
Generalized Periodic Vehicle Routing and Maritime
Surveillance

Maria Fleischer Fauske1, Carlo Mannino2, and Paolo Ventura3

1Norwegian Defence Research Establishment, NO-2027 Kjeller, Norway,
maria.fauske@ffi.no

2SINTEF ICT Applied Mathematics, NO-0314 Oslo, Norway; and University of Oslo,
NO-0316 Oslo, Norway, carlo.mannino@sintef.no

3IASI-CNR, Rome, Italy, paolo.ventura@iasi.cnr.it

August 14, 2018

Abstract

Planning maritime surveillance activities in military operations and in long-term de-
fense planning is a huge task that is done manually today. As maritime surveillance
resources are extremely expensive, the potential cost savings of using optimization models
to do such planning are large. In this paper, we developed a methodology for making
maritime surveillance planning more efficient. The purpose of our tool is to find routes for
the force elements involved in maritime surveillance operations where the goal is to keep
a maritime picture sufficiently updated. Our problem may be viewed as a variant of the
classical Periodic Vehicle Routing Problem, but it differs from this problem in some major
aspects. To cope with the specific issues of our problem, we introduce a novel time-indexed
formulation, where each variable is associated with a set of contiguous time periods. To
tackle instances of practical size, we applied delayed column generation and developed
efficient heuristic techniques. We show how our approach can plan up to 72-hour realistic
missions with routing ships.

Keywords: Mixed integer linear programming, dynamic programming, column genera-
tion, maritime surveillance, military operations planning

1 Introduction

The Norwegian coastline is one of the longest in the world. Norways’s economic and fishery
zone consists of almost 2 000 000 km2 of waters, which is about 80 percent the size of the
Mediterranean sea. Surveillance of this area is a huge task which involves several Norwegian
authorities, such as the Coast Guard and the Navy, including technical facilities, e.g. maritime
patrol aircraft, stationary sensor systems, and satellites. The Norwegian Defence Research Es-
tablishment (FFI) has developed several models and tools to improve the use of force elements
(FE) in maritime surveillance (MS), and to analyze future needs for maritime surveillance
capacities. A simulation model used by FFI for this purpose is described by Vatne and Gisnås

1
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

(2014). In this paper we describe a model for optimizing the movements of force elements in
a maritime surveillance operation.

Maritime surveillance resources are extremely expensive. Planners of maritime surveillance
operations always want to use as few resources as possible, as effectively as possible. In
this paper we develop a methodology for making the planning of maritime surveillance more
efficient. A working tool may be included as a part of the planning process for organizations
doing maritime surveillance. In Norway, such a tool is especially useful for the Norwegian Joint
Headquarters, which is responsible for planning maritime surveillance missions in Norway. At
FFI, the tool is suitable for studying alternative future force structures in long-term defence
planning (LTP). LTP at FFI is conducted as a direct support to the Norwegian Ministry of
Defence, about the development of the Norwegian Armed Forces.

There may be several purposes for monitoring a maritime area. One may be to keep a
recognized maritime picture sufficiently updated. Another may be to maximize the probability
of detecting unknown vessels, or to maximize the ability to react to a detection in order to
obtain more information. The model we describe in this paper is used to study the movement
of force elements in order to keep a recognized maritime picture sufficiently updated. What
is considered sufficient will depend on both location and situation. Some areas need to be
scanned for vessels at a higher frequency than others. In peace time, the scanning frequency
requirement will be lower than in crisis or war. In our study we do not consider details
concerning e.g. technologies, communication or decisions. It is a study of structures, where
we look at the different force elements’ ability to collect information. This ability is mainly
a function of the force elements’ movement (speed) and sensor capabilities (range). In our
study we are given a fleet of FEs. The maritime area of interest is partitioned into a grid P
of hexagonal cells. The FEs move from cell to cell. The FE’s sensor range decides which cells
the FE can observe at any given time. Each cell should be observed a certain amount of times
during the planning horizon, and the lag between successive observations must not exceed a
given threshold, which depends on the given cell. Some cells should be observed continuously,
while other, less important areas, only have to be observed e.g. every 24 or 48 hours.

The Maritime Surveillance Problem (MSP) may be viewed as a variant of the classical
Periodic Vehicle Routing Problem (PVRP) in which one wants to route and schedule a fleet
of vehicles to repeatedly visit a number of clients scattered on the territory (see Cacchiani
et al. (2014); Mingozzi (2005); Pirkwieser and Raidl (2012)). Each client must be visited
with a given frequency during the planning horizon, according to some predefined patterns
(e.g Monday and Thursday or Tuesday and Friday, . . .). The MSP differs from the standard
PVRP in some major aspects. First, cells (clients) do not need to be directly visited, but can
simply be observed. In other words, many cells can be observed without the route of an FE
going through it. More precisely, PRVP corresponds to the special MSP case when every cell
p can be observed only from the same cell p, so MSP generalizes PVRP. A second aspect is
that in PVRP, the planning horizon is typically subdivided into days, every route is started
and completed in a single day of the planning horizon. Then a number of subsets (patterns)
of days are defined. Each client must be assigned one pattern so that the days in that pattern
satisfy the periodicity requirement of the client. Then a minimum cost set of routes should
be assigned to cover the selected patterns. In contrast, in MSP the basic period may differ
significantly from cell to cell. So, some cells must be observed once a day, while others every
hour or even continuously. Also, routes may last several periods, or less than one period.

2
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

To cope with all these additional issues, in this paper we introduce a novel time-indexed
Integer Linear Program (ILP) formulation for the problem. Time-indexed formulations were
first introduced in the context of job-shop scheduling problems (see Dyer and Wolsey (1990)), in
order to return tighter bounds than the more natural (big-M) formulations (for an interesting
theoretical comparison see Queyranne and Schulz (1994)). The planning horizon is discretized,
and a binary variable is associated with every operation and every lag in the planning horizon.
Time-indexed formulations have been successfully applied to different transport routing and
scheduling problems. For instance, in train scheduling Harrod (2011) and Caprara et al. (2002);
airplane routing and scheduling Avella et al. (2017) and Kjenstad et al. (2013); and classical
traveling salesman such as in Dash et al. (2012) and Ilavarasi and Joseph (2014).

In standard time-indexed formulations for vehicle scheduling, the planning horizon is par-
titioned into a finite set of periods, and each binary variable is associated with one vehicle
and one period. In order to represent multiple periodicities, in our approach we introduce a
new set of binary variables. Indeed, the new approach allows for an effective representation
of multiple periodicity observations as well as of the distinction between visiting a cell while
traveling, and observing a cell. In particular, besides the standard time-lags partition of the
planning horizon used for modeling travels, we introduce a new discretization by covering the
horizon with families of time intervals. In each family, the time intervals are equal in size.
Each interval is associated with a specific set of observations. For instances of realistic size, the
resulting ILPs turn out to be very large. To tackle this difficulty, we developed a master/slave,
column generation approach which allowed us to solve to optimality small instances and to
find good solutions to medium sized instances in reasonable computing time. We also prove
that the pricing problem is NP-hard; however we show how some simple heuristic approaches
may provide satisfactory solutions.

There are a few papers in the literature describing how to find optimal routes for single or
multiple vehicles in the context of maritime surveillance, using different models and solution
techniques. However, to our knowledge no such papers actually cover all the aspects which
must be considered when solving (our version of) the MSP. For instance, Marlow et al. (2007)
describes a problem where the purpose is to route an aircraft such that the number of visited
classified targets is maximized. A variation of the classical TSP is used to model the prob-
lem, then it is solved by classical heuristic approaches (such as genetic algorithms and 2-opt).
Dridi et al. (2012) describes a multi-objective optimization approach for solving a maritime
surveillance problem where a set of resources are assigned to a specific set of tasks: again the
periodical nature of the problem and the routing part are neglected. Grob (2006) describes a
simulation model to study the deployment of FEs to obtain a recognized surface picture. An
interesting, very recent paper on aircraft mission planning by Quttineh et al. (2015) presents
a few features in common with our approach. In particular, they also exploit a time-indexed
ILP formulation for their problem, equipped with a suitable column generation. They also
need to route several vehicles. However, since they are planning single missions with several
coordinated aircraft, they do not tackle periodicity. Also, each target point must actually be
"visited" by an aircraft. A very detailed model, which also incorporates speeds and observa-
tions, is provided in Grob (2006). Again, however, periodicity is neglected. Finally, in Stumpt
and Michael (2011), an application to robot surveillance is considered. Interestingly, the paper
tackles the problem of periodic visits to the targets. The idea is to create several copies of
a specific target, each representing a distinct visit, with an associated time window. This is

3
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

an approximation of the original period constraint, and it may return solutions which are far
from being periodic, as can easily be seen. In contrast, our modeling approach is exact, in that
the required visiting period for each cell is respected by every feasible solution to our model.
Indeed the observations of a given cell may happen more often than the minimum required
frequency.

2 The Problem

Roughly speaking, the MSP consists of finding an operational plan for a given force structure
doing maritime surveillance in a given area during a specific planning horizon H. In particular,
we want a plan which maximizes the ability to keep a recognized maritime picture sufficiently
updated. In the model, this ambition is given by the desired observation frequency for specific
regions or points in the area of interest. Given that the area of interest will in most cases be
too large for the force structure to fulfill the ambition for all cells, we will content ourselves
with maximizing the degree of ambition fulfillment.

In order to represent our problem, the area of interest is partitioned into a grid P of
hexagonal cells p1, p2, . . . , p|P |. Two adjacent cells are considered to be at distance 1. The
planning horizon is discretized in time-steps or time-lags, i.e. H = {1, 2, . . . , |H|}. A cell p
must be observed at least once every Tp periods. We are given a fleet F of Force Elements
(FE), such as vessels, aircraft, etc. Each Force Element f ∈ F is characterized by a number
of parameters, such as

• σf : speed, given as number of adjacent cells that f can cross in a single time-step.

• ρf : sensor range; f can observe any cell at distance at most ρf from it (see Figure 1).
Denote by Qf (p) such set of cells and recall that, when f is in cell p ∈ P , it is assumed
to be in the center of p and that two adjacent cells are at distance 1.

• λf : endurance, i.e. the number of time-lags the FE can operate before it has to go back
to its base. When f can travel for the entire planning horizon H without having to go
back to its base, λf = |H|.

• ϕf : initial location.

These parameters will vary significantly among the FEs. Satellites and stationary sensor
systems have a large sensor range, but do not move. An aircraft may travel 50 times faster
than a vessel. The endurance of an aircraft is also different from the endurance of a vessel.
An aircraft is typically only airborne for a few hours, while a vessel can sail for weeks. In
other words, some of the FEs in the model must return to their base after a short amount of
time, while others may start in one cell and end up in a totally different cell at the end of
the planning horizon. FEs with similar features and the same initial location are grouped, so
defining a partition {F1, . . . , Fk} of F . Briefly, the MSP can be stated as follows:

Problem 2.1 Given a set of cells P and a fleet F of FEs with their specific features, find
feasible routes for the FEs so to maximize the total number of cell observations.

4
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Figure 1 A: sensor range = 2, B: sensor range = 1

3 The Model

In this section we introduce a pure binary linear programming model for the MSP. As men-
tioned in the introduction, the MSP can be considered as a variant of the PVRP, which in
turn can be viewed as a generalization of the classic VRP. Concerning the discretized planning
horizon H, we assume that time-step t ∈ H starts at time t − 1 and ends at time t, and it
corresponds to the half-open real interval [t− 1, t). Next, we need to model the movements of
the force elements in the area of interest; and we need to represent and combine this with the
demand of periodic observations of cells.

Force Element trajectories: time-expanded network. We start by representing the
movements of a single force element (FE) f . To this end, we introduce the time-expanded
network Gf = (N,A) associated with the cells P , planning horizon H and FE f , as the
following directed graph. We assume that the trajectory of f is defined by joining with
segments the centers of the cells it passes by. At each time-step, the number of crossed cells is,
at most, the value of the speed σf . Then, the maximum length of a single trip of f is Sf = σf ·
min{H,λf}. Informally, Sf may be viewed as an expanded planning horizon for force element
f , with shorter time-lags, in order to take into account the fact that in one original time-lag of
H, f can visit up to σf cells. In contrast, in one time-lag of this expanded horizon, f can reach
at most one neighboring cell. This fact will be represented by the following time-expanded
network:

• node set: there is a node for every cell and every s = 0, . . . , Sf , namely N = {(p, s) : p ∈
P, s = 0, . . . , Sf}. When no confusion arises, we denote node (p, s) by ps.

• arc set A: there is an arc e = ((p, s), (q, s+ 1)) if and only if p = q or q is a neighboring
cell of p. Observe that the first case represents the situation in which the FE f is moving
slower than its full speed σf .

5
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

The following is a fundamental property of Gf :

Property 3.1 The time-expanded network Gf = (N,A) does not contain directed cycles.

The proof is immediate, since every arc is of type (ps, qs+ 1).
We recall that for any directed graph F = (W,A), a topological order of F is an order of

the nodes w1, w2, . . . , wn, such that (wi, wj) ∈ A implies j > i. In other words the arcs can
only be directed from lower to higher indexed nodes. It is well known that a graph F admits
a topological order if and only if F does not contain directed cycles (see Schrijver (2003)).

A topological order ≻ of the time expanded network Gf = (N,A) can be immediately
obtained by arbitrarily ordering the cells in P and by letting (q, v) ≻ (p, s) if (i) v > s or (ii)
v = s and q > p.

Any directed path (or route) in the graph Gf that starts from node (ϕf , 0) corresponds to
a possible trajectory of the FE f in the observed area. Since the graph contains no parallel
arcs, we may represent such a path as an ordered sequence of nodes of Gf (and omit to write
the arc between successive nodes, which is uniquely identified). In particular, the di-path
(p00, p11, . . . , pll) with p0 = ϕf has a straightforward interpretation: at any step 0 ≤ s ≤ l the
FE f is in (arrives at, if s > 0) the center of cell ps (from the center of cell ps−1, if s > 0). This
means that, at each time t = 1, . . . , ⌊ l

σf
⌋, f goes from cell p(t−1)·σf

to cell pt·σf
in σf steps. In

particular, the first cell to be visited after p(t−1)·σf
will be p(t−1)·σf+1, and so on following the

sequence p(t−1)·σf
, p(t−1)·σf+1,p(t−1)·σf+2,. . . ,pt·σf−1.

Modeling periodic observations. For every cell p ∈ P we assume that the maximum
time-lag Tp allowed between successive observations of p is an integer number of time-lags
(with Tp ≤ |H|). Now, let I = {t, . . . , t + Tp − 1} be an interval of size Tp in H. Clearly,
H contains precisely |H| − Tp + 1 such intervals, namely the family of observation intervals
I(p) = {{1, . . . , Tp}, {2, . . . , Tp + 1}, . . . , {|H| − Tp + 1, . . . , |H|}}.

We will exploit the following property:

Property 3.2 Cell p is observed at least once every Tp periods (in the time planning horizon)
if and only if it is observed (at least once) in every interval of H of size Tp, namely in every
observation interval of I(p).

The proof is immediate and we omit it.
Now, let p be a cell and I ∈ I(p). Then we say that the ordered couple (p, I) is an observation
and we denote by O = {(p, I) : p ∈ P, I ∈ I(p)} the set of all possible observations. Moreover,
let u = (q, s) be a node in the time expanded network Gf . Recall that u corresponds to
the possible location of f in cell q at time ⌊ s

σf
⌋. Therefore we say that u covers (p, I) if i)

p ∈ Qf (q) (i.e. p can be observed by f from q, according to the sensor range ρf); ii) ⌊ s
σf
⌋ ∈ I.

By extension, we also say that a route of Gf covers (p, I) if it contains a node u that covers
(p, I) and we denote by R(p, I) the set of all such routes. Moreover, we denote by O(r) the
set of observations covered by route r.

6
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Modeling the problem. Given the fleet of available FEs and corresponding time-expanded
networks, we denote by R the family of all feasible routes. Every route r ∈ R is associated
with a specific FE f of the fleet and in particular it corresponds to a directed path of the time-
expanded network Gf . A solution to the MSP consists of a set of routes R = {r1, . . . , r|F |} ⊆ R
and we denote by = O(R) ⊆ O the set of observations covered by at least a route of R, i.e.
O(R) =

∪
r∈R O(r). By Property 3.2, finding a set of routes for our available fleet such that

every cell p is observed at least every Tp periods is equivalent to finding a subset of feasible
routes R ⊆ R such that O(R) = O. In general, this request may be impossible to achieve, so
we will content ourselves with the more reasonable objective of maximizing the total number
of covered observations.

Then the MSP can be stated as follows: find a subset R ⊆ R of given size such that
maximizes |O(R)|. We may associate a value with every observation and maximize the total
value of the covered observations.

We are now ready to formulate the MSP as a binary linear program. For any route r ∈ R,
let yr be a binary variable which is 1 if and only if route r is selected. Also, with every
(p, I) ∈ O we associate a binary variable xpI which is 1 if and only if (p, I) is covered by some
selected route. The routes in R are grouped in clusters R1, R2, . . . Rk each corresponding to a
vehicle type (i.e. set of vehicles with the same values for σ, ρ, λ, and ϕ), and we let nq be the
number of vehicles of type q, for q = 1, . . . , k.

We associate a value VpI ≥ 0 with every observation (p, I) ∈ O and then look for solutions
maximizing the total value of the covered observations. Hence the MSP can be written as

max
∑

(p,I)∈O

VpIxpI

s.t.

(i) xpI −
∑

r∈R(p,I)

yr ≤ 0 (p, I) ∈ O, (1)

(ii)
∑
r∈Rq

yr ≤ nq q = 1, . . . , k,

y ∈ {0, 1}R, x ∈ {0, 1}O.

By constraints (1.i), a variable xpI can assume value 1 only if observation (p, I) is covered
by some selected route. Constraints (1.ii) ensure that not too many routes are chosen for each
class of vehicles.

Problem (1) contains a large number of rows (one for each observation) and potentially an
exponential number of columns (one for each route for each vehicle type): this may result in
intractably large instances. In order to tackle this difficulty, we apply delayed row and column
generation. We assume the reader to be familiar with the approach (for details see Alvras
and Padberg (2001); Desaulniers et al. (2006)). We start by solving a problem corresponding
to a subset of columns, relative to a subset of routes R̄ ⊆ R. Correspondingly, we have a
set Ō = Ō(R̄) of observations, namely the subset of pairs (p, I) ∈ O, that can be covered by
at least one route in R̄. This is the initial restricted master program. The linear relaxation
(RelMast) of the restricted master is solved to optimality (after including upper bounds on
the relaxed binary variables):

7
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

max
∑

(p,i)∈Ō VpIxpI

s.t.

(i) xpI −
∑

r∈R(p,I)∩R̄ yr ≤ 0 (p, I) ∈ Ō,

(ii)
∑

r∈Rq∩R̄ yr ≤ nq q = 1, . . . , k,

(iii) xpI ≤ 1 (p, I) ∈ Ō,

(iv) yr ≤ 1 r ∈ R̄,

y ∈ IRR̄
+ , x ∈ IRŌ

+

(RelMast)

Observe that the restricted master depends (only) on the current set R̄ of columns, since
the restricted observation set Ō = Ō(R̄) also depends only on R̄. We make explicit this
dependency by denoting the current master as RelMast(R̄). The restricted master contains
thus a subset of variables and a subset of constraints of the original program. Then, we
add new variables and constraints to the restricted master, solve again the associated linear
relaxation, and iterate. The process terminates either if we cannot further add "profitable"
columns or time limit is reached. More details will be given in Section 4.

The column generation (CG) algorithm is inspired by the simplex method for linear pro-
gramming (see e.g., Bertsimas and Tsitsiklis (1997)). In particular, the new variables are
chosen among those with largest reduced cost. Recall also that the reduced costs of the vari-
ables already included in the current master program are non-positive. To compute reduced
costs, we need the optimal dual variables (with respect to the current restricted master). So,
after solving the relaxation of the current restricted master program, let π̄, λ̄ be the optimal
dual vectors associated with constraints RelMast.i, RelMast.ii respectively1. Note that at the
next iteration, the newly introduced variables may extend existing constraints or may appear
only in new constraints. In contrast, by construction, the new constraints only contain new
variables.

Next, for (p, I) ∈ O, let V̄pI be the reduced cost of variable xpI . Then, for (p, I) ∈ Ō, we
have V̄pI ≤ 0, while, for (p, I) ∈ O \ Ō, we have V̄pI = VpI (because the variable does not
extend any constraint of the current master).

For a route r ∈ R̄ and associated variable yr, we have a reduced cost c̄r ≤ 0, while, for
r ∈ Rq \ R̄, the reduced cost of variable yr reads c̄r =

∑
(p,I)∈O(r)∩Ō π̄pI − λ̄q.

If we include a new route r ∈ R \ R̄, we also include the set of corresponding additional
observations O(r) \ Ō. Consequently, the new master program will contain, besides all former
variables and the new variable yr, also variables xpI , for (p, I) ∈ O(r)\Ō. So, instead of looking
to individual variables and individual reduced costs, we will look at the total contribution to
the reduced cost of all new variables. The sum of the reduced costs "associated with" route r

1Note that we do not need the dual variables associated with the other constraints to compute the reduced
cost of "new" variables. To see this, consider the column generation as an iteration of the primal simplex
method applied to the linear relaxation RelMast(R) of the overall original Problem (1). Let ȳ, x̄ the current
solution. Then a "new" column/variable yr to generate corresponds to a non-basic variable (implying ȳr = 0)
with positive reduced cost. But then yr does not appear in any constraint of type RelMast(R).iii and it appears
in only one constraint of type RelMast(R).iv, namely yr ≤ 1. However, since ȳr = 0, then the associated dual
variable is 0. A similar argument can be used for the x variables.

8
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

is then
c̄(r) +

∑
(p,I)∈O(r)\Ō

VpI =
∑

(p,I)∈O(r)∩Ō

π̄pI − λ̄q +
∑

(p,I)∈O(r)\Ō

VpI

.
Now, for each observation (p, I) ∈ O, we define a weight

wpI =

{
π̄pI if (p, I) ∈ Ō

VpI if (p, I) ∈ O \ Ō otherwise.
(2)

For r ∈ R \ R̄, let w(r) be the total weight of the associated observations, namely w(r) =∑
(p,I)∈O(r)wpI . Therefore, the column generation task corresponds to finding a route r in a

time-expanded network of an FE f q of type q which maximizes w(r)− λ̄q.

4 Column generation

In this section we describe alternative approaches to identifying the next route(s) to add to the
restricted master program. We can iteratively focus on a specific FE type and then find the
best route for each type. Then, any feasible route of f will be identified by a directed path in
the expanded network Gf (as described in Section 3) that starts from the node (ϕf , 0) (denoted
by o) and ends up in a final node (p, λf ·σf), with p ∈ P . We denote by E ⊆ {(p, λf ·σf)|p ∈ P}
the set of candidate final nodes. Notice that the final cell of the route can either: i) be given
for any force element type; ii) coincides with ϕf , if the route must actually be a tour (a closed
route); iii) be any cell of the grid (E = {(p, λf · σf)|p ∈ P}). All three possibilities can be
implemented by the algorithms and models we will discuss in the following.

Now we can state more formally our pricing problem.

Problem 4.1 [Largest Set Path Problem] (LSPP) Let G = (N,A) be an acyclic, connected
directed graph, with one source o ∈ N . We are given a ground set O, and a weight function
w : O → IR+. With every arc e ∈ A, we associate a subset Oe of the ground set O. For any
directed path Q = (e1, . . . , eq) in G, we let O(Q) =

∪
e∈QOe and we let w(Q) =

∑
ω∈O(Q)w(ω)

be the weight of Q. We want to find a directed path Q∗ in G of maximum weight w(Q∗).

Note that an instance of the LSPP is identified by the tuple (G(N,A), O,w,O1, . . . , O|A|).
In our application, the ground set O is the set O of observations, whereas the weights corre-
spond to the values wp,I as in (2). Moreover, for any e = (u, v) ∈ A, let Oe ⊆ O be the set
of observations that are covered by node u (and therefore by arc e) and, for each observation
(p, I) ∈ O, let A(p, I) = {e : (p, I) ∈ Oe}. We remark here that, for a given node u, every
outgoing arc will cover the same set of observations, which are indeed associated with u. In the
following, we will address LSPP also as the pricing problem and, since each FE f is associated
with a graph Gf , we denote it by LSPP (w, f).

To model the above problem as an ILP, we proceed in standard fashion by introducing a
binary variable ze for every e ∈ A, which is 1 if and only if arc e is taken in the chosen path r.
Also, similarly to what we did in Problem (1), for each observation (p, I) ∈ O, we introduce
a binary variable xpI , which will be 1 if and only if (p, I) ∈ Oe for some e ∈ r. Also, for
each v ∈ N , δ+(v) and δ−(v) denote the outgoing and incoming star of v respectively. The
following is an ILP formulation for Problem 4.1:

9
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

max
∑

p∈P
∑

I∈I(p)wpIxpI

s.t.

(i)
∑

e∈A(p,I) ze − xpI ≥ 0 (p, I) ∈ O,

(ii)
∑

e∈δ+(o) ze = 1

(iii)
∑

e∈δ+(v) ze −
∑

e∈δ−(v) ze = 0 v ∈ N \ {E ∪ {o}}

z ∈ {0, 1}A, x ∈ {0, 1}O

(3)

Constraints (3.i) allow variable xpI to be 1 only if the corresponding observation is covered
by some selected arc. Constraints (3.ii) and (3.iii) ensure that z ∈ {0, 1}A is the incidence
vector of a directed path starting from node o and ending in one of the nodes in E. Observe
that, in contrast with the standard integer programming formulation for the general case (see,
e.g., Drexl and Irnich (2014)), we do not need to include here the exponentially many subtour
elimination constraints, as G is acyclic (Property 3.1).

The pricing problem LSPP is hard to solve, as we will show formally in Section 5. In the
following, we present three fast heuristic algorithms and two exact approaches to the problem.
The computational strength of the methods will be discussed in Section 7.

Let G = (N,A) be a directed acyclic graph, with lengths l ∈ IRA associated with the
arcs. Let 1, . . . , n be a topological order of the nodes of G. We want to find the length Lv

of a maximum length path P ∗
v from vertex 1 to any vertex v ∈ E. We denote by N−(v) the

negative neighborhood of v, namely the set of nodes u ∈ N : uv ∈ A.

Algorithm 1 Dynamic Programming (DP)
1: Lv = −∞, v = 2, . . . , n. L1 = 0
2: for v = 2 to n do
3: Lv = maxu∈N−(v) Lu + luv
4: pred[v] := argmaxu∈N−(v) Lu + luv
5: end for

The longest path P ∗
v can be easily constructed by the vector pred[.] which gives, for each

v = 2, . . . , n, the previous node on the optimal path from node 1.
The first of our heuristic procedures is basically the straightforward application of Al-

gorithm DP to the expanded network G = (N,A) with arc length le =
∑

(p,I)∈Oe
wpI for

e = (u, v) ∈ A. In other words, the length le of an arc e is the total (reduced) value of the
observations which are carried out from e. The problem with this approach is that when we
consider a route r of G, an observation (p, I) ∈ O can be covered by different arcs of the route,
and so the same observation can contribute more than one time to the total length of the
route. In other words, for any given route r, the length l(r) ≥ w(r) is not less than the weight
of the route. So the longest route r∗ (with respect to l) may not be the one with maximum
reduced value w∗. However, l(r∗) provides an upper bound on the optimal value.

A possible way to refine Algorithm DP is to take into account the actual total value of the
observations, so that a specific observation is considered only once.

10
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

To this end, for each v ∈ N we introduce the set Obs[v], which is the set of observations
carried out in the sub-route from 1 to v (according to the vector pred). For a set of observations
O ⊆ O, let w̄(O) =

∑
(p,I)∈O wpI be its value.

Algorithm 2 Modified Dynamic Programming (MDP)

1: Obs[v] = ∅ for all v = 1, . . . , n
2: for v = 2 to n do
3: u∗ = argmaxu∈N−(v) w̄(Obs[u] ∪O(u,v))
4: pred[v] := u∗

5: Obs[v] = Obs[u∗] ∪O(u∗,v)

6: end for

The crucial step is the first in the for loop, where we choose the predecessor to be the
node u∗ that maximizes the value of the current route going through u∗ plus the contribution
of the additional observations carried out in arc (u∗, v). Moreover, observe that for each node
v of the network, we calculate and store the set of observations associated only to the most
promising (1− v)-path. This implies that the final path P ∗ provided by the algorithm could
not be the optimal one. Also notice that both algorithms DP and MDP require to visit every
node and every arc of the graph.

In order to speed up the procedure and reduce memory usage, we introduce a simplified,
“greedy" version of Algorithm MDP. The idea is to visit only a small subset of nodes and arcs
of G. First, observe that the time-expanded network Gf is a layered graph. Indeed, recall
that the nodes are associated with pairs (p, s) where p is a cell and s ∈ S is a time-step in
the expanded planning horizon S = σf · λf . In particular, there is a layer of nodes for every
time-step s ∈ S and the arcs of Gf can only go from nodes in a layer to nodes in the next
layer. Consequently, every directed path P = (v1, v2, . . .) necessarily visits nodes according
to the sequence of layers, and so vi belongs to layer i. In the following algorithm, at iteration
s we select the s-th node vs from layer s ∈ S. The s + 1-th node vs+1 is then restricted to
belong to the set N+(vs) of the neighbors of vs in layer s+ 1.

Algorithm 3 Greedy Dynamic Programming (GDP)

1: v = o, Obs = ∅
2: for s = 1 to S do
3: u∗ = argmaxu∈N+(v) w̄(Obs ∪O(v,u))
4: pred[u∗] := v
5: Obs = Obs ∪O(v,u∗)

6: v := u∗

7: end for

Finally, we discuss how to solve LSPP to exact optimality. One way to do that is to solve
the ILP program (3) using the branch & bound procedure of a commercial ILP solver. In the

11
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

following, we will refer to this method as the EXI algorithm. In the following, we also present
an exact combinatorial algorithm to solve the pricing problem. Such an algorithm follows a
branch & bound scheme based on a recursive enumeration of the paths of the graph G.

We denote by maxPath(u,O) the maximum value of a subset of observations O ⊆ O which
can be covered by a path from the origin o to node u. More formally, for all possible paths
from o to u, let P ∗

u be one that maximizes w(O(P ∗
u) ∩O). Then, we define maxPath(u,O) =

w(O(P ∗
u) ∩O). The following recursive expression holds for maxPath(v,O).

maxPath(v,O) = maxu∈N−(v)maxPath(u,O \O(u, v)) (4)

Note that, if the maximum is attained for u = t, and P ∗(t) is the path associated with
maxPath(t, O \ O(u,t)), then P ∗

v = P ∗
w • (t, v), that is the optimal path associated with

maxPath(v,O) is obtained by concatenating the optimal path associated maxPath(t, O \
O(u,t)) with arc (t, v). Then, if z is the destination node, our problem is equivalent to com-
puting maxPath(z,O), with the optimal route being P ∗

z .
We implemented the recursive formula (4) by Algorithm EXC2.
We remark that, differently from most models in the VRP literature, here we could not

apply some adaptation of the ”standard“ labeling pricing algorithm. Basically, all the pricing
algorithms presented for different VRP variants, from the seminal paper of Christofides et al.
(1981) up to the more recent contributions of Fukasawa et al. (2006), Baldacci et al. (2011)
and Martinelli et al. (2014), rely on the fact that the pricing problem can be solved by finding
a minimum cost simple path P ∗

v (which often has to satisfy additional capacity constraints or
time windows) from the depot to each node v in the input graph. Therefore, its value c(P ∗

v)
can be calculated by the recursive formula c(P ∗

v) = min {c(P ∗
u)+duv|u ∈ N−(v)} (where duv is

the cost of arc (u, v)) and the main computational effort of the algorithm is devoted to ensure,
by sophisticated relabeling techniques, that such a path stays simple.

On the contrary, for our problem LSPP, the cost of an optimal path cannot be calculated
by means of a similar recursive formula. This is basically because the same observation can
be covered by different nodes of the graph G (corresponding to different cells of the original
grid visited in different instants of time) and, therefore, a sub-path of a largest set path is not
necessarily a largest set path to a previous node. Moreover, standard dominance techniques
based on capacity of time window constraints cannot be exploited in LSPP. However, we could
apply another ”classical“ dominance technique, namely upper bounding, to limit the size of the
search.

In particular, consider a path Pz from the origin node o to a destination node z ∈ E and
let v ̸= z be a node in Pz. Then, let Pv be the sub-path of Pz from o to v and let Pvz be the
remaining sub-path, i.e. P = Pv • Pvz. We have:

w(O(Pz)) ≤ w(O(Pv)) + w(O(Pvz))

because Pv and Pvz may share some observations. Now, let UBvz be any upper bound on the
value of any path from v to z. Then we have:

w(O(Pz)) ≤ w(O(Pv)) + w(O(Pvz) ≤ w(O(Pv)) + UBvz

2For simplicity, although the formula is a backward recursion, our Algorithm EXC is presented as a forward
recursion

12
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

.
Now, suppose we have at hand a feasible solution (incumbent) with value LB. Let P ∗

v be
an optimum path from o to v, namely a path maximizing w(O(Pv)) for any path Pv from o
to u. If we have that

w(O(P ∗
v)) + UBvz ≤ LB

then no path improving the incumbent can go through node v.
We apply this idea in Algorithm EXC, where UBvz is pre-computed by Algorithm DP for

each pair v, z.

Algorithm 4 Exact Combinatorial Algorithm (EXC)

1: maxPath((o, ∅))

2: function maxPath((u, O))
3: for v ∈ N+(u) do
4: if (v = n) then
5: if (w(O ∪O(u,v)) > LB) then
6: LB = w(O ∪O(u,v))
7: end if
8: else
9: if (w(O ∪O(u,v)) + UB(vn) > LB) then

10: maxPath((v,O ∪O(u,v)))
11: end if
12: end if
13: end for
14: end function

5 Complexity of the pricing problem LSPP

We show here that the Largest Set Path Problem Problem (Problem 4.1) is NP-hard, by
reduction from the (unweighted) Maximum Coverage Problem (MCP), known to be NP-hard
(see Hochbaum (1997)).

Problem 5.1 (Maximum Coverage Problem) Given a ground set B, a family S = {S1, . . . , Sm}
of subsets of B, and a positive integer p, the Maximum Coverage Problem (MCP) is to find a
family S∗ ⊆ S with |S∗| = p that maximizes |

∪
Si∈S∗ Si|.

To simplify the following discussion, we may let S∗ contain multiple copies of sets in S. It
is easy to see that this version is equivalent to the original one where S∗ is a simple set. We
have that:

Theorem 5.2 The Largest Set Path Problem (Problem 4.1) is NP-hard.

13
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

The proof is by reducing MCP to LSPP. Let (B,S, p) be an instance of the Maximum
Coverage Problem and, w.l.o.g., assume p ≤ m.

Figure 2 The picture illustrates the graph G associated with an MCP instance where B =
{a, b, c, d}, S1 = {a, b}, S2 = {b, d}, S3 = {c, d}, and p = 2. The blue arcs show an optimal
solution of the corresponding LSPP instance.

s

u13

u12

u11

u23

u22

u21

t

{a, b}

{b, d}

{c, d}

{a, b}

{a, b}

{a, b}

{b, d}

{b, d}

{b, d}

{c, d}

{c, d}

{c, d}

Then construct an equivalent instance (G = (N,A), O,w,O1, . . . , O|A|) of the LSPP as
follows. We let O = B, and w(ω) = 1 for all ω ∈ O. Note that since all weights are one,
the LSSP reduces to a cardinality problem. Next, we introduce graph G = (N,A) with
N = {uki : k = 1, . . . , p, i = 1, . . . ,m} ∪ {s, t} and we let A be partitioned into As, At, and
Au, where

• As = (s, u1i),∀i = 1, . . . ,m;

• At = (upi, t),∀i = 1, . . . ,m;

• Au = (uki, uk+1j),∀k = 1, . . . , p− 1,∀i, j = 1, . . . ,m,.

Graph G is a layered graph and arcs go from every node in one layer to every node in the
next layer. There are p+2 layers: The first layer contains only the source node s and the last
layer contains only the sink node t. Each intermediate layer contains a node for each set in S:
so node uki can be interpreted as the representative of set Si in layer k.

Next, we let Oe = Si for each arc entering a node uki, with k = 1, . . . , p and i = 1, . . . ,m,
and let Oe = ∅ for each arc entering t (see the example in Fig. 2). So, every arc entering the
representative node of set Si ∈ S (in every layer) is also associated with Si.

Consider first an optimal solution S∗ = {Si1 , . . . , Sip} to MCP, with i1, i2, . . . , ip ∈ {1, . . . ,m},
and value |Si1 ∪Si2 · · · ∪Sip |. We construct an equivalent solution of our instance of LSPP by
choosing path P ∗ = {(s, u1i1), (u1i1 , u2i2), . . . , (upip , t)}. We have that w(P ∗) = |

∪
e∈P ∗ Oe| =

|O(s,u1i1
) ∪ O(u1i1

,u2i2
) ∪ · · · ∪ O(upip ,t)

| = |Si1 ∪ Si2 · · · ∪ Sip |: so P ∗ and S∗ have the same
value and the optimal solution to LSPP is at least as good as the optimal solution to MCP.
Analogously, let P ∗ = {(s, u1i1), (u1i1 , u2i2), . . . , (upip , t)} be an optimal solution to LSPP,then
we can construct an equivalent solution to MCP by letting S∗ = {Si1 , . . . , Sip} and again the
two solutions have the same value. □

14
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

6 The overall algorithm

In this section, we finally summarize the overall solution algorithm for the MSP. We follow the
exact solution scheme adopted in Baldacci et al. (2011). In particular, in the first loop (steps
2.−9., Column Generation Loop) we solve the linear relaxation of Problem (1) by column
generation: at each iteration i, we: (i) solve the relaxation RelMast(Ri) of the current master
problem; (ii) calculate the weight vector wi as defined in (2); (iii) for any type q of FE, solve
the pricing problem LSPP (wi, f q) using one of the algorithms described above. If the pricing
algorithm is exact (i.e., we use EXI or EXC) and at the last iteration (say z) no routes with
positive reduced cost exist, then the value rV al = RelMast(Rz) is the optimal value of the
linear relaxation RelMast(R) of Problem (1), therefore providing an upper bound for the
optimal (integer solution) value to the MSP problem.

In some classic (heuristic) approaches to vehicle routing (and other) problems one con-
tents himself with the set of columns (variables) generated so far (i.e. those appearing in
RelMast(Rz)). Then we can re-stipulate integrality on the variables (we call the generic prob-
lem IntMast(•)) and compute the best integer solution to IntMast(Rz). However, this solution
is in general non-optimal for the original problem (1). This is because any optimal solution
may contain at least one route which is not in Rz.

In order to find the optimal solution to Problem (1) we can proceed as next. Let R̄ = Rz

be the set of routes at the termination of the column generation loop. We build a set R∗ ⊇ R̄
which contains all the routes appearing in (at least) an optimal solution. To this end, assume
we have at hand a lower bound LBMSP on the optimal integer value of MSP. Then, it is well
known that any column with reduced cost not greater than LBMSP − rV al cannot appear in
any solution improving LBMSP (reduced cost fixing, see for instance Wolsey (1998)).

Then, we can obtain R∗ by generating and adding to R all of the routes with reduced cost
greater than LBMSP − rV al. Clearly, to be sure of not missing generating any such columns
we need an exact pricing procedure.

15
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Algorithm 5 SolveMSP

1: i = 0 and R1 = ∅

Column Generation Loop
2: repeat
3: i = i+ 1
4: solve(RelMast(Ri)). Let wi be the observations weight vector defined as in (2).
5: for q = 1, . . . , k do
6: solve(LSPP(wi, f q)). Let rqi /∈ Ri be the returned route.
7: end for
8: Ri+1 = Ri

∪
q=1,...,k{r

q
i }.

9: until some route with positive reduced cost is found
10: R := Ri+1 and w := wi+1

Integrality Gap Pricing
11: rV al := opt(RelMast(R))
12: LBMSP := opt(IntMast(R))
13: solve(LSPP(w, f q)) for all q = 1, . . . , k
14: R+ := {all the routes with reduced cost greater than LBMSP − rV al}.

Integer Problem Solution
15: solve(IntMast(R∪R+)).

Remark. Here we want to stress that Algorithm SolveMSP returns a certified optimal
solution to MSP if its implementation fulfills the following two requirements, that are critical
from a computational standpoint:

i. At step 6 the pricing problem is solved exactly;

ii. At step 14, the set R+ contains all the routes with reduced cost greater than LBMSP −
rV al;

iii. The binary problem IntMast(R∪R+) is solved to optimality in step 17.

If one of these requirements is relaxed (for example the pricing problem is solved heuris-
tically and/or the set R+ does not contain all the routes with a promising reduced cost, or
the branch & bound algorithm for solving IntMast(R∗) problem is halted before proving the
optimality of the current best solution) the solution provided by the SolveMSP algorithm is
not necessarily optimal.

We implemented SolveMSP as described above: results are presented in Section 7. The
exact algorithm can solve the MSP in a reasonable amount of time for small instances. Un-
fortunately, for the realistic size instances of our test-bed, we could not prove the optimality
of the solutions provided, even if we can show they are not too far. Indeed, for these large
instances, the following happens:

16
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

i. The exact combinatorial pricing algorithm EXC, quite effective for small instances, can-
not tackle the pricing problem of the large ones, where the time-expanded network
contains dozens of thousand nodes;

ii. The number of columns that are eligible for be part of the optimal solution gets too
huge;

iii. The binary problem IntMast(R∗) is very large (and very dense) and cannot be solved to
proven optimality in the time limit we set.

Therefore, for these large instances, we: i) solve the pricing problem with a heuristic
procedure; ii) leave the Column Generation Loop as soon as a tailing-off behavior shows;
iii) do not apply the Integer Gap Pricing: iv) set an adequate time limit for the solution of
the final master problem.

Although these compromises may appear to heavily weaken the overall approach, the
computational results that we present in Section 7) give evidence that the procedure we propose
can still represent a useful tool for planning maritime surveillance, as it provides pretty good
solutions to realistic size instances in a very reasonable amount of time.

7 Computational experiments

In this section we first describe our test-bed and give some implementation details. Then we
discuss the computational results comparing different implementation choices for solving the
pricing problem as well as the overall performance of our approach to the Maritime Surveillance
Problem.

7.1 Instances description.

The grid. Our computational experiments are carried out on a set of instances of size and
characteristics similar to real-life instances. All these instances are available upon request to
the authors. We consider an area about 1/16 the size of Norwegian maritime territory, divided
into 835 cells, as illustrated in Figure 3. The observation period associated with each cell is
indicated in the picture.

The Force Elements. We considered a set of vessels of different types. Each type of vessel
is characterized by its sensor range (representing the maximum distance of a cell that can be
observed from the vessel’s current position - two adjacent cells are at distance 1), maximum
speed, starting cell, and cardinality (number of vessels of that type). Table 1 shows the
different vessel types we consider and their features. Since the planning horizons considered
in the experiments are shorter than the maximum endurance of the vessels, we let missions
terminate anywhere in the grid; in contrast, the starting cell of any mission is given, and may
coincide with the ending cell of the previous mission.

17
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Table 1: Input data for the different vehicle types. Speed is given as the maximum number of cells
that can be traversed in a time step and sensor range is given as the maximum distance of an observable
cell. The starting point of each vessel type is indicated in Figure 3.

Vehicle type Number of vehicles Speed Sensor range

1 2 2 1
2 1 1 1
3 2 1 1
4 1 1 2
5 2 1 2

In order to diversify the experiments, for a fixed planning horizon and based on the default
values indicated in Table 1, we generate 8 distinct scenarios as follows. For each parameter
column we consider two different settings depending on the status of a control switch, which
are denoted by CSN for the number of vehicles, CSS for speed, and CSR for sensor range
respectively. When a specific switch is 0, the values of the corresponding parameter for each
vehicle type are precisely those in the corresponding parameter column of Table 1. When
the switch is 1, then all entries in the corresponding column are set to 1. So, for instance,
when CSN = 1, we have exactly one vehicle for each type. Similarly, when CSR = 1, the
sensor range will be 1 for all types. Because we have three parameters, we have precisely 8
combinations of parameter switch values (i.e. 8 scenarios).

Planning horizon and observations. We consider the following planning horizons: 6, 12,
24, 36, 48, 60, 72. For each cell i, we randomly generated an observation period ti ∈ T =
{1, 6, 12, 18, 24} in such a way that the expected number of cells with observation period t ∈ T
is proportional to t. Therefore, for each cell with observation period 1, we have (on average)
24 cells with observation period 24. Such values are depicted in Figure 3. For all instances
and all observations pI, we let VpI = 1.

Hence, we consider 7 planning horizons and 8 scenarios: in total 56 instances indexed from
1 to 56.

Implementation details. We implemented the algorithms using C language and the opti-
mization libraries of the commercial solver CPLEX (included in CPLEX Optimization studio
12.5) and we run them on a 3.5 GHz Intel(R) i7-4960X CPU machine with 6 dual threads
cores, running 64 bit Linux Ubuntu 16.04 operating system.

Before delving into the discussion on our computational experiments, we give some imple-
mentation details on algorithm SolveMSP described in Section 6. At each iteration of the
Column Generation Loop, the optimal solution to the current RelMast(Ri) is obtained by
calling the CPLEX dual simplex algorithm, while the pricing problem is solved, depending on
the case, by one of the algorithms DP, GDP, MDP, EXI, or EXC, defined in Section 4.

In the block named Integrality Gap Pricing, we invoke CPLEX MIP solver to solve
to integral optimality the reduced problem IntMast(R), defined over the set R of routes
generated in the previous block. The optimal value of this problem is denoted as LBMSP .
CPLEX MIP solver is finally invoked again to solve IntMast(R∗) in the final block Integer
Problem Solving of the SolveMSP algorithm.

18
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

7.2 Assessing the column generation

In the first set of experiments we want to identify the best pricing heuristic among the three
described in Section 4. In Table 2 we present the computational results obtained by solving the
linear relaxation of the original master problem via the column generation scheme described
in Section 6 (the Column Generation Loop of algorithm solveMSP) within a total time limit
of 30 minutes. In the following we will denote by CG-GDP, CG-DP and CG-MDP the column
generation (CG) algorithm where the pricing problem is solved by procedure GDP (Greedy
Dynamic Programming), DP (Dynamic Programming), and MDP (Modified Dynamic Pro-
gramming) resp.). Because of the time limit of 30 minutes and since all the three procedures
GDP, DP, and MDP are not exact, the value of the optimal solution of RelMast(R) (denoted
by rVal) is in general a lower bound on the optimal value of RelMast(R).

The i-th row of the table is associated with instance i = 1, . . . , 56. The first four columns
of the table describe the instance: H is the planning horizon, while the triple CSN, CSR, CSS

defines the control switches of the vessels. Then, there are three blocks of columns, associated
with the three algorithms used to solve the pricing problem: GDP, DP, and MDP. In each of
these blocks, rVal represents the optimal value of RelMast(R), rT the total time requested by
the algorithm, cgN the total number of routes generated, cgI the total number of iterations in
the CG procedure, and cgT is the total time requested to solve the pricing problems. Times
are expressed in seconds and 0.0 stands for any value less than 0.1.

The computational results of Table 2 show that all the three algorithms for the pricing
problem are very fast and indeed, for all instances, most of the computation time is required
by the iterative calls to the re-optimization procedure. The best performances in terms of
generated lower bounds are the ones produced by the CG-MDP algorithm, which consistently
dominates the other two algorithms. Nevertheless, the values provided by CG-DP and CG-
GDP are not much worse, as illustrated in Figure 4.

Here, for each instance i ∈ 1, . . . , 56 (in the x-axis), we fix the bound wi computed by
CG-MDP as reference value and reported in Table 2. Then we plot the ratios yi

wi
and zi

wi
of

the bound yi obtained by CG-DP and the bound zi obtained by CG-GDP with the reference
value wi. The points are then joined by a line to better highlight the behavior.

For both ratios, the average is about 89%. In particular, CG-DP performs better than
CG-GDP on the instances with a longer planning horizon.

19
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Instance CG-GDP CG-DP CG-MDP

H CSN CSR CSS rVal rT cgN cgI cgT rVal rT cgN cgI cgT rVal rT cgN cgI cgT

6 0 0 0 204.0 0.0 9 5 0.0 227.0 0.3 67 25 0.3 229.0 1.4 73 36 1.4
6 0 0 1 174.0 0.0 13 6 0.0 190.0 0.1 39 11 0.1 191.0 0.5 49 14 0.5
6 0 1 0 169.0 0.0 15 7 0.0 175.0 0.4 61 31 0.3 177.0 0.5 30 11 0.5
6 0 1 1 138.0 0.0 23 9 0.0 139.0 0.2 42 13 0.2 139.0 0.5 34 13 0.5
6 1 0 0 160.0 0.0 23 12 0.0 162.0 0.3 35 21 0.3 163.0 0.3 16 6 0.2
6 1 0 1 143.0 0.0 14 7 0.0 144.0 0.1 23 7 0.1 145.0 0.2 17 6 0.2
6 1 1 0 113.0 0.0 15 5 0.0 115.0 0.4 43 30 0.4 115.0 0.3 17 6 0.2
6 1 1 1 96.0 0.0 15 7 0.0 97.0 0.1 17 7 0.1 97.0 0.3 18 7 0.3

12 0 0 0 525.0 0.1 28 16 0.0 614.0 5.1 396 178 4.2 633.5 3.6 186 52 3.3
12 0 0 1 451.0 0.0 18 7 0.0 514.5 1.9 275 80 1.4 527.0 1.0 121 27 0.9
12 0 1 0 416.0 0.0 13 6 0.0 514.7 3.4 377 134 2.7 540.0 2.2 183 50 2.0
12 0 1 1 366.0 0.0 26 9 0.0 422.3 1.5 291 73 1.1 434.6 1.0 97 25 0.9
12 1 0 0 413.0 0.0 14 5 0.0 441.0 1.9 217 74 1.7 459.5 1.4 61 19 1.4
12 1 0 1 373.0 0.0 18 7 0.0 394.0 0.7 129 34 0.6 410.5 0.7 42 12 0.7
12 1 1 0 312.7 0.0 18 6 0.0 340.0 1.3 197 56 1.2 358.0 1.1 54 15 1.1
12 1 1 1 259.5 0.0 19 8 0.0 295.3 1.1 121 61 1.0 305.0 0.8 42 14 0.8
24 0 0 0 2647.8 0.3 27 8 0.0 3325.4 104.5 1358 526 51.6 3517.5 145.3 576 192 57.9
24 0 0 1 2367.9 0.5 39 13 0.0 2752.0 49.1 944 255 20.0 2843.4 31.1 346 78 12.8
24 0 1 0 2413.7 0.6 47 16 0.0 2833.6 106.0 1520 538 47.9 3068.4 106.5 469 133 38.7
24 0 1 1 2004.0 0.2 30 10 0.0 2268.7 50.8 1184 279 15.4 2425.8 49.1 488 126 18.1
24 1 0 0 2256.9 0.5 41 13 0.0 2397.9 25.7 635 147 15.5 2506.1 23.2 176 45 15.5
24 1 0 1 1978.5 0.2 29 10 0.0 2078.2 19.9 628 150 10.5 2166.1 23.6 209 60 12.9
24 1 1 0 1763.7 0.3 45 15 0.1 1897.0 13.2 602 147 10.1 2008.3 27.0 223 63 19.2
24 1 1 1 1436.9 0.4 53 17 0.0 1595.0 6.4 472 124 4.5 1683.3 16.7 201 51 9.2
36 0 0 0 9262.7 22.4 54 17 0.2 9578.0 463.0 1785 464 86.8 11 141.5 1833.3 555 111 103.8
36 0 0 1 8040.9 36.7 94 33 0.4 8942.3 708.1 2423 651 94.9 9284.5 1265.2 1145 258 121.7
36 0 1 0 8804.8 70.6 104 35 0.4 8005.5 419.2 2179 485 67.1 9529.3 1816.8 515 103 82.1
36 0 1 1 6910.3 26.5 71 20 0.2 7373.9 1273.5 2574 683 102.5 7658.7 1661.7 1320 301 123.7
36 1 0 0 7275.2 21.0 48 16 0.2 7037.6 500.1 1297 306 88.7 7937.2 991.3 759 192 200.6
36 1 0 1 6458.4 21.3 58 19 0.1 6775.9 348.7 1212 286 62.7 6947.9 750.8 688 169 127.9
36 1 1 0 5644.5 37.6 113 34 0.4 5327.5 409.1 1462 349 84.0 6054.7 525.8 959 229 173.7
36 1 1 1 4745.9 19.2 72 22 0.2 4931.0 151.4 1019 226 30.4 5074.0 168.2 615 146 46.1
48 0 0 0 15 803.6 152.2 92 32 1.3 15 768.0 1803.0 2193 481 175.1 19 169.5 1843.9 250 50 99.7
48 0 0 1 14 488.5 53.3 88 25 0.3 15 252.8 1816.0 2408 493 159.5 16 469.3 1832.6 250 50 92.7
48 0 1 0 14 162.2 57.7 87 27 0.4 12 568.0 1751.3 2914 625 198.9 16 302.2 1929.0 305 61 101.0
48 0 1 1 11 849.8 83.9 148 45 0.6 12 038.5 1821.5 2616 541 125.6 13 282.0 1829.3 310 62 83.7
48 1 0 0 12 470.8 43.3 77 24 0.3 11 606.0 1802.7 1580 356 209.9 13 718.5 1805.6 380 76 148.7
48 1 0 1 10 758.9 11.1 50 17 0.2 11 654.9 1110.6 1930 426 136.8 12 119.2 1816.6 385 77 140.3
48 1 1 0 9682.2 30.1 83 26 0.4 8624.1 1250.0 1783 440 203.3 10 429.9 1198.5 893 198 262.6
48 1 1 1 8121.5 13.5 58 17 0.2 8413.3 1185.4 2018 429 152.9 8781.9 1205.6 798 180 179.0
60 0 0 0 23 884.6 440.4 80 24 2.7 18 347.2 1812.4 1230 246 216.9 27 046.2 2047.1 150 30 90.1
60 0 0 1 21 111.7 737.9 107 35 3.7 19 404.9 1810.8 1908 403 210.0 23 683.4 1829.5 185 37 108.7
60 0 1 0 20 422.4 304.9 79 22 2.4 15 044.6 1803.1 1712 346 221.2 22 908.8 1856.6 160 32 90.5
60 0 1 1 17 502.8 476.0 107 26 3.5 15 530.8 1805.8 2644 533 205.8 18 978.9 1797.9 230 46 103.0
60 1 0 0 17 525.9 409.8 65 19 2.0 15 359.0 1807.4 1117 241 244.6 19 512.0 1829.8 275 55 145.1
60 1 0 1 15 415.0 71.9 52 14 0.9 15 837.7 1648.1 2105 475 282.2 17 310.0 1813.0 345 69 185.3
60 1 1 0 13 654.5 44.3 70 19 0.5 11 604.9 1800.5 2025 507 332.1 14 834.1 1806.2 390 78 199.7
60 1 1 1 11 642.1 42.8 96 27 0.6 11 512.7 1158.0 2298 529 197.6 12 540.2 1807.5 834 169 249.8
72 0 0 0 31 445.0 731.5 154 46 2.3 24 487.4 1800.4 1351 276 257.8 34 517.6 1990.0 95 19 99.4
72 0 0 1 27 701.9 569.3 142 48 2.0 24 220.5 1807.3 1877 397 250.5 30 539.6 1819.3 85 17 102.4
72 0 1 0 27 480.2 300.6 107 27 1.4 19 810.8 1802.5 2800 732 384.9 29 602.7 1877.8 155 31 105.5
72 0 1 1 22 674.1 355.2 166 49 2.0 18 945.9 1809.9 2593 578 244.3 24 739.0 1857.9 260 52 107.1
72 1 0 0 23 111.3 145.6 91 27 1.4 19 518.5 1804.6 1778 376 278.9 25 279.8 1824.3 185 37 186.3
72 1 0 1 21 134.8 293.5 138 42 1.9 18 648.1 1809.3 2128 461 290.5 22 535.5 1906.2 225 45 144.9
72 1 1 0 17 854.1 151.6 122 35 1.8 12 973.1 1801.4 2852 586 254.6 19 244.0 1812.6 315 63 266.9
72 1 1 1 14 814.3 37.4 62 15 0.6 13 428.3 747.3 2173 499 224.9 16 302.0 1835.4 375 75 190.7

Table 2: Comparing the three column generation approaches CG-GDP, CG-DP, and CG-MDP when
solving the linear relaxation of the master problem within a time limit of 30 minutes.

20
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Figure 4 Ratios between the bound obtained by CG-DP and CG-GDP with the bound
obtained by CG-MDP, for each instance 1, . . . , 56. The instance index is represented on the
x-axis.

The fact that MDP outperforms GDP and DP is also emphasized by the results reported in
Table 3. In these experiments we first select, for each instance i, the best performing algorithm
among CG-DP and CG-GDP, according to the returned lower bound rVal(i) of Table 2 (the
corresponding data are reported in the columns labeled CG-GDP / CG-DP). Then, we
solve the master relaxation of i with CG-MDP, stopping the procedure as soon as the lower
bound rVal(i) is reached (or exceeded). The results of the procedure are presented in the
columns labeled as CG-MDP. As one can see, with the exception of only three instances
with H = 6, CG-MDP is definitively the fastest algorithm.

Next, in Table 4 we present the results obtained by the Column Generation Loop when the
pricing problem is solved exactly. In particular, at each iteration of the Column Generation
Loop, we first invoke our best heuristic approach MDP and then, in case MDP does not identify
any route with positive reduced cost, we invoke the exact algorithm: namely, either the CPLEX
MIP solver applied to the linear integer model (3) (EXI); or the exact combinatorial algorithm
(EXC) presented in Section 4.

Because of the computational difficulty of the pricing problem, we can provide the optimal
solution only for a subset of the 56 instances in our test-bed. In particular, we could solve
to optimality all the instances with a 6-hour and 12-hour planning horizon. The values of
such optimal solutions are presented in column rVal/Exact, while column rVal/Heu re-
ports the values provided by the CG-MDP procedure. For each of the two exact methods we
implemented, the ILP model and EXC, columns tT, cgNH, cgNE, cgI present the total time
requested, the number of heuristic routes generated, the number of exact routes generated,
and number of iterations in the column generation loop respectively. The symbol (-) is used to
identify the instances that could not be solved by the CPLEX algorithm within a time limit
of one hour for a single call.

We stress that, as the pricing problem is solved to optimality, the values reported in the
column rVal/Exact are the optimal values of the linear relaxation RelMast(R) of the overall
master problem and therefore valid upper bounds for the optimal value of the MSP.

21
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Instance CG-DP/CG-GDP CG-MDP

H CSN CSR CSS rVal rT cgN cgI cgT Algo rVal rT cgN cgI cgT

6 0 0 0 227.0 0.3 67 25 0.3 CG − DP 228.0 0.0 35 8 0.2
6 0 0 1 190.0 0.1 39 11 0.1 CG − DP 190.0 0.2 42 9 0.2
6 0 1 0 175.0 0.4 61 31 0.3 CG − DP 176.0 0.1 19 4 0.1
6 0 1 1 139.0 0.2 42 13 0.2 CG − DP 139.0 0.3 34 13 0.3
6 1 0 0 162.0 0.3 35 21 0.3 CG − DP 163.0 0.1 13 3 0.1
6 1 0 1 144.0 0.1 23 7 0.1 CG − DP 145.0 0.1 14 3 0.1
6 1 1 0 115.0 0.4 43 30 0.4 CG − DP 115.0 0.1 17 6 0.1
6 1 1 1 97.0 0.1 17 7 0.1 CG − DP 97.0 0.2 18 7 0.2

12 0 0 0 614.0 5.1 396 178 4.2 CG − DP 616.0 0.3 35 7 0.2
12 0 0 1 514.5 1.9 275 80 1.4 CG − DP 516.6 0.3 40 8 0.3
12 0 1 0 514.7 3.4 377 134 2.7 CG − DP 524.0 0.2 19 4 0.2
12 0 1 1 422.3 1.5 291 73 1.1 CG − DP 426.0 0.2 30 6 0.2
12 1 0 0 441.0 1.9 217 74 1.7 CG − DP 456.0 0.2 20 4 0.2
12 1 0 1 394.0 0.7 129 34 0.6 CG − DP 397.0 0.1 15 3 0.1
12 1 1 0 340.0 1.3 197 56 1.2 CG − DP 341.0 0.1 9 2 0.1
12 1 1 1 295.3 1.1 121 61 1.0 CG − DP 297.0 0.1 14 3 0.1
24 0 0 0 3325.4 104.5 1358 526 51.6 CG − DP 3349.8 0.9 20 4 0.7
24 0 0 1 2752.0 49.1 944 255 20.0 CG − DP 2762.4 1.6 40 8 0.9
24 0 1 0 2833.6 106.0 1520 538 47.9 CG − DP 2844.0 0.6 15 3 0.4
24 0 1 1 2268.7 50.8 1184 279 15.4 CG − DP 2275.2 0.6 20 4 0.4
24 1 0 0 2397.9 25.7 635 147 15.5 CG − DP 2421.0 0.7 15 3 0.5
24 1 0 1 2078.2 19.9 628 150 10.5 CG − DP 2089.5 0.7 20 4 0.5
24 1 1 0 1897.0 13.2 602 147 10.1 CG − DP 1933.5 0.6 15 3 0.5
24 1 1 1 1595.0 6.4 472 124 4.5 CG − DP 1608.0 0.6 20 4 0.4
36 0 0 0 9578.0 463.0 1785 464 86.8 CG − DP 9712.9 2.8 15 3 1.9
36 0 0 1 8942.3 708.1 2423 651 94.9 CG − DP 8947.5 9.7 40 8 3.0
36 0 1 0 8804.8 70.6 104 35 0.4 CG − GDP 8842.8 5.0 20 4 2.1
36 0 1 1 7373.9 1273.5 2574 683 102.5 CG − DP 7387.8 8.2 40 8 2.3
36 1 0 0 7275.2 21.0 48 16 0.2 CG − GDP 7298.0 3.2 15 3 1.8
36 1 0 1 6775.9 348.7 1212 286 62.7 CG − DP 6802.2 8.8 40 8 3.1
36 1 1 0 5644.5 37.6 113 34 0.4 CG − GDP 5736.5 1.2 10 2 1.0
36 1 1 1 4931.0 151.4 1019 226 30.4 CG − DP 4969.8 3.6 30 6 1.7
48 0 0 0 15 803.6 152.2 92 32 1.3 CG − GDP 16 591.7 7.1 15 3 4.0
48 0 0 1 15 252.8 1816.0 2408 493 159.5 CG − DP 15 391.2 15.5 25 5 4.7
48 0 1 0 14 162.2 57.7 87 27 0.4 CG − GDP 14 758.1 20.4 20 4 4.5
48 0 1 1 12 038.5 1821.5 2616 541 125.6 CG − DP 12 166.9 8.2 20 4 2.6
48 1 0 0 12 470.8 43.3 77 24 0.3 CG − GDP 12 534.7 9.4 15 3 4.2
48 1 0 1 11 654.9 1110.6 1930 426 136.8 CG − DP 11 776.1 17.4 30 6 5.4
48 1 1 0 9682.2 30.1 83 26 0.4 CG − GDP 9904.7 5.0 15 3 3.5
48 1 1 1 8413.3 1185.4 2018 429 152.9 CG − DP 8434.0 6.6 20 4 2.7
60 0 0 0 23 884.6 440.4 80 24 2.7 CG − GDP 24 531.0 37.2 20 4 9.7
60 0 0 1 21 111.7 737.9 107 35 3.7 CG − GDP 21 679.9 24.7 20 4 6.8
60 0 1 0 20 422.4 304.9 79 22 2.4 CG − GDP 20 886.0 29.5 20 4 7.9
60 0 1 1 17 502.8 476.0 107 26 3.5 CG − GDP 17 873.9 22.3 25 5 6.1
60 1 0 0 17 525.9 409.8 65 19 2.0 CG − GDP 17 812.4 13.2 15 3 7.5
60 1 0 1 15 837.7 1648.1 2105 475 282.2 CG − DP 16 262.7 23.3 20 4 7.0
60 1 1 0 13 654.5 44.3 70 19 0.5 CG − GDP 14 058.0 9.2 15 3 6.0
60 1 1 1 11 642.1 42.8 96 27 0.6 CG − GDP 11 816.5 6.0 15 3 3.8
72 0 0 0 31 445.0 731.5 154 46 2.3 CG − GDP 31 639.6 80.6 20 4 15.0
72 0 0 1 27 701.9 569.3 142 48 2.0 CG − GDP 28 398.2 67.7 20 4 11.3
72 0 1 0 27 480.2 300.6 107 27 1.4 CG − GDP 27 662.7 48.2 25 5 15.2
72 0 1 1 22 674.1 355.2 166 49 2.0 CG − GDP 22 729.1 29.1 25 5 9.8
72 1 0 0 23 111.3 145.6 91 27 1.4 CG − GDP 23 237.2 31.7 15 3 11.7
72 1 0 1 21 134.8 293.5 138 42 1.9 CG − GDP 21 135.1 32 20 4 11.4
72 1 1 0 17 854.1 151.6 122 35 1.8 CG − GDP 18 026.2 17.7 15 3 9.7
72 1 1 1 14 814.3 37.4 62 15 0.6 CG − GDP 15 298.9 16.7 20 4 8.2

Table 3: Comparing computational effort and results of the best performing algorithm between CG-
GDP and CG-DP against CG-MDP, when returning (almost) the same lower bound value.

22
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Remarkably, such values coincide almost always with the ones provided by the heuristic
algorithm CG-MDP, and the largest gap is less than 1%.

Moreover, observe that the EXC pricing algorithm significantly outperforms the MILP (+
CPLEX) approach and it is very effective for all the 6-hours planning horizon instances and
the 12-hours ones with no ships with speed 2. Indeed, in the latter case, the number of
possible routes3 grows to 724 and the enumeration tree (even if fathomed by bounding the
sub-paths) grows too large.

Instance rVal EXI EXC

H CSN CSR CSS Heu Exact tT cgNH cgNE cgI tT cgNH cgNE cgI

6 0 0 0 229.0 229.0 1440.0 73 0 36 1.0 73 0 36
6 0 0 1 191.0 191.0 7.1 49 0 14 0.6 49 0 14
6 0 1 0 177.0 177.0 1293.4 30 0 11 0.6 30 0 11
6 0 1 1 139.0 139.0 32.3 34 0 13 0.5 34 0 13
6 1 0 0 163.0 163.0 1823.7 16 0 6 0.6 16 0 6
6 1 0 1 145.0 145.0 17.6 17 1 7 0.9 17 1 7
6 1 1 0 115.0 115.0 1932.0 17 0 6 0.6 17 0 6
6 1 1 1 97.0 97.0 6.5 18 0 7 0.4 18 0 7

12 0 0 1 527.0 528.0 96736.1 159 80 101 8.0 124 7 32
12 0 1 1 434.6 435.7 481147.9 153 241 168 19.2 108 22 48
12 1 0 1 410.5 411.0 361806.4 66 224 173 6.8 45 4 18
12 1 1 1 305.0 305.0 92795.6 54 76 65 6.9 46 9 21
12 0 0 0 633.5 633.5 - - - - 10733.0 200 18 71
12 0 1 0 540.0 545.0 - - - - 17828.0 308 58 128
12 1 0 0 459.5 463.0 - - - - 3232.2 65 7 27
12 1 1 0 358.0 359.0 - - - - 4482.6 66 17 29

Table 4: Solving the Master Linear Relaxation to optimality.

In principle, in column generation schemes the process terminates when no columns with
strictly positive reduced cost exist. However, it is well known that the approach suffers the so
called tailing off, that is the last generated columns tend to give little or no contribution to
improve the bound. One may wonder whether putting a cap on the time spent in generating
columns (without waiting for the natural termination) would have significant impact on the
quality of the final solution. Another natural question regards the number of columns to
generate before solving the new master problem relaxation. In our algorithm, we return at
most one column (for each vehicle type). In some cases we may benefit from trying to identify
and generate multiple columns.

We try to answer these questions with the next experiments. Table 5 reports the computa-
tional results obtained by the CG-MDP algorithm when adding one column (CG-MDP-300s-
1c) or five columns (CG-MDP-300s-5c) for each vessel type at each iteration of the Column
Generation Loop. The time limit is set to five minutes for all experiments. The figures are
summarized in Figure 5 where the lower bounds obtained by CG-MDP-300s-1c and CG-MDP-
300s-5c are compared with the bounds of the original CG-MDP algorithm (with 30 minutes
time limit), reported in Table 2. As previously, in Figure 5 we use the bound computed by
CG-MDP as reference value, and we plot, for each instance, the ratios of the bound obtained
by CG-MDP-300s-1c and CG-MDP-300s-5c with this reference value. One can immediately
notice that CG-MDP-300s-1c performs slightly better than CG-MDP-300s-5c. Adding more
columns for each vessel type at any iteration of the Column Generation Loop does not seem
to have any positive impact.

3In each cell vessels can make 7 different choices, either moving to one of the 6 neighbors or staying still

23
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Instance CG-MDP-300s-1c CG-MDP-300s-5c

H CSN CSR CSS rVal rVal

6 0 0 0 229.0 229.0
6 0 0 1 191.0 191.0
6 0 1 0 177.0 177.0
6 0 1 1 139.0 139.0
6 1 0 0 163.0 163.0
6 1 0 1 145.0 145.0
6 1 1 0 115.0 115.0
6 1 1 1 97.0 97.0

12 0 0 0 633.5 633
12 0 0 1 527.0 527.0
12 0 1 0 540.0 540.4
12 0 1 1 434.6 434.9
12 1 0 0 459.5 461.0
12 1 0 1 410.5 409.5
12 1 1 0 358.0 357.0
12 1 1 1 305.0 305.0
24 0 0 0 3510.8 3511.8
24 0 0 1 2842.2 2843.6
24 0 1 0 3061.3 3069.0
24 0 1 1 2422.9 2427.4
24 1 0 0 2505.6 2507.2
24 1 0 1 2165.6 2165.2
24 1 1 0 2007.4 2007.8
24 1 1 1 1683.3 1681.8
36 0 0 0 11 102.1 11 075.1
36 0 0 1 9267.1 9238.2
36 0 1 0 9496.1 9463.6
36 0 1 1 7638.3 7603.7
36 1 0 0 7925.7 7928.5
36 1 0 1 6940.6 6941.8
36 1 1 0 6040.4 6046.7
36 1 1 1 5066.7 5068.1
48 0 0 0 19 019.4 18 905.6
48 0 0 1 16 418.3 16 324.6
48 0 1 0 16 098.4 16 118.3
48 0 1 1 13 246.9 13 125.5
48 1 0 0 13 678.8 13 621.7
48 1 0 1 12 107.1 12 077.0
48 1 1 0 10 415.1 10 388.0
48 1 1 1 8766.2 8756.6
60 0 0 0 26 662.7 26 071.8
60 0 0 1 23 268.8 23 362.8
60 0 1 0 22 559.6 22 350.2
60 0 1 1 18 826.7 18 652.5
60 1 0 0 19 347.0 19 193.5
60 1 0 1 17 150.3 17 178.5
60 1 1 0 14 779.9 14 732.5
60 1 1 1 12 518.2 12 482.0
72 0 0 0 33 638.0 32 915.8
72 0 0 1 29 788.9 30 223.0
72 0 1 0 29 010.7 28 695.9
72 0 1 1 24 215.5 23 878.9
72 1 0 0 24 992.8 24 919.1
72 1 0 1 22 409.3 22 091.6
72 1 1 0 19 106.6 18 983.3
72 1 1 1 16 222.0 16 171.3

Table 5: Bounds obtained by the CG-MDP algorithm within a time limit of 5 minutes. At each
iteration of Column Generation Loop and for each vessel type, we add up to one (CG-MDP-300s-
1c) or five (CG-MDP-300s-5c) new routes.

24
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Moreover, the average ratio of the lower bound obtained by CG-MDP-300s-1c is always
greater than 97.5%. Hence, reducing the time limit to 5 minutes (from 30 minutes) does not
deteriorate significantly the solution quality.

Figure 5 Ratios between the bound obtained by CG-MDP-300-1c and CG-MDP-300-5c with
the bound obtained by CG-MDP, for each instance 1, . . . , 56.

7.3 Solving the Maritime Surveillance Problem

With the next experiments we test the ability of the overall approach to generate good and
possibly optimal solutions to the Maritime Surveillance Problem.

We first focus on the exact version of Algorithm SolveMSP, where the pricing problem is
solved by the purely combinatorial approach EXC. We allow a one-hour time limit for the
Column Generation Loop block. Within this time limit we were able to solve RelMast(R) to
optimality for all 6-hour planning horizon instances and for a subset of the 12-hour and 15-hour
planning horizon instances. Therefore, our experiments with the exact version of Algorithm
SolveMSP will be limited to this set of instances. The corresponding results are shown in
Table 6.

Instance SolveMSP

H CSN CSR CSS rVal OPTMSP LBMSP igN cgT igT intT

6 0 0 0 229.0 229.0 229.0 0 1.0 0.5 0.0
6 0 0 1 191.0 191.0 191.0 0 0.5 0.4 0.0
6 0 1 0 177.0 177.0 177.0 0 0.6 0.5 0.0
6 0 1 1 139.0 139.0 139.0 0 0.4 0.3 0.0
6 1 0 0 163.0 163.0 163.0 0 0.5 0.5 0.0
6 1 0 1 145.0 145.0 145.0 0 0.7 0.3 0.0
6 1 1 0 115.0 115.0 115.0 0 0.5 0.4 0.0
6 1 1 1 97.0 97.0 97.0 0 0.4 0.3 0.0

12 0 0 1 528.0 528.0 528.0 0 7.1 1.6 0.6
12 0 1 1 435.7 435.0 435.0 0 18.4 6.2 2.6
12 1 0 1 411.0 411.0 411.0 0 6.8 1.4 0.0
12 1 1 1 305.0 305.0 305.0 0 6.5 1.3 0.0
12 1 0 0 463.0 463.0 463.0 0 3228.6 386.3 0.1
15 0 0 1 869.3 868.0 868.0 2665 94.0 19.1 17.7
15 0 1 1 724.9 - 718.0 > 100000 85.5 - -
15 1 0 1 671.5 671.0 670.0 376 40.4 7.2 8.4
15 1 1 1 506.0 506.0 506.0 0 29.7 2.6 0.3

Table 6: Solving MSP to optimality

As in the previous tables, in column rVal we report the optimal values of RelMast(R)

25
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

(since the pricing problem is solved to optimality, we have RelMast(R = RelMast(R)). Col-
umn OPTMSP indicates the optimal value of IntMast(R) (i.e. the optimal value of MSP),
while LBMSP is the lower bound on OPTMSP, used in the Integrality Gap Pricing block of
Algorithm 5 to produce the igN routes of set R+. Further, columns cgT, igT, and intT
are the running times for the Column Generation Loop, the Integrality Gap Pricing, and the
Integer Problem Solution respectively.

The results in the table show that for all instances with planning horizon up to 12 hours,
the optimal solution to MSP can be found by using only the routes in R generated in the
Column Generation Loop. Indeed, in all these cases, LBMSP = ⌊rV al⌋ and, since the values
VpI are all integer, there is no need to add routes in the Integer Gap Pricing step. The same
occurs also for the 15-hour instance in the last row of the table. For the remaining three
15-hour instances, the integrality gap rV al−LBMSP is greater than 1 and, consequently, the
exact pricing algorithm has to be called in order to construct the set R+ of routes, needed to
guarantee that the optimal solution to IntMast(R∪R+) is an optimal solution to the overall
problem IntMast(R). For the two cases with CSR = 0, CSS = 1, and CSN ∈ {0, 1} (where
such a gap is less than 1), the number of routes of R+ stays reasonably small and the final
ILP problem IntMast(R∪R+) can be solved by CPLEX in a few seconds. On the other hand,
for the case with CSR = 1, the integrality gap is higher (i.e. = 6.9) and the Integrality Gap
Pricing block of the algorithm rapidly identifies more than 100000 routes in R+. Therefore,
the size of IntMast(R∗) is so large that the corresponding ILP program cannot be tackled by
CPLEX.

We now evaluate the performance of the heuristic variant of Algorithm SolveMSP. Indeed,
our heuristic algorithms for the pricing problem behave rather well in practice. In particular,
whenever it is possible to check, we verified that CG-MDP returns almost always the optimal
columns, i.e. those with maximum reduced costs. Consequently, for most of these instances,
at termination of the Column Generation Loop, all columns in R have non-positive reduced
costs. Recall that, when this is the case, the current restricted master program RelMast(R)
actually suffices to solve the linear relaxation RelMast(R) of the (complete) master program
(1), and its value is an upper bound on the optimal (integer) solution value of the MSP (i.e.
IntMast(R)).

The next Table 7 and Figure 6 describe the computational results obtained by the following
heuristic version of Algorithm SolveMSP, where the Integrality Gap Pricing block is skipped:

1. Greedy solution. Define an initial solution SS to the MSP problem by iteratively ap-
plying, in a greedy fashion, algorithm MDP so to find a route for every available vessel.
The value of this solution is reported in column SS val of the table;

2. Column Generation Loop: apply the CG-MDP algorithm with 300-second time limit;

3. Integer Problem Solution: solve to integer optimality the reduced master problem IntMast(R)
by the branch & bound algorithm of CPLEX MIP solver, with 1-hour time limit. The
initial solution SS provides the first incumbent. We also set CPX_PARAM_PROB =
3 and we gave branching priority 100 to variables y and branching priority 0 to variables
x.

In the table, column BS val reports the values of the best solutions to IntMast(R) found
within the time limit, while, in column SS Gap, we report the percentage increment of BS val

26
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

with respect to SS val. Such a value, depicted also in Figure 6, is more than 12% on average
and, in a few cases, even larger than 25%. This somehow gives evidence of the difficulty of
the Maritime Surveillance Problem and confirms the idea that a more sophisticated approach,
like the one we propose here, is needed in order to obtain solutions of guaranteed quality. The
results of Table 7 also show that such solutions can be obtained within a time limit of 65
minutes for instances of size up to 72-hours planning horizon.

Instance CG-MDP + B&B

H CSN CSR CSS SS val BS val SS Gap (%)

6 0 0 0 207.0 229.0 10.6
6 0 0 1 167.0 191.0 14.4
6 0 1 0 166.0 177.0 6.6
6 0 1 1 126.0 139.0 10.3
6 1 0 0 148.0 163.0 10.1
6 1 0 1 130.0 145.0 11.5
6 1 1 0 109.0 115.0 5.5
6 1 1 1 91.0 97.0 6.6

12 0 0 0 570.0 632.0 10.9
12 0 0 1 454.0 527.0 16.1
12 0 1 0 508.0 536.0 5.5
12 0 1 1 391.0 434.0 11.0
12 1 0 0 406.0 459.0 13.1
12 1 0 1 340.0 410.0 20.6
12 1 1 0 338.0 358.0 5.9
12 1 1 1 272.0 305.0 12.1
24 0 0 0 2883.0 3439.0 19.3
24 0 0 1 2216.0 2793.0 26.0
24 0 1 0 2612.0 2993.0 14.6
24 0 1 1 1975.0 2374.0 20.2
24 1 0 0 2012.0 2486.0 23.6
24 1 0 1 1612.0 2140.0 32.8
24 1 1 0 1760.0 1970.0 11.9
24 1 1 1 1404.0 1650.0 17.5
36 0 0 0 8884.0 10 477.0 17.9
36 0 0 1 7160.0 8971.0 25.3
36 0 1 0 8150.0 8849.0 8.6
36 0 1 1 6313.0 7290.0 15.5
36 1 0 0 6844.0 7791.0 13.8
36 1 0 1 5671.0 6796.0 19.8
36 1 1 0 5628.0 5983.0 6.3
36 1 1 1 4649.0 4960.0 6.7
48 0 0 0 14 395.0 17 294.0 20.1
48 0 0 1 13 295.0 15 379.0 15.7
48 0 1 0 12 874.0 14 669.0 13.9
48 0 1 1 10 469.0 12 477.0 19.2
48 1 0 0 11 298.0 13 176.0 16.6
48 1 0 1 9781.0 11 716.0 19.8
48 1 1 0 9494.0 10 177.0 7.2
48 1 1 1 7870.0 8531.0 8.4
60 0 0 0 21 617.0 24 239.0 12.1
60 0 0 1 19 629.0 21 430.0 9.2
60 0 1 0 19 096.0 20 043.0 5.0
60 0 1 1 16 754.0 17 318.0 3.4
60 1 0 0 16 672.0 18 377.0 10.2
60 1 0 1 14 453.0 16 474.0 14.0
60 1 1 0 13 570.0 14 217.0 4.8
60 1 1 1 11 399.0 12 120.0 6.3
72 0 0 0 28 593.0 30 774.0 7.6
72 0 0 1 25 677.0 27 391.0 6.7
72 0 1 0 25 592.0 26 054.0 1.8
72 0 1 1 21 500.0 22 424.0 4.3
72 1 0 0 21 669.0 23 332.0 7.7
72 1 0 1 19 057.0 21 314.0 11.8
72 1 1 0 17 722.0 18 179.0 2.6
72 1 1 1 14 668.0 15 725.0 7.2

Table 7: The table presents the values of the solutions for the MSP obtained by applying the CG-
MDP algorithm (with 300 seconds time limit) and then solving the obtained restricted Master Problem
to integral optimality (within a time limit of 1 hour).

27
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Figure 6 The picture reports the behavior of SS Gap of Table 7.

8 Conclusions.

In cooperation with the Norwegian Defence Research Establishment, we tackled a crucial
problem when planning maritime surveillance activities. In particular, in this paper we

• Introduce a new periodic vehicle routing problem, which is very relevant for public bodies
and authorities involved in periodic surveillance activities;

• Develop a novel binary LP model for periodic vehicle routing, based on the new concept
of ”interval formulation“, which could also be applied in other application contexts;

• Present a column generation approach to the problem;

• Show that the pricing problem is NP-hard;

• Develop exact and heuristic column generation pricing algorithms;

• Carry out extensive tests showing that medium to large sized realistic instances − which
are indeed very large integer programs - can be tackled effectively by our approach.

Interesting future research directions and topics, include the use of heterogeneous fleets
involving vehicles with very different features. For instance, one may consider aircraft, which
have short endurance but high speed and wide sensor range. More in general, it would be
interesting to extend the approach to long planning horizons. Clearly, the longer the horizon,
the larger the instance to solve and this would make the problem even harder to tackle in
practice. Still, the classic rolling horizon technique (e.g. see Pinedo (2016)) seems a natural
decomposition approach for this kind of problem, certainly worth investigated.

References

D. Alvras and M. Padberg, Linear Optimization and Extensions: Problems and Solutions.
Berlin, Germany: Springer-Verlag, 2001.

28
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

P. Avella, M. Boccia, C. Mannino, and I. Vasilyev, “Time-indexed formulations for the runway
scheduling problem,” Transportation Science, 2017.

R. Baldacci, A. Mingozzi, and R. Roberti, “New route relaxation and pricing strategies for the
vehicle routing problem,” Operations Research, vol. 59, pp. 1269–1283, 2011.

D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Belmont, MA: Athena
Scientific, 1997, vol. 6.

V. Cacchiani, V. Hemmelmayr, and F. Tricoire, “A set-covering based heuristic algorithm for
the periodic vehicle routing problem,” Discrete Applied Mathematics, vol. 163, pp. 53–64,
2014.

A. Caprara, M. Fischetti, and P. Toth, “Modeling and solving the train timetabling problem,”
Operations research, vol. 50, no. 5, pp. 851–861, 2002.

N. Christofides, A. Mingozzi, and P. Toth, “Exact algorithms for the vehicle routing problem,
based on spanning tree and shortest path relaxations,” Mathematical Programming, vol. 20,
pp. 255–282, 1981.

S. Dash, O. Günlük, A. Lodi, and A. Tramontani, “A time bucket formulation for the traveling
salesman problem with time windows,” INFORMS Journal on Computing, vol. 24, no. 1,
pp. 132–147, 2012.

G. Desaulniers, J. Desrosiers, and M. Solomon, Eds., Column Generation. New York: Springer
Science & Business Media, 2006, vol. 5.

M. Drexl and S. Irnich, “Solving elementary shortest-path problems as mixed-integer pro-
grams,” OR Spectrum, vol. 36, pp. 281–296, 2014.

O. Dridi, S. Krichen, and A. Guitouni, “A multi-objective optimization approach for resource
assignment and task scheduling problem: Application to maritime domain awareness,” in
2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1–8.

M. E. Dyer and L. A. Wolsey, “Formulating the single machine sequencing problem with
release dates as a mixed integer program,” Discrete Applied Mathematics, vol. 26, no. 2-3,
pp. 255–270, 1990.

R. Fukasawa, H. Longo, J. Lysgaard, M. P. d. Aragão, M. Reis, E. Uchoa, and R. F. Werneck,
“Robust branch-and-cut-and-price for the capacitated vehicle routing problem,” Mathemat-
ical Programming, vol. 106, no. 3, pp. 491–511, 2006.

M. J. H. B. Grob, “Routing of platforms in a maritime surface surveillance operation,” Euro-
pean Journal of Operational Research, vol. 170, pp. 613–628, 2006.

S. Harrod, “Modeling network transition constraints with hypergraphs,” Transportation Sci-
ence, vol. 45, no. 1, pp. 81–97, 2011.

D. S. Hochbaum, Ed., Approximation Algorithms for NP-hard Problems. Boston, MA, USA:
PWS Publishing Co., 1997.

29
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

K. Ilavarasi and K. S. Joseph, “Variants of travelling salesman problem: a survey,” in Informa-
tion Communication and Embedded Systems (ICICES), 2014 International Conference on.
IEEE, 2014, pp. 1–7.

D. Kjenstad, C. Mannino, P. Schittekat, and M. Smedsrud, “Integrated surface and departure
management at airports by optimization,” in Modeling, Simulation and Applied Optimization
(ICMSAO), 2013 5th International Conference on. IEEE, 2013, pp. 1–5.

D. Marlow, P. Kilby, and G. Mercer, “The travelling salesman problem in maritime surveillance-
techniques, algorithms and analysis,” in International Congress on Modelling and Simula-
tion, 2007, pp. 684–690.

R. Martinelli, D. Pecin, and M. Poggi, “Efficient elementary and restricted non-elementary
route pricing,” European Journal of Operational Research, vol. 239, no. 1, pp. 102–111,
2014.

A. Mingozzi, “The multi-depot periodic vehicle routing problem,” Lecture notes in Computer
Science, vol. 3607, pp. 347–350, 2005.

M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer, 2016.

S. Pirkwieser and G. Raidl, “A column generation approach for the periodic vehicle routing
problem with time windows,” https://www.researchgate.net/publication/, 2012, Accessed 3
June 2016.

M. Queyranne and A. S. Schulz, “Polyhedral approaches to machine scheduling,” Technische
Universitat Berlin, Tech. Rep. 480/1994, 1994.

N. Quttineh, T. Larsson, J. Van den Bergh, and J. Beliën, “A Time-Indexed Generalized
Vehicle Routing Model and Stabilized Column Generation for Military Aircraft Mission
Planning,” in Optimization, Control, and Applications in the Information Age. Switzerland:
Springer International Publishing, 2015, pp. 299–314.

L. Schrijver, Combinatorial Optimization. Berlin Heidelberg: Springer-Verlag, 2003.

E. Stumpt and N. Michael, “Multi-robot persistent surveillance planning as a vehicle rout-
ing problem,” in IEEE International Conference on Automation Science and Engineering,
Trieste, Italy, 24–27 August 2011.

D. Vatne and H. Gisnås, “MOBY – a simulation tool for evaluating maritime surveillance,”
2014, Unpublished manuscript. Available at the Norwegian Defence Research Establishment
at request.

L. A. Wolsey, “Integer programming. series in discrete mathematics and optimization,” 1998.

30
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

Figure 3 The picture shows the grid we considered for the computational experiments. The
colors of the hexagonal cells represent the corresponding observation periods: white is for 24
hours, light-gray is 18 hours, gray is 12 hours, dark-gray is 6 hours and black is 1 hour. We
also indicate here (with indices in the corresponding cells) the route starting point for each
vessel type of Table 1.

31
Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1287/trsc.2019.0899

