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Abstract—Detecting targets embedded in noise and clutter is
an essential task for many radar systems. A competent system
must additionally offer high probability of detection with a low
false alarm rate and a standard practice is to employ constant
false alarm rate (CFAR) detectors. In this article, we develop and
expand the use of neural networks to accomplish this objective.
The neural networks are trained to recognize targets in a specified
environment subject to the proposed conditions ascribed by a
traditional CFAR detector. We show that after an initial learning
process, a trained neural network can offer improved detectional
performance. The improvement is related to either a lower false
alarm rate or a slightly greater probability of detection.
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(CFAR), clutter, Swerling targets, neural network

I. INTRODUCTION

One of the core radar tasks has always been to detect fluc-
tuating targets with a high probability of detection (Pp) and a
low false alarm rate (Pr4). A typical technique employed for
this purpose is the constant false alarm rate (CFAR) detector
[1], [2] with several adaptations. The received signal is then
evaluated on a cell to cell basis. Each cell is compared against
an average composed of select neighboring cells and if the
signal value in the test cell exceeds the determined average
by a given margin then a detection is declared. A common
version of the detector, often applied in clutter environments,
is the GO (Greatest Of)-CFAR detector.

CFAR detectors have been studied in great details over
the last decades; nevertheless, there generally remains a trade-
off between various CFAR techniques, as an improvement in
probability of detection often comes at the expense of false
alarm rate and vice versa. The last couple of years have also
witnessed a large growth in the application of deep learning
and neural networks. These networks can be trained to be
exceptionally good at classification of signals and images [3],
[4]. The use of machine learning has also been studied in radar
contexts to perform target detection using different strategies
[51, [6], [7], [8], [9], [10], [11]. In [12] the authors proposed
an approach to train a neural network where the objective
was to return the same type of detectional performance as of
cell averaging (CA)-CFAR while otherwise aiming to return a
lower false alarm rate. The training and validation was carried
out on a simple radar environment consisting of fluctuating
targets in noise. The presence of clutter was not considered
and it was assumed that the radar only operated on a single
pulse mode restricting the applicability of the method. Despite
these limitations, the results demonstrated that neural networks
have the potential to improve on traditional detection.

This article builds upon the primary idea of [12] to in-
troduce a more general training setting. A new method for

training of artificial neural networks is also proposed where
the network is not restricted to train on binary outcomes from
the final layer, rather a more dynamic output ratio is contem-
plated. Seeking a ratio as the output from a neural network
turns out to play an important role in being able to offer a
higher probability of detection than CFAR without necessarily
increasing the Pr4. The detection and training procedure is
implemented on range-Doppler maps generated by multiple
incoming pulses. This provides a generic set for model training
and evaluation closely mimicking realistic operational cases.
Simulations under various conditions with fluctuating targets
with and without the presence of K-distributed clutter are
carried out to demonstrate the improvement in performance
obtained through trained neural networks assessed against
conventional CFAR methods.

II. SYSTEM MODEL

To provide a setup for the neural network training and
assessment, we model a standard pulsed radar system where a
waveform p(t) is transmitted at steady intervals. After trans-
mission of each pulse, the incoming echoes are sampled and
a pulse compression is performed through standard matched-
filtering,

r(t,u) = p*(—t) * (Z onp(t — Ap)em + q(t,u) +w(t)),
! )

where t = 1,2,...,R. t is the discrete fast-time parameter
corresponding to different time delays (range cells) while R is
the maximum radar range. M pulses are emitted in a coherent
processing interval (CPI), v = 1,..., M (slow-time), and in
the arriving echoes o, and A, point to, respectively, the
reflectivity and the delay of reflector n. j = v/—1 and eV is
the Doppler shift for each target which for a fixed pace object
can be described by

0, 47 fe.
— u=1,..,
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assuming v, 0 = 0 and 6,, being the radial velocity of target
n, PRF the pulse repetition frequency, f. the radar carrier
frequency and ¢ propagation velocity [2]. In (1), (¢, u) is
the contribution from clutter in the received signal while *
specifies convolution and w(t) is white Gaussian noise. The
targets are presumed to be slowly fluctuating with Swerling
1 distribution where o,, varies randomly from CPI to CPI
but with a mean signal-to-noise ratio (SNR). After gathering
all pulses, the slow-time domain of r(¢,u) is multiplied by a
windowing function w and thereupon Fourier transformed to
yield a range-Doppler map:

d(t,w) =F wr(t,u), € CM*E, 3)
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F is the discrete Fourier matrix of size M x M, Fy; =
exp(—j2nkl/M). Following Fourier transform, targets with a
steady pace will appear concentrated in Doppler while clutter,
often with a different velocity characteristic, may show up
detached. To locate likely targets, a CFAR detector can be
executed on the range-Doppler map.

A. CFAR detector

A CFAR detector takes the square law range samples of
d(t,w) = |d(t,w)|? V t,w and evaluates each single cell to
ascertain if detection conditions are satisfied. In this paper,
we utilize a standard one dimensional CFAR detector where
averaging is conducted across the range domain. A sliding
window of size 2N + 2G + 1 is chosen and shifted across all
possible bins, f = 1+ N+G,..., R~N—-Gandw = 1,..., M,
excluding potential edges. The 2N +2G + 1 samples in range
are extracted in x(u) = d(f — N -G : t + N+ G,w), u =
1,2,...,2N +2G+1 and the cell in the middle of the window,
(N 4+ G + 1) cell under test (CUT), is compared against
an average. G number of guard cells to the right and left of
CUT are neglected. The average, v, in GO cell averaging is
estimated as the maximum average of the N cells to the left
or to the right,

1 N 2N+2G+1
7= max ( Soak), > wk)). 4)
k=1 k=N+2G+2
A detection occurs if
z(u)jy=cur > v K, ()

where K (dB) is a set threshold.

B. Detection with a neural network

The GO-CFAR process is an established mechanism for
extracting targets in clutter and noise. This process would
therefore need to be transferred into a neural network offering
a comparable behavior but with an improved overall perfor-
mance. The effectiveness of neural networks depends strongly
on training and the available quantity of learning data. The
learning process can accordingly be constructed on collected
or simulated radar data where one is informed of the exact
target positions. What we propose are training strategies where
conventional CFAR detectors mutually aid in the process to
differentiate out targets and operate as training instructors.

For the neural network, depicted in figure 1, we assume a
setup where the CFAR window is, as previously, shifted across
the range-Doppler map, but the window samples, including
guard cells, are normalized and then dispensed into a fully-
connected feed-forwarding network. The normalization is car-
ried out by min max normalization to adjust the values to the
range within 0 to 1, &(t) = mai&)(;)r)lfiﬁa)(t)). We consider
the problem of selecting a network size as a secondary issue in
regard to this work though the same number of nodes in each
layer as the number of CFAR samples and 3 to 4 hidden layers
generally present solid results. The output from the last layer,
K, returns a detection estimate. A threshold value is finally
applied on x and if a prescribed value is surpassed then a
detection is affirmed.

Fig. 1: Neural network detector

Decisive training of a network is essential for it to succeed
and for this we assume that L number of independent range-
Doppler maps r(t,w)1, ..., r(t), have been collected wherein
the targets and their locations in range and Doppler are
precisely known. For each map, the whole image can be used
for training, or to lessen the computational load, representative
random areas within each map may be selected where the
sliding CFAR window is executed. The ares selected should
contain the target at a known position, the regions within
the proximity of the targets, clutter samples and noise only
samples. Further on, if the noise or clutter plane is constant
at a set value across all maps then the trained neural network
may not adapt well to altering surroundings. The average noise
and clutter floors should therefore fluctuate in the training
data set. The parameter presumed fixed during training is the
threshold value K. This regulates the Pp for the standard
CFAR algorithm and is the performance objective for the
network. Two different training schemes on what the predicted
output, &, from the final layer should be are discussed next.

C. Training scheme A

This training scheme operates with a binary digit and the
predicted output from the network for each block of training
data is either 0, in case of no detection; or 1 if a target is
found. Explicitly, the last layer trains to yield:

1, a target is at CUT and
P GO-CFAR test is positive.

0, else.

The positive training correlates with a traditional GO-CFAR
method for target detection, notwithstanding equally important
is the fact that the network now aims to return a zero in the
absence of real targets disregarding the CFAR response. Such a
trained neural network should ideally be able to approximate
the same type of Pp performance as of the original CFAR
method but with a lower Pr 4. This training strategy is related
to [12].

D. Training scheme B

The introductory scheme A is easy to apprehend but
it does have one drawback that it can by convention only
return a positive outcome if GO-CFAR consents in returning
a detection. The GO-CFAR test can fail if the target does
singles out but is beneath the detection threshold K. A revised
technique can therefore attempt to forego a strict bound like

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1109/RADAR.2019.8835765



this and instead return the CFAR test ratio between CUT and
the averaging factor, restricted to the upper value of 1. This
should notably only be returned if a true target is known to be
at cell under test. The ideal returning value will thus be 1 if
a target fulfills the CFAR detection threshold, within 0 and 1
if the target is recognizable but does not obey the CFAR test
and O is no target is identified. The second training strategy is
correspondingly:

max (1, z(u),'y“% ), a target is at CUT.

0, else.

A detection threshold set on the final layer decides if a
detection is to be affirmed.

The training procedure is visualized in figure 2. We em-
phasize that for both training strategies, the provision "target is
present at CUT" must also include neighboring cells if a target
stretches out in range or Doppler due to for example sidelobes.
The training process will determine appropriate weights for the
neural network to minimize the difference between the desired
output and the factual network output, € = min >_ |k — &|?
over all CFAR training blocks. Subsequently training, the final
performance can be settled by enacting a much larger untrained
data set thorough the network.

Target Scheme
at CUT? factor
~
o/ 1 <

Normalized CFAR

v

Fig. 2: The training process

III. SIMULATION RESULTS

A pulsed radar system is modeled and simulated to train
neural networks under the presented schemes and then com-
pare the performance against traditional GO-CFAR detection.
Multiple targets are simulated in each dwell alongside clutter
and noise. The radar is assumed to transmit and receive
M = 16 pulses over 300 simulated range bins with a resolution
of 800m. In total, four independently Swerling 1 fluctuating
targets are modeled being placed at range bins 75, 125, 210
and 260 with a random speed.

From the four targets, the first two are modeled as stronger
reflectors but also placed in the locality of simulated clutter.
The clutter is modeled using K-distribution and encompasses
the first half of range bins. The GIT [13] model is used to
provide estimates for the clutter reflectivity level with a radar
carrier frequency of 3GHz and a radar elevation of 500m. The
clutter shape parameter is randomly set for each CPI to be
in the range between v = 0.05 (spiky) and v = 10 (Rayleigh
distributed) [13], [14], [15]. Random up or down scaling on the
clutter is done to provide more variation in the signal-to-clutter
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Fig. 3: Example of simulated range-Doppler map

ratios from CPI to CPI. The last two targets are presumed in a
noise only region, being placed farther out from the radar; thus
their average gain is set lower by a factor of 20dB. Moreover,
the noise floor is not kept fixed rather ranges between —80 dB
to —115 dB following a uniform distribution between CPIs.
An example of such randomly generated range-Doppler maps
(where the targets stand out) is given in figure 3. The dwell
to dwell diversity of the above setup, encompasses a wide
types of CFAR blocks and should be applicable for training
a versatile detector geared towards point targets in clutter and
noise.

For generation of range-Doppler maps the Hamming win-
dow is applied. After map formation, CFAR tests are per-
formed and the blocks extracted for the training database, the
CFAR parameters being set as G = 3 guard cells and N = 6
averaging cells on each side. To reduce the computational load,
the CFAR process was executed over randomly selected 15%
of range-Doppler cells, though cells containing targets were
always incorporated. The mechanism was iterated for L =
2000 independent range-Doppler maps. A complete training set
based on the above contained 1.4 million CFAR entries with
a total of 40000 probable targets (including Doppler spread
entries), from whom 35% were correctly detected by GO-
CFAR. The average SNR over all CPIs ranged from —40 dB to
75 dB while the signal-to-clutter ratio varied between —60 dB
to 60 dB. This data was then used to train a fully-connected
feed-forwarding network with four hidden layers and 19 nodes
in each layer with ranh as the node activity function. Scale
conjugate gradient algorithm was applied for a maximum of
20000 epochs.

Following training, a 50 times bigger set of range-Doppler
images was generated under the same simulated conditions
but now with a set mean power value for the targets. Each
resulting map was completely evaluated through both GO-
CFAR and the trained neural network. This procedure was
repeated with differing average target power levels to attain
Pp and Pry curves with respect to mean target signal-to-
clutter plus noise ratio (SCNR). Pp was calculated as the
number of correctly detected targets relative to the total number
of simulated targets while Pr4 as the number of incorrectly
detected targets in relation to correctly detected targets. For the
described simulations, the main detection thresholds utilized
are k > 0.5 and Kk > 0.8.

Figures 4 and 5, respectively, display Pp (left) and Py
(right) curves generated through the described simulation con-
ditions under the relative low threshold of K = 13 dB for
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Fig. 4: Scheme A: Pp and Pryx
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Fig. 5: Scheme B: Pp and Pra

schemes A and B. We point out that the scenario follows the
same previous arrangements and the noise and clutter floor still
vary from CPI to CPI. The x-axis therefore only provides the
average SCNR in dB which would be the average of target
power and the average noise and clutter level over a broad
range of CPIs.

From figure 4 the probability of detection in Scheme A
mirrors the curve of GO-CFAR given in red dashed line. The
disparity between the curves is minor, a threshold of 0.5 gives
a similar contour compared to GO-CFAR while the difference
increases a bit if the threshold is set to 0.8. In both cases,
the neural network manages to reproduce the GO-CFAR Pp
performance with a slight loss. However, scrutinizing the Pr 4
plot on the right side then there is a marked difference between
the outcomes from the neural network and GO-CFAR. The
neural network detector succeeds in lowering the false alarm
rate substantially.

The outcomes from training under scheme B are in figure
5. The Pp exhibits the same form as of GO-CFAR, but it is
no longer bounded by the CFAR curve. For a high threshold
of 0.8 it closely follows GO-CFAR but with a threshold of 0.5
offers a little improvement in detection probability. This comes
at an expense of Pr4 which is higher than scheme A but in
both threshold cases manages to outdo CFAR. For this type
of scenario and for the selected parameters, scheme B with a
threshold of 0.5 improves modestly upon CFAR on both ends.

The network training and simulations were subsequently
reproduced on a different type of scenario with an adjusted
set of target parameters. In the modified scenario, each target
covered an extra adjoining range cell with a random probability
of 0.5. If true, the neighboring cell followed the same power
distribution but with an independent value. On top of that, two
sidelobes over two adjacent cells of —20dB and —26dB were
added to each of the target cells. This models multiple adjoin-
ing targets or a large target with several independent reflectors.

Detection threshold: K=13dB Detection threshold: K=13dB
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Fig. 6: Scheme A: Pp and Prx
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Fig. 7: Scheme B: Pp and Ppa

The number of guard cells was increased to G = 4 while the
averaging cells increased to N = 10, the neural network thus
contained 29 nodes in four hidden layers. Figures 6 and 7 show
the results under the new constrains. As previously, method A
restricts the improvement in probability of detection which is
therefore on level with GO-CFAR while the Pr 4 is marginally
better for x > 0.5. This provides a good enhancement for the
threshold value of 0.5 if the CFAR Pp is to be retained. In
scheme B, the improvement in Pp is clear while the Pr4 is
also noticeable lower for detection threshold of 0.8 while at
0.5 is higher than traditional GO-CFAR. By setting the node
threshold at 0.8 this network would give a CFAR comparable
Pp but with a lower Pr4.

The performance results above originate from the training
and evaluation based on the designated scenarios and the
conditions imposed upon targets, clutter and noise. The last
setting is intended to be a rather generic one and to demonstrate
that this is indeed the case the trained neural networks were
tested on a different type of simulated setup selected from
[12] where the transmission and reception of a single pulse
takes place and upon which a CFAR process is executed.
For this model, only two Swerling 1 fluctuating targets with
two range sidelobes are simulated alongside variable Gaussian
noise. In these simulations, the SNR ranged from —100 to 50
dB while the noise floor fluctuated between —70 to —35 dB.
The composition of this gives a system where the target power
levels and noise floor exhibit a very different characteristic
compared to the earlier models engaged in this text.

The resulting plots are provided in figures 8 and 9, obtained
by running the neural networks corresponding to figures 4 to
5. In these noise only cases, there is progressive improvement
in Pp from scheme A to scheme B while simultaneously an
equivalent degradation in Pr4 with the threshold value of 0.5.
The threshold value of 0.8, in all cases, gives a sharply lower
Pr 4 but can in fact still return roughly the same probability
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Fig. 8: Scheme A, noise only scenario: Pp and Prag
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Fig. 9: Scheme B, noise only scenario: Pp and Pry

of detection as of GO-CFAR using scheme B. The false alarm
rate, defined as the number of false detections relative to the
total number of tests, is also provided for comparison in figure
10. In the absence of clutter, both scheme A and B are able to
yield a consistent alarm rate regardless the SNR. These results
confirm the previous conclusions and illustrate the adaptability
of well-trained networks.

IV. CONCLUSION

This article considered trained artificial neural networks
as replacement for conventional CFAR detectors. Training
schemes were proposed on how to train such networks to
augment on probability of detection and / or reduction in false
alarms. All of these techniques relied strongly on standard
CFAR to establish the output from the trained neural network.
Simulations carried out with fluctuating targets incorporating
K-distributed clutter and noise were used for training and
evaluation. The outcomes demonstrate that, at least for specifi-
cally trained scenarios, the performance of a traditional CFAR
detector can be improved significantly by trained artificial
neural networks.
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