight (= number of 1’s)
wH(c) = w (for some w), and let

(σ0, σ1, . . . , σk−1, τ) = c ·A|b. (7)

This is a sum of w of the rows of the matrix A|b. Now define H≤k+2 to be
the set of polynomials consisting of all products

(σ0 + 1)(σ1 + 1) · · · (σk−1 + 1)τ

as we range over all vectors c with wH(c) ≤ k + 1. Note that the above
product is nonzero at a point p iff

σ0(p) = · · · = σk−1(p) = 0, τ(p) = 1, (8)

Example 19 Suppose k = 1. Then F consists of polynomials x0a0,i + bi, and
〈H≤3〉 is generated by the following polynomials

1. (a0,i + 1)bi, 1 ≤ i ≤ m,
2. (a0,i + a0,j + 1)(bi + bj), 1 ≤ i < j ≤ m.

From this we see easily that 〈H≤3〉 is equivalently generated by:

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



30 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

1. (a0,i + 1)bi, 1 ≤ i ≤ m,
2. a0,ibj + a0,jbi, 1 ≤ i < j ≤ m.

We note that 1. are the coefficient constraints and 2. are the resultants.

Theorem 20 a. We have

〈F≤k+2
x0,...,xk−1

〉 ⊇ 〈G≤k+2〉 ⊇ 〈G̃≤k+2〉 ⊇ 〈H≤k+2〉.

b. The zero sets of the above sets of polynomials are all equal, or equivalently
Z(F≤k+2

x0,...,xk−1
) = Z(H≤k+2).

c. The projection πk−1(Z(F )) = Z(F≤k+2
x0,...,xk−1

).

Proof a) Suppose by induction that L≤jF ⊇ F≤j+2
x0,...,xj−1

⊇ G≤j+2 for some
0 ≤ j < k. Then

L≤j+1F ⊇ L≤1Gj+2 ⊇ L≤1x0,...,xj−1
G≤j+2

which implies F≤j+2
x0,...,xj−1

⊇ G≤j+2.

If G≤j+2 ⊇ G̃≤j+2 then

L≤1x0,...,xj−1
G≤j+2 ⊇ Lx0,...,xk−1

G̃≤j+2

and so G≤j+3 ⊇ G̃≤j+3.

Let (σ0, σ1, . . . , σk−1, τ) be given by c · A|b as in (7). Then f = x0σ0 +
x1σ1 + · · · + xk−1σk−1 + τ is in 〈F 〉, where we recall that F = G̃≤2 = H≤2.
Furthermore

(σ0 + 1)(σ1 + 1) · · · (σk−1 + 1)τ = (σ0 + 1)(σ1 + 1) · · · (σk−1 + 1)f ∈ G̃≤k+2.

As we vary over c with wH(c) ≤ k+ 1, we get all of H≤k+2. We then see that
H≤k+2 ⊆ G̃≤k+2.

b) and c): We now prove that πk−1(Z(F )) = Z(H≤k+2). First, from a), we
have that

πk−1(Z(F )) ⊆ Z(F≤k+2
x0,...,xk−1

) ⊆ Z(H≤k+2).

Given a point p in the zero set of H≤k+2, we wish to show that it lifts
to a point p̃ in Z(F ) such that πk−1(p̃) = p. Denote by A(p) the matrix A
evaluated at p and let r be the rank of A(p). Choose an m × r-submatrix A′

of A such that the rank of A′(p) is equal to the rank of A(p) = r ≤ k.

Note. If c is an 1×m-matrix with c ·A′(p) = 0, then c ·A(p) = 0, since each
column of A(p) is a linear combination of columns in A′(p).

Now extend A to the m× (k + 1)-matrix A|b by concatenating the m× 1
column vector b.

Claim. The column vector b(p) is a linear combination of the column vectors
in A(p).

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 31

This claim will prove the statement in part c) since then the system of
equations

x0a0,i(p) + x1a1,i(p) + · · ·+ xk−1ak−1,i(p) + bi(p) = 0, 0 ≤ i < m

has a solution for the unknowns x0, . . . , xk−1, thus giving a lifting p̃ of p.
It is sufficient to prove that b(p) is a linear combination of the column

vectors of A′(p). We finish the proof by contradiction. So suppose A′|b(p) has
rank r+1. Then some (r+1)×(r+1)-minor is nonzero, say the one consisting
of the top (r + 1) rows. So the determinant∣∣∣∣∣∣∣∣∣

a0,1(p) · · · ar−1,1(p) b1(p)
a0,2(p) · · · ar−1,2(p) b2(p)

...
...

a0,r+1(p) · · · ar−1,r+1(p) br+1(p)

∣∣∣∣∣∣∣∣∣ 6= 0.

We now expand this along the last column. Let Bi be the cofactor of bi(p).
Then

b1(p)B1 + b2(p)B2 + · · ·+ br+1(p)Br+1 6= 0, and so is 1

while

aj,1(p)B1 + · · ·+ aj,r+1(p)Br+1 = 0,

for every j = 0, . . . , r − 1. The Bi’s are either 0 or 1. Let c be the 1 × m
vector c = (B1, . . . , Br+1, 0, . . . , 0). Then c · A′|b(p) = (0, . . . , 0, 1) and so
also c · A|b(p) = (0, . . . , 0, 1). But this contradicts the fact that p is a zero
of all the polynomials generating H≤k+2, see Equation (8). Therefore a point

p ∈ Z(F≤k+2
x0,...,xk−1

) can always be lifted to a point p̃ ∈ πk−1(Z(F )). ut

6.2 Solving algorithm

Theorem 20 gives us a condition on the initial set of polynomials F 2 for pre-
serving the zero set during elimination, when increasing the degree by one
for each variable eliminated. This is in contrast to the much faster growth in
degree when using resultants and coefficient constraints.The condition from
Theorem 20 is that no cross-terms between the variables x0, . . . , xk−1 occur,
i.e. no terms xixj where 0 ≤ i < j < k. If a cross-term occurs when eliminating
variables, then Theorem 20 does not hold and it means that the resulting zero
set after elimination may or may not increase, depending on the polynomials
in the system.

We note that for the set F 2, when eliminating k variables there are maxi-
mally

(
k
2

)
cross-terms. If all cross-terms occur, by performing Gaussian elim-

ination on these terms we may write all but the
(
k
2

)
first polynomials in F 2

as

x0a0 + · · ·+ xk−1ak−1 + b,

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



32 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

where each ai and b are in B[xk, . . . , xn−1]. One way of using Theorem 20 is
then to eliminate k variables from the polynomials not containing any cross-
terms, and simply leave out the up to

(
k
2

)
polynomials containing cross-terms.

The solution set of this subsystem can then be lifted back to the original
system to see if it contains any false solutions due to the polynomials omitted.

In Example 2 below we give an example of a system with a cross-term
where the algorithm fails. This example was carefully crafted to force the
elimination algorithm to increase the solution space after two variables were
eliminated. In Section 7.4 we perform experiments where we run the algorithm
on randomly generated quadratic systems of equations. Because of computa-
tional limitations, these experiments only cover systems for n ≤ 24. The zero
set was always preserved when solving these systems by elimination. Hence,
among the experiments performed it seems like the occurrence of cross-terms
only rarely has an impact on the solution space.

Based on this observation, we propose in Algorithm 1 a simple algorithm
for solving systems of quadratic Boolean equations by eliminating a number
of variables. To be certain that the algorithm does not introduce any false
solutions, it is necessary that the polynomials in F 2 contain no cross-terms,
but in practice we expect it to work very often even if some cross-terms are
present. Algorithm 1 works by doing Gauss elimination on the variable xi−1
to be eliminated before multiplying with remaining L≤1. The polynomials not
containing xi−1 can be multiplied only with {1, xi−1} since multiplying with
other variables will not give anything with respect to eliminating xi−1. The
polynomials containing xi−1 need to be multiplied with all remaining linear
and constant terms.

Algorithm 1 Eliminate(F 2, k)

In: F 2 - set of Boolean equations in n variables x0, . . . , xn−1 and k - number of variables
to eliminate

Out: F≤k+2
x0,...,xk−1

, set of Boolean equations in n−k variables xk, . . . , xn−1 of degree ≤ k+2.

for i from 0 to k − 1 do
F≤i+2
x0,...,xi−2,xi−1

, F≤i+2
x0,...,xi−2,xi−1

←Gauss eliminate F≤i+2
x0,...,xi−2

w.r.t terms containing

xi−1)

F≤i+3
x0,...,xi−2,

← {1, xi−1}F≤i+2
x0,...,xi−2,xi−1

F≤i+3
x0,...,xi−2,xi−1

, F≤i+3
x0,...,xi−2,xi−1

← Gauss eliminate F≤i+3
x0,...,xi−2,

w.r.t. terms contain-

ing xi−1)

G≤i+3
x0,...,xi−2

← L≤1
x0,...,xi−2

F≤i+2
x0,...,xi−2,xi−1

G≤i+3
x0,...,xi−2,xi−1

, G≤i+3
x0,...,xi−2,xi−1

← Gauss eliminate G≤i+3
x0,...,xi−2

w.r.t. terms contain-

ing xi−1)

F≤i+3
x0,...,xi−2,xi−1

← F≤i+3
x0,...,xi−2,xi−1

∪G≤i+3
x0,...,xi−2,xi−1

end for
Return F≤k+2

x0,...,xk−1

The following examples will illustrate how this algorithm works, as well as
when the algorithm fails due to the occurrence of cross-terms.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 33

Example 1. What may happen if we start with cubic instead of
quadratic equations: Let F 3 = {x0x1x2 + x0x1 + x0x2 + 1}. Then the zero
set of F 3 is

Z(F 3) = {(1, 0, 1), (1, 1, 0), (1, 1, 1)},

and π0(Z(F 3) = {(0, 1), (1, 0), (1, 1)}. If we multiply with L≤1 = {1, x0, x1, x2}
to eliminate x0, then the set L≤1F 3 is given by:

x0x1x2 + x0x1 + x0x2 + 1
x0x1x2 + x0x1 + x0x2 + x0

x0x1 + x1
x0x2 + x2

It can readily be checked that the terms containing x0 in the four poly-
nomials are linearly independent, so L≤1F 3 ∩ B[x1, x2] = ∅. This means that
Z(L≤1F 3 ∩ B[x1, x2]) = F2

2, which has one more point than π0(Z(F 3)). This
implies that Z(L≤1F 3 ∩B[x1, x2]) ) π0(Z(F 3)) and shows that our algorithm
does not work when starting with cubic polynomials.

If we eliminate x2 instead of x0 from L≤1F 3, we obtain L≤1F 3∩B[x0, x1] =
{x0 + 1, x0x1 + x1} which has the zero set {(1, 0), (1, 1)}. The projection of
Z(F 3) on the x2-coordinate is {(1, 0), (1, 1)}, which means that Z(LF 3 ∩
B[x1, x2]) is equal to the x2-projection of Z(F 3)). This example shows that
whether or not a zero set is preserved after projection and elimination depends
on which variable is being eliminated.

Transforming cubic equations into quadratic equations: We can trans-
form the system F 3 into a system of quadratic equations F 2 by introducing a
third variable x3 with the relation x3 = x0x2:

F 2 = {x1x3 + x0x1 + x3 + 1, x0x2 + x3}

.
It can be checked that Z(F 2) = {(1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)}. Next we

multiply this set with L≤1 = {1, x0, x1, x2, x3} and eliminate x3 to get back
to the setting above. Here the set L≤1F 2 is given by

{x1x3 + x0x1 + x3 + 1, x0x1 + x1, x1x2x3 + x0x1x2 + x2x3 + x2,
x0x1x3 + x1x3, x0x2 + x3, x0x1x2 + x1x3, x0x2 + x2x3, x0x2x3 + x3}

From this it can easily be verified that

L≤1F 2 ∩ B[x0, x1, x2] = {x0x1x2 + x0x2 + x0x1 + x0, x0x1 + x1, x0 + 1},

and that Z(L≤1F 2 ∩ B[x0, x1, x2]) = {(1, 0, 1), (1, 1, 0), (1, 1, 1)} which equals
the projection of Z(F 2) onto the x3-coordinate. Moving on to eliminate x0 and

following the algorithm we compute L≤1x3
F 3 = L≤1x3

(L≤1F 2 ∩ B[x0, x1, x2])),
providing us with the following polynomials

{x0x1x2 + x0x2 + x0x1 + x0, x0x1x2 + x1x2, x0x2 + x2, x0x1 + x1, x0 + 1}.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



34 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

If we do Gauss reduction on the x0-terms to eliminate x0 from this set we
end up with {x1x2 + x2 + x1 + 1}. It follows that Z(L≤2F 2 ∩ B[x1, x2]) =
{(1, 0), (0, 1), (1, 1)} which equals the projection of Z(F 2) onto the x0- and
x3-coordinates.

Example 2. What may happen if we have cross-terms: Let F 2 =
{x0x1 + 1, x3x0 + x2x1 + x4x5}. Note that the first polynomial immediately
gives x0 = x1 = 1, so this actually corresponds to solving the equation x3 +
x2+x4x5 = 0. Then Z(F 2) has 8 solutions, and it follows that the projection of
π0(Z(F 2)) also consists of 8 solutions. Following the algorithm we multiply the
set of equations with L≤1 = {1, x0, x1, x2, x3, x4, x5}, and proceed to eliminate
x0. The set L≤1F 2 ∩ B[x1, x2, x3, x4, x5] is given by.

x1x2x3 + x3x4x5 + x1x2 + x4x5
x1x4x5 + x1x2 + x3

x1 + 1

It can easily be checked that Z(L≤1F 2∩B[x1, x2, x3, x4, x5]) = π0(Z(F 2)),
consisting of the same 8 solutions without x0. Next we multiply the set L≤1F 2∩
B[x1, x2, x3, x4, x5] with L≤1x0

= {1, x1, x2, x3, x4, x5}, and continue by elimi-
nating x1. Then

L≤1x0
(L≤1F 2 ∩ B[x1, x2, x3, x4, x5]) ∩ B[x2, x3, x4, x5] =
{x2x3x4x5 + x3x4x5 + x2x4x5 + x4x5}.

This polynomial may be written as x4x5(x2 + 1)(x3 + 1), and has only one
value-assignment out of the 16 possible that does not fit, namely x4 = x5 = 1
and x2 = x3 = 0. Hence it follows that Z(L≤2F 2 ∩ B[x2, x3, x4, x5]) consists
of 15 solutions, while π1(Z(F 2)) only has 8. This shows an example where the
elimination algorithm fails to preserve the zero-sets due to the cross-term in
the initial polynomial x0x1 + 1.

7 Complexity

The complexity of the elimination algorithm, and how many variables we need
to eliminate before the system can be solved by re-linearization, depends on
various parameters.

7.1 Bounds on the degrees of the elimination algorithm

The elimination procedures discussed in this paper eliminate variables itera-
tively. Hence, the maximum degree encountered will be less than n. For the
procedures in Section 4.3, Theorem 13 showed that those procedures will never
have to handle polynomials of degree higher than n− log2(n) + 1.

Now consider Algorithm 1 in Section 6. With an input system consisting
of quadratic polynomials, no cross-terms, and no restrictions on the degrees of

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 35

the polynomials produced, this method is certain to find all solutions to the
input system. We proceed to show that the maximum degree that Algorithm 1
needs to deal with is typically much less than n− log2(n) + 1. This is based on
the observation that if F 2 is the input system to the elimination algorithm,
then the maximal degree of the polynomials in 〈F i+2

x0,...,xi−1
〉 after i eliminations

is i+ 2. Note that we are not guaranteed that the zero set is preserved when
running the algorithms if cross-terms should occur, but by choosing appropri-
ate elimination orders we could potentially limit this problem. The following
lemma shows how we can greatly improve the degree bound.

Lemma 21 Let F 2 be the input system to Algorithm 1. The maximal degree
of any polynomial in any 〈F i+2

x0,...,xi−1
〉 is upper bounded by b(n+ 2)/2c.

Proof Let D be the maximal degree encountered during the elimination algo-
rithm. We know that D = maxi(min{i+ 2, n− i}). Since i0 + 2 = n− i0 for
i0 = (n − 2)/2, it is easy to see that D = n+2

2 for even n, and D = n+1
2 for

odd n. ut

7.2 The number of columns in the Macaulay matrix

Algorithm 1 is applied to a set F 2 of quadratic equations in n variables. Let
µ∗(F 2, t) be the number of columns of the Macaulay matrix observed after
elimination of t variables, where t runs from 0 to n− 1. The number µ∗(F 2, t)
depends not only on the exact form of F 2, but also on the exact implementation
of the elimination process at each step, hence the exact value of µ∗(F 2, t)
is hard to predict without actually running the program implementing the
algorithm. However, an obvious upper bound on µ∗(F 2, t) is the total number
µ(n, t) of monomials in n− t variables of degree up to t+ 2.

µ(n, t) can be computed directly and exactly as

µ(n, t) =

min {2+t,n−t}∑
i=0

(
n− t
i

)
. (9)

Figure 1 shows the typical behaviour of µ(n, t): As t increases, the num-
ber of not-yet-eliminated variables decreases but the degree increases. For
t ≥ n/2 − 1, min {2 + t, n− t} = n − t so µ(n, t + 1) < µ(n, t), and hence
µ(n, t) reaches a maximum for some t in the interval [0, n/2 − 1]. We want
to determine the maximum µ(n) = maxt{µ(n, t)|0 ≤ t < n/2}. Again, the
maximum can easily be determined for moderate values of n. By numerical
inspection, the value of t that maximizes (9) seems to approach a fraction
.276 · · · of n. Asymptotically, we have the following result.

Proposition 22 For n > 25, µ(n) < 2log2(Φ)n = 2n·0.694241···, where Φ is the
golden ratio.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



36 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 500 1000 1500 2000 2500

𝜇(4200, 𝑡)

𝑡

Fig. 1 Graph of the function log2(µ(4200, t))/4200.

Proof It can be shown by direct computation that for n ≤ 25 the result does
not hold. On the other hand,

µ(n, t) =

min {t+2,n−t}∑
i=0

(
n− t
i

)
(10)

≤
min{t+2,n−t}∑

i=0

(
n+ 2− i

i

)
(11)

≤
b(n+2)/2c∑

i=0

(
n+ 2− i

i

)
= Fn+3, (12)

where the last inequality follows from Lemma 21 and where Fj is the j-th
Fibonacci number [24]. For large n the inequalities above approaches equalities,
so asymptotically we get

lim
n→∞

log2 µ(n)

n
= lim
n→∞

log2 Fn+3

n
= lim
n→∞

log2 Fn
n

= log2(Φ) = 0.694241 · · · ,

where we have used limn→∞ Fn/Fn−1 = Φ, a well-established relation between
Fn and Φ. This proves the asymptotic result. This still leaves the potential gap
between Fn and Fn+3, but in fact, by direct computation it can be seen that
for 25 < n < 64, µ(n) > Fn but log2(µ(n))/n < log2(Φ), while for n ≥ 64,
µ(n) < Fn so the arguments above can be tightened and the result follows.
ut

7.3 Solving complexity

Proposition 22 shows that solving a system of quadratic equations by repeat-
edly multiplying all equations with all linear terms and eliminating one vari-

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 37

0,68

0,7

0,72

0,74

0,76

0,78

0,8

0 500 1000 1500 2000 2500 3000 3500 4000 4500

𝜇(𝑛)

𝑛

Fig. 2 Graph of log2(µ(n))/n for n ≤ 4200.

able every time, we will never have to handle more than 2log2(Φ)n monomials
in the Macaulay matrix. We also know that the system will be solved by re-
linearization after elimination of at most n/2 variables. This follows from the
fact that multiplying with all linear terms n/2 times is essentially the same
as multiplying with all monomials of degree up to n/2, and from the fact that
when n/2 variables have been eliminated only monomials of degree up to n/2
remain.

We now show that a system will be solved after eliminating much fewer
variables than n/2. The output of the solving algorithm after elimination of
the k variables x0, . . . , xk−1 is the same as multiplying the initial system F 2

with all monomials of degree up to k, and then do Gaussian elimination on all
monomials depending on any of x0, . . . , xk−1.

In [25] and [26] the authors study how many linearly independent poly-
nomials we get when multiplying a set of independent polynomials with all
monomials up to some degree k. Under some mild condition regarding the
dependencies that arise, the following formula is arrived at for computing I,
the number of linearly independent polynomials after multiplying a system of
m quadratic equations in n variables with all monomials of degree up to k:

I = I(n, k,m) =

bk/2c∑
i=0

(−1)i
(
m+ i

i+ 1

) k−2i∑
j=0

(
n

j

)
.

In [25] it is reported that the formula has been tested on many random
systems, and gives a very accurate estimate on the number of independent
equations produced.

After multiplication with all monomials up to degree k we get a system of
polynomials of degree ≤ k + 2, and we proceed to eliminate x0 . . . , xk−1 from
it by doing Gaussian elimination on all monomials depending on any of the
variables x0, . . . , xk−1. There are

∑k+2
i=0

(
n
i

)
monomials in total, and there are∑k+2

i=0

(
n−k
i

)
monomials that do not depend on any of x0, . . . , xk−1. Hence there

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



38 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

Fig. 3 δ(n, n) and n/10 + 2 for 1 ≤ n ≤ 500. The blue step-wise function is δ(n, n) and the
red straight line is n/10 + 2.

are
∑k+2
i=0

(
n
i

)
−
∑k+2
i=0

(
n−k
i

)
monomials that touch at least one of the variables

x0, . . . , xk−1. In the worst case all of these monomials occur in the Macaulay
matrix, and we lose the same number of polynomials in the Gauss reduction
that eliminates the variables from the system. Subtracting this number from
I(n, k,m) means we will have at least

I(n, k,m)−
k+2∑
i=0

(
n

i

)
+

k+2∑
i=0

(
n− k
i

)
independent polynomials left in L≤kF 2∩B[xk, . . . , xn−1]. When this number is

bigger than
∑k+2
i=0

(
n−k
i

)
, which is the total number of monomials remaining,

we have more independent polynomials than monomials and can solve the
system by re-linearization. Define ε(n, k,m) to be

ε(n, k,m) = I(n, k,m)−
k+2∑
i=0

(
n

i

)
,

and let δ(n,m) be the first k that gives ε(n, k,m) > 0. Then δ(n,m) gives
the number of variables we need to eliminate before the system can be solved
by re-linearization.

We have made plots of δ(n,m) for n ≤ 500 and some values of m to see the
behaviour of the function. Figure 3 shows the plot for δ(n, n), together with
the function n/10 + 2. As we can see, n/10 + 2 gives a close approximation to
δ(n, n), for n ≤ 500. We therefore propose the following conjecture.

Conjecture 23 For m = n, Algorithm 1 will succeed in solving the system
after at most n/10 + 2 eliminations have been done.

Unsurprisingly, when the initial system is overdetermined we can expect
to solve it with fewer eliminations. Figure 4 shows the plot for δ(n, 2n) when

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 39

Fig. 4 δ(n, 2n) and n/17 + 3/2 for 1 ≤ n ≤ 500. The blue step-wise function is δ(n, 2n)
and the red straight line is n/17 + 3/2.

n ≤ 500, together with n/17 + 3/2. As we can see, the function n/17 + 3/2 is
a good approximation for δ(n, 2n), giving a similar conjecture.

Conjecture 24 For m = 2n, Algorithm 1 will succeed in solving the system
after at most n/17 + 3/2 eliminations have been done.

We can try to generalize from these observations. Let α = m/n be the
degree of overdeterminedness for a system of quadratic Boolean equations.
For α > 2, the relative required number of eliminations decreases further. We
also know that for α = n/2, we have

(
n
2

)
equations in n variables in the initial

system and therefore do not need to do any eliminations, but can solve the
system by re-linearization directly.

We conjecture that for α ∈ [1, n/2], the function δ(n, αn) can in general
be approximated by a linear function n

g(α) + c, where c is a small constant and

g(α) is strictly increasing with g(n/2) =∞ or g(n/2) = n. We have computed
values of g(α) such that g(α) approximates δ(n, αn) well, for α ∈ [1, 4] with
increments of 0.25 and n = 500. The plot of g we get is shown in Figure 5.

On the range of α that we are considering we note that g(α) can be well
approximated by the linear function 6α + 9/2. Using this approximation, we
propose the following conjecture.

Conjecture 25 A system of quadratic Boolean equations in n ≤ 500 variables
will be solved by Algorithm 1 after approximately n

6α+9/2 eliminations.

Going back to the function µ(n, t), we can estimate how big the Macaulay
matrix will be when the system is ready to be solved by re-linearization. Setting
t = n/(6α+9/2), this leads to a final complexity for solving a quadratic system
with m = αn equations as

C(n, α) = (µ(n, n)/(6α+ 9/2)))ω,

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



40 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

Fig. 5 The blue curve shows the observed g(α) such that n/g(α) approximates δ(n, αn),
computed with n = 500. The red line shows the linear function 6α+ 9/2.

Fig. 6 log2(C(500, α))/500, for α ∈ [1, 4] and ω = 2.7.

where ω is the exponent for doing Gauss reduction. Figure 6 shows our last
plot, where we have computed log2(C(500, α))/500, for α ∈ [1, 4] using ω = 2.7.
This function is decreasing with increasing values of α, and when the values
of log2(C(500, α))/500 drops below 1 we can expect to solve the system faster
than exhaustive search. This happens for α ≈ 1.65. For instance, for α = 3 we
get a solving complexity for Algorithm 1 of O(20.745n).

7.4 Experimental results

We have implemented Algorithm 1 and tested it on some random quadratic
equation systems. The tests were done on a MacBook Pro with a 2.3 GHz Intel
Core i5 processor and 16GB RAM. Due to the limited computing resources

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 41

m = n m = 1.5n m = 2n
n = 10 2 2 1
n = 14 3 2 2
n = 17 3 3 2
n = 20 3 3 2
n = 24 * 3 2

Table 1 Number of eliminations needed to solve random quadratic equation systems. For
m = n = 24 the computer ran out of memory after three eliminations.

we were only able to test the method on systems with up to n ≤ 24 variables.
Our priority here is not to demonstrate the efficiency of the algorithm, but
to observe the behaviour of the algorithm and to verify that the theoretical
analysis discussed above is consistent with practice.

For each n we made systems with m = n,m = 1.5n and m = 2n equations
in them. The polynomials in the systems were created by choosing the coeffi-
cient of each monomial uniformly at random, with one exception. We wanted
every system to have a solution, so some random point in Fn2 was chosen to
be a solution. This was realized by adjusting the constant term of each poly-
nomial accordingly. Please note that the systems contain cross-terms of the
variables to be eliminated with overwhelming probability, but we observed no
impact of this on the ability of the algorithm to solve the systems.

Next, we ran Algorithm 1 on the systems and checked how many elimi-
nations k were needed before the system could be solved by relinearization
(i.e. when we get k independent linear polynomials in the set). The results
are summarized in Table 1. As the table shows, the systems get solved after
a few eliminations and the experimental results closely match the analytical
estimates given in the previous subsection. Admittedly, the values of n of sys-
tems we solved are rather small, but it is reassuring to see that theory and
practice give the same result.

8 Conclusions

In this paper, we have studied how to eliminate variables from Boolean equa-
tion systems when the degree of polynomials produced is upper bounded. The
tools we use for elimination are the known techniques of normalization and
resultants. Also, we introduced coefficient constraints, which only applies to
characteristic 2.

The motivation for our study comes from solving non-linear Boolean equa-
tion systems. The best known (and best-known) algorithms to solve such sys-
tems are focused on Gröbner bases (F4/F5) or re-linearization after multi-
plying all polynomials with a set of monomials (XL). We relate the work in
this paper to these approaches. What we found is that our elimination tools
may be explained in terms of Gröbner basis algorithms, but where we only
reduce an S-polynomial modulo a sub-basis and stop the reduction as soon
as the variable in question has been eliminated. With regard to XL methods,

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



42 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

we found that our elimination procedure will compute the same output as
multiplying all polynomials with all allowed monomials and doing Gaussian
elimination to remove a variable from the system. The elimination procedure
presented in this paper is a lot more efficient though, since we do not multiply
with all monomials but only compute precisely what is needed to eliminate
the desired variable.

Eliminating variables may be explained in terms of syzygies, where Koszul
syzygies correspond to resultants, and Boolean syzygies correspond to coeffi-
cient constraints. We found that when the syzygies are computed for all linear
polynomials, all syzygies can be generated by the syzygies of the Koszul and
Boolean types.

As an alternative approach, we may eliminate k variables from the system
at the expense of increasing the degree by the same value k, while the solution
space will remain intact (by projection) provided the original system does not
contain any cross-terms between any of the variables being eliminated.

This insight allows us to bound the number of monomials occurring in
the systems as the elimination iterations proceed, and gives an estimate on
the number of variables that need to be eliminated before the system can
be solved by relinearization. This estimate is given by a linear function in n
with a small coefficient. Numerical experiments on moderate size examples
correspond well to this estimate. For sufficiently large and overdetermined
systems, the total complexity of solving by re-linearization is faster than that
of exhaustive search.

To limit the length of this paper, we have avoided the discussion of several
closely related questions. One topic for further research is to investigate how
much of the complete syzygy space is generated by the trivial Boolean and
Koszul syzygies, or, in other words, how rare nontrivial syzygies are. Another
line of investigation should examine and quantify the introduction of false
solutions associated with the limitation of the degree. Yet another approach
is to design a hybrid algorithm incorporating ideas by Joux and Vitse [19] or
Lokshtanov et. al. [23].

Acknowledgement

We would like to thank the anonymous reviewers for helpful comments.

References

1. M. Brickenstein, A. Dreyer A framework for Gröbner-basis computations with Boolean
polynomials, J. Symbolic Comput. 44, no.9, (2009), pp. 1326–1345. PolyBoRi Polyno-
mials over Boolean Rings. http://polybori.sourceforge.net/.

2. D.Cox, J.Little, D.O’Shea, Ideals, varieties and algorithms, Third edition, 2007 Springer
Science and Business Media.

3. D.Cox, J.Little, D.O’Shea Using Algebraic Geometry GTM 185, Springer Science and
Business Media 2005.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 43

4. W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, 2010. Singular 3-1-2 — A com-
puter algebra system for polynomial computations. http://www.singular.uni-kl.de/.

5. A. Kandri-Rody, D. Kapur, P. Narendran, An ideal-theoretic approach to word problems
and unification problems over finitely presented commutative algebras, In: Jouannaud
JP. (eds) Rewriting Techniques and Applications. RTA 1985. Lecture Notes in Computer
Science, vol 202. Springer, Berlin, Heidelberg

6. A. Shamir, J. Patarin, N. Courtois, A. Klimov, Efficient Algorithms for solving Overde-
fined Systems of Multivariate Polynomial Equations, Eurocrypt’2000, LNCS 1807, pp.
392 — 407, Springer 2000.

7. Courtois N.T., Pieprzyk J. Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations, Advances in Cryptology — ASIACRYPT 2002. ASIACRYPT 2002. Lecture
Notes in Computer Science, vol 2501, pp. 267 – 287. Springer, Berlin, Heidelberg 2002.

8. J-C. Faugere. A new efficient algorithm for computing Gröbner bases (F4). Effective
methods in algebraic geometry (Saint-Malo, 1998), J. Pure Appl. Algebra 139 (1999)

9. J-C. Faugere. A new efficient algorithm for computing Gröbner bases without reduc-
tion to zero (F5), Proceedings of the 2002 International Symposium on Symbolic and
Algebraic Computation, 75–83, ACM, New York, 2002.

10. T. Stegers. Faugere’s F5 Algorithm Revisited, Thesis For The Degree Of
Diplom-Mathematiker, Department of Mathematics, Technische Universität Darm-
stadt, 2005. Available at http://sciencedocbox.com/Physics/68613748-Faugere-s-f5-
algorithm-revisited.html

11. J. Horácek, M. Kreuzer, A.S.M. Ekossono. Computing Boolean border bases, Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), 2016 18th International
Symposium on. IEEE, 2016, pp. 465–472.

12. M.Giusti. Some effectivity problems in polynomial ideal theory In Proc. Int. Symp. on
Symbolic and Algebraic Computation EUROSAM 84, Cambridge (England), volume
174 of LNCS, pages 159–171. Springer, 1994.

13. T.M. Chan and R. Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1246–1255, 2016.

14. K. Sakai, Y. Sato, Boolean Gröbner bases, ICOT Technical Momorandum 488 (1988).
http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/TRTM/tm0488.htm.

15. M. Sala, T. Mora, L. Perret, S. Sakata, C. Traverso, Gröbner Bases, Coding and Cryp-
tography, Springer, 2009

16. Bardet,M., J.-C.Faugere and B.Salvy, Complexity of Gröbner basis computation for
semiregular overdetermined sequences over F2 with solutions in F2, rapport de recherche
5049, Institut National de Recherche en Informatique et en Automatique, Lorraine, 2003.

17. M. Bardet, J.-C. Faugere, B. Salvy, and P.-J. Spaenlehauer. On the complexity of solving
quadratic Boolean systems. Journal of Complexity, 29(1):53–75, 2013.

18. M. Bardet, J.-C. Faugere, B. Salvy, and B.-Y. Yang. Asymptotic behaviour of the de-
gree of regularity of semi-regular polynomial systems. Presented at MEGA’05, Eighth
International Symposium on Effective Methods in Algebraic Geometry, 2005.

19. A. Joux and V. Vitse, A crossbred algorithm for solving Boolean polynomial systems,
Cryptology ePrint Archive, Report 2017/372, 2017. https://eprint.iacr.org/2017/372.

20. C. Bouillaguet, H.-C. Chen, C.-M. Cheng, T. Chou, R. Niederhagen, A. Shamir and
B.-Y. Yang. Fast exhaustive search for polynomial systems in F2. In Cryptographic
hardware and embedded systems – CHES 2010. 12th international workshop, Santa
Barbara, USA, August 17–20, 2010. Proceedings, pages 203–218. Berlin: Springer, 2010.

21. Rosen, K.H., Handbook of Discrete and Combinatorial Mathematics. In the Series Dis-
crete Mathematics and Its Applications, Taylor & Francis, 1999.

22. D Lazard. Gaussian elimination and resolution of systems of algebraic equations. In
proc. EUROCAL 1983, vol 162 of LNCS, pp. 146-157, 1983.

23. D. Lokshtanov, R. Paturi, S. Tamaki, R. Williams, and H. Yu. Beating brute force for
systems of polynomial equations over finite fields. The 27th ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2017.

24. Rosen, Kenneth H., Handbook of Discrete and Combinatorial Mathematics, 2nd Edi-
tion, CRC Press, 2017.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



44 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

25. H. Raddum, S. Rønjom, On the Number of Linearly Independent Equations Generated
by XL, Sequences and Their Applications (SETA) 2008, LNCS 5203, pp. 239 – 251,
Springer, 2008.

26. Yang, B.-Y., Chen, J.-M. Theoretical Analysis of XL over Small Fields, Australasian
Conference on Information Security and Privacy (ACISP) 2004, LNCS 3108, pp. 277 -–
288, Springer, 2004.

27. R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pp. 77—82, 1987

28. P.Zajac, Upper bounds on the complexity of algebraic cryptanalysis of ciphers with a
low multiplicative complexity, Designs, Codes and Cryptography, Volume 82, Issue 1–2,
pp. 43-–56, 2017

Appendix: Syzygies between polynomials of degrees ≥ 2

When the degree of some ai’s are greater than 1, there may be other syzygies
that are not generated by the Koszul and Boolean syzygies. Let a11, . . . a

1
`1

be
polynomials of degree ≤ 1. By suitable Gaussian elimination we may assume
the initial terms are such that:

in(a11) > in(a12) > · · · > in(a1`1). (13)

Let ad1, . . . , a
d
`d

be polynomials of degree ≤ d. We perform reduction oper-

ations as follows: If a term of adi is of the form t · in(a1j ) where t is a monomial

of degree ≤ d− 1, we replace adi by adi − t · a1j . We then eventually get:

No term of adi is t · in(a1j ) where t is a monomial of degree ≤ d− 1. (14)

Secondly we may perform Gaussian elimination on the adi such that:

in(ad1) > in(ad2) > · · · > in(ad`d). (15)

Suppose we have given adi as above for each 1 ≤ d ≤ D and i = 1, . . . , `d. Let

BL = B`1 ⊕ · · · ⊕ B`D

where B`d = Bεd1 ⊕ · · · ⊕ Bεd`d and we set εdj to have degree d. There is a map

BL → B, εdi 7→ adi

and the syzygy module S ⊆ BL is the kernel of this map.
Suppose now we have a total order on the terms of B. We make a term

order on BL by letting terms sεej < tεdi if:

– e < d, or
– e = d and j < i, or
– e = d, j = i and s < t

Theorem 26 Given polynomials adi of degree ≤ d, for each 1 ≤ d ≤ D and
suppose for each d they fulfill Condition (15) above. The following syzygies
may exist:

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



Solving Non-linear Boolean Equation Systems by Variable Elimination 45

1. Koszul syzygies adj ε
e
k + aekε

d
j where e < d or e = d and k < j. For given

sum d+ e denote by Kd+e the linear space these syzygies generate.
2. Boolean syzygies (adj + 1)εdj . For given d denote by B2d the linear space

these syzygies generate.
3. For each δ ≥ 2 syzygies

r =
∑

d = 1, . . . , δ
i = 1, . . . , `d

rδ−di εdi

where rδ−di has degree ≤ δ−d and no term of r is τ · t where t is the initial
term of a syzygy in Ke or Be and deg(τ) + e ≤ δ.

For a given δ in 3., denote by R≤δ the linear space of such syzygies.
a. Then for δ ≥ 2 we have:

S≤δ =
δ∑
d=2

S≤δ−dKd +
δ∑
d=2

S≤δ−dBd +R≤δ. (16)

b. Suppose in addition the adi fulfill the Condition (14) above. Then we may
let R≤δ be the space of all syzygies of type 3. where the coefficient rδ−1i of the
a1i vanish, and we still have the above identity (16).

Proof Given a syzygy of degree ≤ δ

s =
∑

d = 1, . . . , δ
i = 1, . . . , `d

sδ−di εdi .

If a term in s is a product n · t where t is the initial term of a syzygy s′ in Kp

or Bp with deg(τ) + p ≤ δ, we replace s by s− τ · s′. In this way we continue
and in the end we get syzygy as in 3. This proves the identity (16) above.

Suppose now the Condition (14) is also fulfilled. Let the following relation
be of Type 3. :

`1∑
i=1

rδ−1i a1i +
∑

d = 2, . . . , δ
i = 1, . . . , `d

rδ−di εdi .

Let x1 = in(a11). Then no term of any other adi contains x1 and also no rδ−di

contains x1. But then the relation above is only possible if r11 = 0. In this way
we may continue and get all r1i = 0 except possibly if in(a1j ) is the constant 1
(in which case we must have i the last index `1). But then by the reduction
process using a1`1 , none of the adi for d ≥ 2 contains a term of degree < d and

similarly no term of the rδ−dj contains a term of degree < δ − d. But then in
the relation

rδ−1`1
· 1 +

∑
d = 2, . . . , δ
i = 1, . . . , `d

rδ−di adi ,

the left side has degree ≤ δ − 1 while the right side has all terms of degree δ.
Hence rδ−1`1

= 0. ut

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7



46 Bjørn Greve, Øyvind Ytrehus, H̊avard Raddum, Gunnar Fløystad

We now present the algorithm to compute R≤δ under the assumption of
Conditions (15) and (14).

Algorithm to compute R≤δ

1. Set KB≤1in , R
≤1
in equal to 0. Let δ := 2.

2. Let KBδin consist of all pairs (t, δ) where t is the initial term of a Koszul
syzygy in Kδ or a Boolean syzygy in Bδ.

3. KB≤δin = KB≤δ−1in ∪KBδin.
4. If δ = 2 let R2 = 0. If δ ≥ 3 then Rδ consist of all syzygies

r =
∑

d = 2, . . . , δ
i = 1, . . . , `d

rδ−di εdi

where rδ−di has degree ≤ δ− d and no term of r is a product of monomials
τ · t where:
– (t, p) ∈ R≤δ−1in ∪KB≤δ−1in and τ is a monomial such that deg(τ)+p ≤ δ.
– τ = 1 and (t, δ) ∈ KBδin

5. Perform Gaussian elimination on Rδ and let Rδin consists of all pairs (t, δ)
where t is the initial term of a syzygy in Rδ.

6. R≤δin = R≤δ−1in ∪Rδin.
7. If δ is less than the stop bound then δ := δ + 1 and go to 2.

As for the actual computation of the syzygies in Step 4, this can be done by
taking the rδ−di to be linear combinations of the allowed terms (with unknown
coefficients), and then solving a system of linear equations.

Proposition 27 With the algorithm above, then

R≤δ =
∑
d≥3

S≤δ−dRd.

Proof This is clear by construction. ut

Our applications of Theorem 26 are typically for δ = 1 or 2. (This occurs
for sets F 2, . . . , F d where d = 3 or 4.) We are then interested in the syzygies
S≤2 and S≤3. These are given as follows:

S≤2 = K2 +B2

S≤3 = 〈L1〉K2 +K3 + 〈L1〉B2 +R3.

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1007/s00200-019-00399-7




