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English summary 

In the study of ladar image processing, it is useful to have a method for producing synthetic data. 

This report presents a simple ladar simulator implemented in Matlab, which produces synthetic 

ladar images by simulating the imaging geometry using methods from ray tracing in computer 

graphics. The report presents background theory, simulation method and usage examples, and is 

meant to serve as a report for the development as well as a user guide. 
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Sammendrag 

I studien av prosessering av ladarbilder er det nyttig med en metode for å lage syntetiske data. 

Denne rapporten presenterer en enkel ladarsimulator implementert i Matlab, som lager syntetiske 

ladarbilder ved å simulere avbildningsgeometrien med metoder fra ray tracing i datagrafikk. 

Rapporten presenterer bakgrunnsteori, simuleringsmetode og eksempler på bruk, og er ment som 

både en rapport for utviklingen og brukerveiledning. 
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1 Introduction 

Ladar is an acronym for laser detection and ranging and is a term commonly used for imaging 

laser range finders, especially in military contexts. A ladar may typically perform a 2-dimensional 

(2D) scan of a scene to form a range image, where each pixel in the image corresponds to the 

range to the scene in the direction the laser beam was pointing at a specific scan step. Since these 

directions are known, the range image may be transformed to three images representing the 3D 

Cartesian coordinates for the point of reflection in each pixel. This gives us a 3D
1
 point cloud of 

the shape of the scene. 

 

 

Figure 1.1 Ladar images. A ladar will typically produce a range image and an intensity image 

of the received energy from the reflected laser light. The range image may be 

transformed to a 3D point-cloud representation of the scene. The point clouds shown 

here has been processed so that the points on the ground surface are coloured green, 

while objects are coloured blue. 

 

There are several applications for ladar images, such as terrain modelling, forestry surveying, and 

robotic vision. The present work on ladar-image analysis at FFI has focused on shape-based 

automatic target detection and recognition (ATD/R), and has shown that vehicles may be 

successfully extracted from ladar images based on information about their size [1], and that 

vehicles may be separated from similarly sized natural objects by using surface properties [2]. 

The next step is to classify and recognize the extracted vehicles. One method is to compare the 

extracted point clouds with a library of 3D models of known vehicles, and this may be performed 

                                                           
1
 Actually, ladar images are often referred to be 2.5D, since only one side of the scene is measured, giving 

us no information about the 3D shape of the back-sides of objects. 
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efficiently by constructing synthetic point clouds from the 3D models, and comparing the point 

clouds with each other. 

 

This report presents a simple ladar simulator implemented in Matlab for creating synthetic point 

clouds from 3D models by simulating the imaging geometry. The simulator is based on ray 

tracing and performs well enough to construct images with high resolution from dense 3D 

models. It may therefore also be used to simulate ladar images for larger synthetic scenes, for 

example for testing different aspects of ladar processing where real data is not available. Both 

theory and implementation is covered in this report, and it serves as a documentation of the 

method as well as a user guide. Although the simulator only simulates the imaging geometry to 

first order, some thoughts on how to evolve it to include other effects such as the physics 

involved in the laser pulse generation, atmospheric propagation, and the signal processing are 

given. 

 

 

a) 
 

b) 

 

c) 

Figure 1.2 Example application of the ladar simulator: Vehicle recognition by comparing point 

clouds. The ladar simulator is used to generate synthetic ladar point clouds (not 

shown) from a 3D model library, and the ladar measurements (in red) are compared 

to these by first aligning the point clouds, and then measuring the difference between 

them. a) and b) shows two different point clouds aligned with the correct 3D model, 

and c) shows the result when the measurement from a) is compared with the wrong 

model. 
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2 Ray tracing in the ladar simulator 

Ray tracing is a computer-graphics technique for generating images by tracing the path of light 

between each camera pixel and a virtual scene. Optical effects such as reflection, refraction, 

scattering, depth of field and motion blur can be simulated to achieve a very high degree of visual 

realism. This comes at a greater computational cost, which makes ray tracing less suited for real-

time applications such as games
2
. The last few years has, however, seen an increasing activity on 

real-time ray tracing. Interactive ray-tracing has been demonstrated in games [3] [4], and real-

time ray-tracing engine APIs [5] based on high-performance processing on GPUs are now 

commercially available. 

 

The ladar simulator is based on the most basic functionality in ray tracing, where rays are cast 

according to how a ladar would scan a scene, and ray-scene intersections are found to compute 

the distance to the scene along the rays. This easily leads to a point-cloud representation of the 

scene that agrees to the simulated imaging geometry. More advanced functionality, like 

simulation of optical effects such as reflection or refraction or other physical effects such as noise 

and beam divergence, is not implemented, but is discussed in section 4. This chapter will discuss 

the 3D models and ray tracing methods used in the ladar simulator. 

2.1 3D models 

In computer graphics, 3D objects are usually modelled by defining their surface or boundary, 

rather than their volume. These surfaces are usually approximated as polygonal meshes and most 

commonly and without loss of generality triangle meshes, which are particularly simple to render. 

A scene may consist of thousands or millions of triangles, depending on the level of detail and the 

surface complexity of its objects
3
. 

 

When ignoring volume-rendering applications, a notable exception to the use of surface 

representation is in visualization of fluid-like phenomena such as fire, smoke, explosions and 

flowing grass or hair, which are not easily represented as polygons. Here the particle system 

technique is often used, where the phenomena is discretized as a set of particles and often 

visualized as sets of simple textured polygons or pixels. Such representations can also be used in 

ray tracing e.g. by intersecting small spherical particles. 

 

                                                           
2
 3D computer games are usually based on rasterization and z-buffer techniques, where each 3D polygon is 

projected onto the image plane (using simplified camera models) and rasterized, and the depth in the z-

buffer is used to ensure that pixels on polygons far away does not overwrite pixels on triangles that are 

closer. This is usually performed in graphics hardware. 
3
 Alvy Ray Smith, one of the founding fathers of Pixar and a noted pioneer in computer graphics, stipulated 

back in the 1990s that reality was about 80 million triangles at 30 frames/s. 
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Figure 2.1 A M60 tank and terrain represented as a set of triangles. 

 

 

Figure 2.2 Smoke represented as a system of particles, and rendered with volumetric shadows 

(sample from the Nvidia GPU Computing SDK). 

 

Complex 3D model, likes those used in Computer-Aided Design (CAD) or games, are typically 

represented as a set of smaller parts associated with properties such as the colour of the surface 

material and transparency. Assembly of these parts is described as a set of transformations, and 

movable joints may be defined. A single triangle representation of a car wheel may for example 

be copied, translated and rotated to 4 different locations in a car model, and may then be defined 

to rotate freely on an axel. 
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In the ladar simulator it is assumed that the whole scene is assembled as a single set of triangles. 

This set is described with two matrices. All the triangle vertices are stored as rows in the n-by-3 

matrix V: 

 

1 1 1

2 2 2
.

n n n

x y z

x y z

x y z

 
 
 
 
 
 

V  (2.1) 

 

Each row in the m-by-3 matrix F then describes a triangle by pointing to three triangle vertices 

using row indices in V: 

 

 

1 1 1

2 2 2
, , , 1, 2, , ,i i i

m m m

A B C

A B C
A B C n

A B C

 
 
  
 
 
 

F  (2.2) 

 

so that [ ] [1 2 3]A B C   is a triangle with the vertices described in the first, second and 

third rows in the vertex matrix V. Using this representation, vertices that are shared between 

several triangles need only be stored once. 

2.2 Ray casting 

Ray casting is the process where the originating point and direction of rays in the ray-tracing 

problem is determined. When defining a camera, for example, one would typically describe each 

pixel as a ray and cast it according to a camera model. When a ray hits a surface, one would also 

typically cast new rays according to the surface geometry and surface properties like reflectivity, 

diffuseness, and transparency. For the ladar simulator, we are interested in casting rays similar to 

how a ladar would construct a ladar image. 

 

Let a ray be represented as 

 

 ( ) , 0, ,R t O tD t     (2.3) 

 

where O  is the originating point of the ray and D  is the unit vector representing the direction of 

the ray and t  is the distance along the ray.  

 

A simple and popular camera model is the pinhole camera model, where the camera aperture is 

described as a point called the principal point. This model is in many situations a quite accurate 

model for cameras based on lenses as well, where it describes the properties of an ideal lens 

focusing light through a point. In a physical system, the image plane would lie perpendicular to 

the optical axis of the camera at a distance f behind the principal point, called the focal length. 
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The mapping from the 3D world onto the image plane is a perspective projection through the 

principal point, followed by a 180° rotation about the optical axis. To avoid having to deal with 

the rotation in the camera model, it is customary to place a virtual image plane at a distance f in 

front of the principal point, and project the world onto this plane instead. For an image plane with 

a fixed array of pixels, the field of view (FOV) is controlled by adjusting the focal length f. 

 

 

Figure 2.3 The geometry of the pinhole camera model seen from above along the (negative) 

z-axis, where the x-axis coincides with the optical axis. The rays (in green) are 

spread uniformly across the image plane. 

 

Let the rays correspond to the view directions of an array of pixels 
,u vP

 
lying in a regular grid on 

the virtual image plane, where u and v are the horizontal and vertical pixel indices, respectively. 

Then O  in (2.3) is the principle point for all the rays, and the direction vectors 
,u vD  will point 

from O  to the pixel 
,u vP  in the virtual image plane. Let the principal point be the origin of a 

Cartesian coordinate system, and let the x-axis coincide with the optical axis, and the y- and 

z-axis coincide with the horizontal and vertical directions in the virtual image plane, respectively. 

Since it is often more intuitive to describe the camera model with an image resolution and a FOV, 

we will fix the focal length at 1f  , and adjust the size of the pixel array in the image plane 

instead. Given the width w and height h of the pixel array in number of pixels, and the horizontal 

and vertical FOV H  and V , the uniform steps in the virtual image plane are 

 

2
1 tan

1 2

2
1 tan .

1 2

H
u

V
v

y u
w

z v
h





  
    

   

  
    

   

 (2.4) 
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The direction of a ray corresponding to pixel 
,u vP  is then given by 

 

 , 1, , ,u v u vOP y z  (2.5) 

 

where pixel 
0,0P  is the top left pixel, and pixel 

1, 1w hP  
 is the bottom right pixel. By scaling these 

direction vectors to unit length, we get 

 

,

,

,

.
u v

u v

u v

OP
D

OP
  (2.6) 

 

A more appropriate model for the ladar may be to step uniformly in elevation and azimuth angles, 

mimicking a laser scanning line-by-line or column-by-column. As opposed to the pinhole camera 

model, this model allows FOVs 180 . Let O  be the scanning laser or mirror in the origin of 

the coordinate system above, and let   be the elevation angle and   the azimuth angle.  

Given a width w, a height h and horizontal and vertical FOVs H  and V  as above, we get the 

uniform angle steps 

 

1

2 1

1
.

2 1

u H

v V

u

w

v

h

 

 

 
  

 

 
  

 

 (2.7) 

 

The unit direction vector of a ray for pixel 
,u vP  is then given by 

 

 , cos cos , cos sin , sin .
u v v u v u vD        (2.8) 
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Figure 2.4 The difference in pixel patterns between the pinhole camera model, and the scanning 

camera model on a plane perpendicular to the optical axis. The green grid shows the 

pinhole camera model pattern, which is a uniform grid on the plane. The blue grid 

shows the scanning camera model pattern, which have vertical lines parallel to the 

pinhole pattern (although differently spaced), and horizontal parabola curves, since 

the horizontal scanning describes a cone. 

2.3 Ray-triangle intersection 

A crucial step in ray tracing is to determine if and where a ray intersects an object. There are 

several different intersection tests that can be performed on different primitives like polygons, 

spheres and boxes, and the interested reader is encouraged to read [6] for an overview. Since the 

ladar simulator represents its objects as a set of triangles, we will here discuss the intersection 

between rays and triangles. 

 

A triangle ABC  in 
3
 defines a plane   given by 0N AP  , where N AB AC   is a 

normal vector for the plane, and P  is an arbitrary point in the plane. 
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Figure 2.5 The geometry of the ray-triangle intersection problem. 

 

If we let P  be the point of intersection between a ray and the plane, it is given by (2.3) with 

 

( )
,

N O A
t

N D

 
 


 (2.9) 

 

where t  is the length of the line segment OP . If the ray is parallel to the plane, then 0N D   

and P  does not exist because the ray will not intersect the plane. 

 

If the ray intersects the plane, we will have to test if the intersection lies within the triangle to 

determine if t  is a valid range or not. Here it is useful to introduce barycentric coordinates [6]. 

Barycentric coordinates parameterize the space that can be formed by a weighted sum of 

reference points, and is therefore often used to parameterize triangles or the planes of triangles. 

Any point P  in the plane of the triangle ABC  can be expressed as P uA vB wC   , where 

1u v w   . The triplet ( , , )u v w  corresponds to the barycentric coordinate for that point. A 

point is inside or on the triangle if and only if 0 , , 1u v w  , or alternatively if and only if 

0 1v  , 0 1w  , and 1v w  . 

 

Since 1u v w    and 

 

(1 ) ( ) ( ),P v w A vB wC A v B A w C A           (2.10) 

 

we can compute the barycentric coordinates by solving the linear equation 

 

.AP vAB wAC   (2.11) 
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An alternative way to compute the barycentric coordinates is to use ratios of signed triangle areas. 

We have that 

 

( ) / ( )

( ) / ( )

( ) / ( ) 1 ,

u Ar PBC Ar ABC

v Ar PCA Ar ABC

w Ar PAB Ar ABC u v





   

 (2.12) 

 

where the function ( )Ar ABC  denotes the signed area of triangle ABC , or any function 

proportional thereof. This means that the parallelogram area we get from the magnitude of the 

cross product of two triangle edges may be used, if we maintain the correct sign by taking the dot 

product of this cross product with the normal of ABC. 

 

Since the barycentric coordinates remain invariant under projection, we can simplify the 

computation of the coordinates by projecting the triangle onto the xy, xz or the yz plane. By 

dropping the component with the largest absolute value in the triangle normal N , we ensure that 

the projected area is the greatest, and thereby avoid degeneracies. 

 

In 2D we may use the pseudo cross product (also called the perp-dot product) to compute the 

triangle areas. The pseudo cross product is defined as 

 

,u v   (2.13) 

 

where 
2 1[ , ]u u u    is the counterclockwise vector perpendicular to u . The 2D pseudo cross 

product corresponds to the signed area of the parallelogram determined by u  and v , and is 

positive if v  is counterclockwise from u . By examining the cross-product vector  

N AB AC  , we can notice that each component of N  is a pseudo cross product, with the 

middle component being negated. We can therefore find the barycentric coordinates in a 2D 

coordinate plane using ratios of areas by computing one of 

 

: : :

.

xy xz yzxy xz yz

z y x

xy xy yz yzxz xz

z xy

xy xz yz

BC BP BC BP BC BP
u u u

N N N

CA CP CA CPCA CP
v vv

N NN

  

 

  
  



 
 



 

(2.14) 

2.4 Accelerating data structures 

For a decent sized 3D model, it is infeasible to perform pairwise ray-triangle intersection tests for 

all rays on all triangles within an acceptable amount of time. It is therefore common to represent 

the model in an accelerating data structure, so that fewer tests are performed for each ray. Popular 

data structures include uniform grids, bounding volume hierarchies (BVHs) and k-d trees. All 

these data structures divide the space into regions, and allow us to quickly traverse parts of the 
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space where rays will not intersect any object, before (and after) reaching regions where a ray 

may intersect a constrained amount of triangles. We often need to invest some significant time in 

building these data structures, however, before we can reap benefits from the acceleration in the 

ray-triangle intersection tests. 

 

The ladar simulator implements a simple k-d tree, and we will here only discuss the specifics for 

this implementation. There is a lot of literature on this topic, however, where [6] [7] [8] are some 

examples. 

 

Building a k-d tree means recursively splitting the space in two until either the maximum depth is 

reached, or there is no longer any vertices within a region. The splitting can be performed 

arbitrarily along one of the axis at each step. The choice of axis and position of the splitting plane 

can be determined using a cost function. A popular choice of cost function is the Surface Area 

Heuristic (SAH): 

 

,SAH Traversal Triangles IntersectC C A N C     (2.15) 

 

where TraversalC  is the estimated cost of traversing the tree, A  is the surface area of the region 

bounding box, 
TrianglesN  is the number of triangles within the region and IntersectC  is the estimated 

cost of performing an intersection test. The cost of a split at a specific position can be computed 

by summing the cost for the two resulting regions. 

 

The current implementation in the ladar simulator uses the SAH above in a simplified manner. 

First, the choice of splitting axis is chosen as x, then y, then z, then x again in a cyclic manner. 

Then the SAH is computed for a split at the first vertex, the median vertex and the last vertex in 

the region along the axis. It is assumed that the number of triangles on each side of the median 

vertex position is approximately the same. Then the position with lowest cost is chosen. 
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Figure 2.6 Visualization of a k-d tree built for the M60 model. Each plane corresponds to a split 

plane in the model. The maximum depth in this tree has been set low to make the 

visualization clearer. 

 

When intersecting a ray with a k-d tree, the ray is intersected with the node’s splitting plane, and a 

distance t  to the intersection is computed. If t  is within the interval max0 t t  , the ray straddles 

the split plane, and both children of the tree are recursively descended. By first descending the 

side of the ray origin, overlapped nodes are guaranteed to be traversed in order near to far. If t  is 

not within the interval above, only the side containing the ray origin is recursively visited. When 

reaching a leaf node, the ray-triangle intersections are performed for the triangles within that 

region. 
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3 The ladar simulator in practice 

This section presents the Matlab functions that implement the ladar simulator and gives some 

examples on how to use them under different circumstances. 

3.1 The ladar-simulator implementation 

The ladar simulator functionality is implemented across several Matlab functions using the 

methods described above in chapter 2. To use the simulator, one would typically write a Matlab 

script with the following stages: 

 

1. Construct a model object using buildModel. 

2. Build a k-d tree accelerating data structure for the model using buildKDTree. 

3. Cast rays using castRaysPinhole or castRaysScan. 

4. Intersect rays with k-d tree using rayKDTreeIntersect. 

 

The Matlab code for the entire implementation is listed in Appendix A, while a summery of the 

simulator functions is listed below in Table 3.1. Several examples on how to use the simulator is 

given in section 3.4, with the complete code listed in Appendix B. 

 

model = buildModel(FV) 

 

Builds a model object from the vertices and faces in FV. The model object computes and stores 

additional information about the 3D model, such as the normal vectors for each triangle and the 

bounding box. 

 

root = buildKDTree(model) 

root = buildKDTree(model, maxD, maxN) 

 

Constructs the k-d tree accelerating data structure for the model by performing recursive calls on 

splitKDNode. The parameters maxD and maxN specifies the maximum depth and the maximum 

number of triangles in a leaf node respectively. If the maximum depth is reached, the number of 

triangles in that leaf node may be exceeded. 

 

node = splitKDNode(node, d, orient, model, maxD, maxN) 

 

Splits a k-d tree node using the split plane found by findKDSplitPlane. d is the current 

depth, and orient specifies the current orientation of the split plane: 

 X-axis: orient == 1. 

 Y-axis: orient == 2. 

 Z-axis: orient == 3. 
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s = findKDSplitPlane(node, orient, model) 

 

Determines the position of a k-d tree split plane along the axis specified by orient according to 

the method described in section 2.4. Called by splitKDNode. 

 

rays = castRaysPinhole(pos, orient, w, h, hfov, vfov) 

 

Casts rays according to the pinhole camera model described in section 2.2. The principal point is 

given by the 1-by-3 vector pos = [x, y, z]. The camera orientation is given by the 1-by-3 

vector orient = [roll, pitch, yaw] given in radians, so that the camera is first yawed 

about the z-axis, then pitched about the (new) y-axis and then rolled about the x- (or principle-) 

axis. w and h is the image width and height in the number of pixels, and hfov and vfov is the 

horizontal and vertical field-of-view respectively. The resulting structure array rays has the two 

fields rays.O for the ray origins and rays.D for the ray direction vectors. 

 

rays = castRaysScan(pos, orient, w, h, hfov, vfov) 

 

Casts rays according to the scanning camera model described in section 2.2. The parameters are 

identical to the ones described above for castRaysPinhole. 

 

[t, fID] = rayKDTreeIntersect(root, rays, model) 

 

Intersects the rays given by the structure array rays with the 3D model given in model using 

the k-d tree given by the root node root. The output argument t returns the resulting ranges for 

each ray. If a ray did not intersect the model, the corresponding range will be inf. The output 

argument fID returns the ID of the triangle where the nearest intersection was found for each 

ray. The fID will be 0 for rays that did not intersect the model. If only the output argument t is 

used in the call to rayKDTreeIntersect, a slightly faster intersection implementation that 

only returns ranges is used.  

 

[t, fID] = intersectKDNode(node, O, D, tMax, model) 

 

Intersects the n rays given by the origins in the n-by-3 matrix O and the directions in the n-by-3 

matrix D with the 3D model in model using the k-d tree node node and its children. tMax is the 

maximum range that will be investigated, and can be set to inf. This function is called 

recursively by rayKDTreeIntersect when both the ranges t and the triangle IDs fId are 

specified as output arguments. 

 



 

  
  

 

FFI-rapport 2009/01481 21   

 

t = intersectKDNodeRange(node, O, D, tMax, model) 

 

Identical to intersectKDNode above, except that it will not return the triangle IDs, and is 

therefore slightly faster. Recursively called by rayKDTreeIntersect when only the range 

vector t is specified as output argument. 

 

img = raysToImage(t, h, w) 

 

Constructs an image of the values in the n-by-1 vector t, where each element in this vector is 

assumed to correspond to rays in the list of rays produced by castRaysPinhole or 

castRaysScan with height h and width w. 

 

Table 3.1 A summary of the ladar-simulator functions. The complete code is listed in 

 Appendix A. 

3.2 Data sets 

Two data sets are used in this report and have been included with code on the source-code CD. 

The M60 data set is a 3D model of a M60 main battle tank, represented with about 8000 triangles. 

The model faces and vertices are stored in the struct “FV” in the file “M60A3.mat”. The model is 

shown in Figure 3.1 below. 

 

 

Figure 3.1 The M60 data set. 

 

The Eidsvoll data set is a detailed terrain model
4
 of an area near Eidsvoll, Norway, where three 

M60s have been placed in a small valley. The model covers an area of about 86 x 86 m with a 

terrain resolution of about 0.86 m, and contains about 104000 triangles. The faces and vertices are 

stored in the struct “FV” in the file “Eidsvoll_with_3_M60A3.mat”. A portion of the model is 

shown in Figure 3.2 below. 

 

                                                           
4
 Thanks to Martin Ferstad Aasen for sharing the detailed terrain data! 
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Figure 3.2 The Eidsvoll data set. 

3.3 Performance 

There is no doubt that the choice to implement this simulator using Matlab has set significant 

restrictions on performance, especially due to the lack of pointers and the difficulty in exploiting 

Matlab fully by expressing all computations in an optimal matrix-oriented way. The use of 

recursive functions is probably not optimal for performance either, but this may be mediated by 

serializing those functions to loops. The ladar simulator does however run with an acceptable 

performance, and will probably construct images faster than ladar scans. 

 

To investigate how the ladar-simulator performance scales with the size of the 3D model and the 

number of pixels, it has been tested on resampled versions of the Eidsvoll data set with different 

image resolutions. The Eidsvoll data set was resampled gradually using the Matlab function 

reducepatch, which reduces the number of triangles while attempting to preserve the overall 

shape of the model. The camera was positioned above the 3D terrain, and the FOV adjusted so 

that the ladar image covers almost the entire scene (see Figure 3.3). The complete code for the 

performance test is listed in Appendix B.4 

 

Figure 3.4 a) shows the performance for the model building and k-d tree building steps. Both 

scale approximately linearly with the number of triangles, and the building of the k-d tree is by far 

the most time consuming. The k-d tree builder processes the 3D model at more than 

10 kTriangles/s, while the model builder is more than 10 times faster. 
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The ray casting performance for the two camera models is shown in Figure 3.4 b). These scale 

approximately linearly with the number of rays, with the pinhole camera model being 

significantly slower than the scanning camera model. The pinhole camera model produces about 

1 Mrays/s, while the scanning camera model produces about ten times more. 

 

The performance of the intersection method is shown in Figure 3.4 c). It scales approximately 

linearly with both the number of rays and the number of triangles, when these numbers are high. 

As a rule of thumb, one could expect the simulator to process at least 2 Mrays/min for a 

decent-sized 3D model. 

 

 

Figure 3.3 Range image illustrating the scene and FOV used in the performance test. 
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a) 

 

b) 

 

c) 

 

Figure 3.4 Results from the performance test. 

Plot a) shows the time used building the model and the k-d tree for different sizes of 

the 3D model. Plot b) shows the time used on casting rays for the two camera models 

for different number of rays. Plot c) shows the performance of the intersection 

method for different number of rays and different sizes of the 3D model. 

3.4 Examples 

3.4.1 A 360° scan 

This example simulates a 360° scan of the scene, from a position close to the middle tank. The 

complete code is listed in Appendix B.3. 
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First, the dataset is loaded, and the model and k-d tree is built: 

 

% Load dataset. 

load('Eidsvoll_with_3_M60A3.mat'); 

  

% Build model and k-d tree. 

model = buildModel(FV); 

root = buildKDTree(model); 

 

Then 3600 x 200 rays are cast from a position near the middle tank with a horizontal FOV of 

360° and a vertical FOV of 20°: 
 

% RayCast a 360 degree scan. 

w = 3600; 

h = 200; 

 

rays = castRaysScan([-20 0 180], [0 0 0], w, h, 2*pi, pi/9); 

 

The rays are intersected with the k-d tree, and ranges are computed: 

 

% Intersect the rays with the k-d tree. 

t = rayKDTreeIntersect(root, rays, model); 

 

The range image is constructed using raysToImg, and the point cloud is produced by following 

each ray the computed distance to intersection: 

 

% Construct the range image. 

rImg = raysToImg(t,h,w); 

  

% Construct the point cloud. 

x = rays.O(:,1) + t.*rays.D(:,1); 

y = rays.O(:,2) + t.*rays.D(:,2); 

z = rays.O(:,3) + t.*rays.D(:,3); 
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Finally the result is visualized (see Figure 3.5). The point cloud is laid on top of the 3D model, 

and the range image is used as a texture map on the surface determined by the rays at a 10-meter 

distance from the origin. 

 

% Plot the model surface. 

figure; 

hold on; 

p1 = patch(FV); 

heights = FV.vertices(:,3); 

heights = heights-min(heights); 

heights = heights/max(heights); 

cmap = summer(128); 

cdata = cmap(round(1+(heights*127)),:); 

set(p1,'FaceColor','interp',... 

'FaceVertexCData',cdata,... 

'EdgeColor','flat'); 

  

% Plot the point cloud 

plot3(x,y,z,'k.', 'MarkerSize',1); 

  

% Use the range image as texture on scan surface 10 meter from O. 

surf = rays.O + 10*rays.D; 

x = raysToImg(surf(:,1),h,w); 

y = raysToImg(surf(:,2),h,w); 

z = raysToImg(surf(:,3),h,w); 

warp(x,y,z,rImg,jet(64)); 

set(gca, 'YDir','normal'); 

caxis([0 64]) 

colorbar; 

axis equal; 
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Figure 3.5 The range image and point cloud resulting from a 360° scan. 

3.4.2 Using face IDs: Occlusion example 

This example uses the face IDs from the ray tracing to remove points that hit a plane, while 

keeping the points that hit the tank behind it. The example thereby illustrates how to simulate 

occlusion. The complete code is listed in Appendix B.2. 

 

First, the M-60 tank dataset is loaded, and an occlusion plane is defined and added to the triangle 

set: 

 

% Load dataset. 

load('M60A3.mat'); 

  

% Construct a plane. 

planeV = [ ... 

    0 0 0; ... 

    0 1 0; ... 

    0 1 1; ... 

    0 0 1]; 

planeF = [1 3 4; 1 2 3]; 

  

% Translate and scale the plane. 

planeP = [6 -5 0]; 
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planeS = [1 4 4]; 

planeV = repmat(planeP,size(planeV,1),1)+ planeV*diag(planeS); 

  

% Add the plane to occlude the tank and remember the plane face IDs. 

planeIDs = [1 2] + size(FV.faces,1); 

FV.faces = [FV.faces; planeF + size(FV.vertices,1)]; 

FV.vertices = [FV.vertices; planeV]; 

 

The face IDs for the occlusion plane is stored. The model and k-d tree are built, and rays are cast 

using the pinhole camera model: 

 

% Build model and k-d tree. 

model = buildModel(FV); 

root = buildKDTree(model); 

  

% RayCast using a pinhole camera model. 

w = 500; 

h = 200; 

  

rays = castRaysPinhole([100 0 2], [0 0 -pi], w, h, 0.11, 0.05); 

 

Then the rays are intersected with the k-d tree, and the face IDs for each intersection is collected 

as well as the ranges: 

 

% Intersect the rays with the k-d tree. 

[r,fid] = rayKDTreeIntersect(root, rays, model); 

 

To get the face IDs, rayKDTreeIntersect uses another version of the intersection 

implementation, which may be slightly slower than the version computing the ranges only. 

Choosing which version to use is handled automatically in rayKDTreeIntersect by checking 

the number of output arguments in the function call. 
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After the intersection computations are completed, the range image is plotted: 

 

% Compute the range image. 

rImg = raysToImg(r,h,w); 

  

% Plot the range image. 

figure; 

imagesc(rImg,[min(r(:))-2 max(rImg(:))]); 

colorbar; 

colormap(jet(256)); 

axis image 

axis off 

 

 

Figure 3.6 A range image showing the occlusion in front of the tank. 

 

The result is shown in Figure 3.6. Here, the results from the intersections with both the occlusion 

plane and the tank are shown. If we want to show only the rays that hit the tank, we can use the 

face IDs (see Figure 3.7): 

 

% Construct the point cloud for those rays that hit the tank. 

tankOnly = ~ismember(fid, planeIDs); 

x = rays.O(tankOnly,1) + r(tankOnly).*rays.D(tankOnly,1); 

y = rays.O(tankOnly,2) + r(tankOnly).*rays.D(tankOnly,2); 

z = rays.O(tankOnly,3) + r(tankOnly).*rays.D(tankOnly,3); 

  

% Plot the model surface. 

figure; 

hold on; 

p1 = patch(FV); 

heights = FV.vertices(:,3); 

heights = heights-min(heights); 
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heights = heights/max(heights); 

cmap = summer(128); 

cdata = cmap(round(1+(heights*127)),:); 

set(p1,'FaceColor','interp',... 

'FaceVertexCData',cdata,... 

'EdgeColor','k'); 

  

% Plot the point cloud 

plot3(x,y,z,'b.', 'MarkerSize',5); 

axis equal; 

axis off; 

 

 

Figure 3.7 The point cloud (shown as blue dots) after removing points on the occlusion. 

3.4.3 Using custom scan patterns: Push broom scan example 

This example shows how to implement custom scan patterns by simulating a push broom 

scanning ladar on a platform with sinusoidal roll-movements. The complete code is listed in 

Appendix B.1. 

 

First, the dataset is loaded, and the model and k-d tree are built: 
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% Load dataset. 

load('Eidsvoll_with_3_M60A3.mat'); 

  

% Build model and k-d tree. 

model = buildModel(FV); 

root = buildKDTree(model); 

 

The push broom scanning is simulated by moving the camera, and casting lines of rays at regular 

intervals using a 1D pinhole camera model. Each ray casting result is aggregated to a single large 

ray structure: 

 

% RayCast a line scan. 

w = 1; 

h = 500; 

roll = 0; 

yaw = pi/4; 

t = linspace(0,1,h); 

pStart = [-50 -50 370]; 

pEnd = [50 50 370]; 

pos = repmat(pStart,h,1) + t'*(pEnd-pStart); 

pitch = -pi/2 + (pi/180)*sin(t*4*pi); % Makes the platform "roll" 

  

rays.O = zeros(h^2, 3); 

rays.D = zeros(h^2, 3); 

for i=1:h 

    tmp = castRaysPinhole(... 

        pos(i,:), ... 

        [roll pitch(i) yaw], ... 

        w, h, (pi/9)/h, pi/9); 

     

    rays.O((i-1)*h+1:i*h,:) = tmp.O; 

    rays.D((i-1)*h+1:i*h,:) = tmp.D; 

end 
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The rays are intersected with the k-d tree, and the results are visualized (see Figure 3.8 and Figure 

3.9): 

 

% Intersect the rays with the k-d tree. 

r = rayKDTreeIntersect(root, rays, model); 

  

% Construct the range image. 

rImg = raysToImg(r,h,h); 

  

% Construct the point cloud. 

px = rays.O(:,1) + r.*rays.D(:,1); 

py = rays.O(:,2) + r.*rays.D(:,2); 

pz = rays.O(:,3) + r.*rays.D(:,3); 

  

% Plot the model surface. 

figure; 

hold on; 

p1 = patch(FV); 

heights = FV.vertices(:,3); 

heights = heights-min(heights); 

heights = heights/max(heights); 

cmap = summer(128); 

cdata = cmap(round(1+(heights*127)),:); 

set(p1,'FaceColor','interp',... 

'FaceVertexCData',cdata,... 

'EdgeColor','flat'); 

  

% Plot the point cloud 

plot3(px,py,pz,'k.', 'MarkerSize',1); 

axis equal; axis off; 

  

% Plot the range image. 

figure; 

imagesc(rImg); 

colorbar; 

colormap(jet(256)); 

axis image; axis off; 
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Figure 3.8 In this example, the scan has been performed by aggregating 1D scans while moving 

the ladar perpendicular to the scanning from right to left in the image above, and 

rolling slightly. The range image shows significant distortions because of the roll 

movements during scanning. 

 

 

 

Figure 3.9 The point cloud illustrates the footprint of the scan. 
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4 Ideas for further development 

The ladar simulator presented here only simulates the geometry of ladar imaging, and does not 

include the physics involved or the signal processing. Such processes may however also be 

incorporated, and some ideas will be presented in this section. 

 

Effects in the atmosphere, such as scattering and attenuation, may be simulated using data from 

other simulation software such as Modtran [9]. Surface reflectance properties for the different 

objects could be included in the 3D model. Beam divergence could also be simulated by casting 

several rays for each laser beam with slightly different directions. By incorporating these effects, 

one could also simulate the received signal in each ladar pixel, and thereby the signal processing 

as well. 

 

Implementing the ideas above would probably make a simulator based on matlab perform very 

slowly. There are however many ray-tracing libraries that could be used in C++, for example. 

This includes Nvidia Optix [5], which is a free high-level ray-tracing engine for C++ based on 

processing on Graphics Processing Units (GPUs). 

 

Finally, it could be possible to include the ladar simulator in simulations and games like those 

performed in FFIs BattleLab. With access to an updated high-resolution 3D representation of the 

scene and objects, as well as camera position and orientation, it is feasible to perform such ladar 

simulations in real-time. If the scene is static (and not too big), the matlab implementation 

presented here could probably be used. 
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Appendix A The ladar simulator code 

This appendix presents the Matlab code for all the functions that make up the ladar simulator. See 

chapter 3 for an explanation of how to use the code. 

 

A.1 buildKDTree.m 

function root = buildKDTree(model, maxD, maxN) 
% BUILDKDTREE Build a k-d tree representation of a 3D model. 
%    ROOT = BUILDKDTREE(MODEL) returns the root node of the k-d tree 
%    representation. MODEL must be on the same form as that returned 
%    by BUILDMODEL. 
% 
%    ROOT = BUILDKDTREE(MODEL, MAXD, MAXN) sets the maximum depth of 
%    the tree to MAXD, and the maximum number of triangles in a leaf 
%    node to MAXN. 
% 
%    See also BUILDMODEL. 
  
if nargin == 1 
    maxD = 25; 
    maxN = 30; 
elseif nargin ~= 3 
    error('Wrong number of arguments!'); 
end 
  
% Construct root. 
root.faceNums = 1:size(model.faces,1); 
root.bb = [min(model.vertices); max(model.vertices)]; 
root.dist = model.bb(2,:) - model.bb(1,:); 
  
% Perform recursive splits. 
root = splitKDNode(root, 1, 1, model, maxD, maxN); 
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A.2 buildModel.m 

function model = buildModel(model) 
% BUILDMODEL builds a model structure. 
%    MODEL = BUILDMODEL(FV) builds a model structure from a 
%    structure FV, which contains the fields 'vertices' and 'faces'. 
  
if nargin ~= 1 
    error('Wrong number of arguments!'); 
end 
     
% Compute bounding box and lenghts of bounding box edges. 
model.bb = [min(model.vertices); max(model.vertices)]; 
model.dist = model.bb(2,:) - model.bb(1,:); 
  
% For simpler code. 
v = model.vertices; 
f = model.faces; 
  
% Compute the normal vector for each triangle. 
model.N = cross(v(f(:,2),:)-v(f(:,1),:),v(f(:,3),:)-v(f(:,1),:)); 
  
% Find the coordinate plane where the triangle has greatest area. 
[~,dimInd] = sort(abs(model.N),2); 
model.dimInd = sort(dimInd(:,[1 2]),2); 
  
% Store the vertices in this plane, as well as the triangle area. 
largestInd = dimInd(:,3); 
n = size(f,1); 
model.vx = zeros(n,3); 
model.vy = zeros(n,3); 
model.ood = zeros(n,1); 
for i=1:n 
    model.vx(i,:) = v(f(i,:), model.dimInd(i,1)); 
    model.vy(i,:) = v(f(i,:), model.dimInd(i,2)); 
     
    model.ood(i) = 1/model.N(i,largestInd(i)); 
    if largestInd(i) == 2 
         model.ood(i) = - model.ood(i); 
    end 
end 
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A.3 castRaysPinhole.m 

function rays = castRaysPinhole(pos,orient,w,h,hfov,vfov) 
% CASTRAYSPINHOLE Cast rays according to a pinhole camera model. 
%    RAYS = CASTRAYSPINHOLE(POS,ORIENT,W,H,HFOV,VFOV) cast rays 
%    according to a pinhole camera model, where the principal point 
%    is given by the 1-by-3 vector POS, W is the image width in number  
%    of pixels, H is the image height in number of pixels, HFOV is the 
%    horizontal field-of-view (FOV) in radians and VFOV is the vertical 
%    FOV in radians. 
% 
%    The 1-by-3 vector ORIENT describes the roll-pitch-yaw orientation  
%    of the camera. With ORIENT = zeros(1,3), the optical axis is along 
%    the x-axis, and the z-axis points up. 
% 
%    RAYS is a structure with the fields 'O' for the ray origins, and 
%    'D' for the ray directions. 
  
  
% Copy origin to O matrix. 
rays.O = repmat(pos, w*h, 1); 
  
% Compute directions in camera frame. 
x0 = tan(0.5*hfov); 
y0 = tan(0.5*vfov); 
[x,y] = meshgrid(linspace(x0, -x0, w), ... 
                 linspace(y0, -y0, h)); 
D = [ones(w*h, 1), x(:), y(:)]; 
  
% Normalize to unit. 
for i=1:size(D,1) 
    D(i,:) = D(i,:) ./ norm(D(i,:)); 
end 
  
% Rotate camera in world. 
roll = orient(1); 
pitch = orient(2); 
yaw = orient(3); 
  
Rx = [1 0 0; 0 cos(roll) -sin(roll); 0 sin(roll) cos(roll)]; 
Ry = [cos(pitch) 0 sin(pitch); 0 1 0; -sin(pitch) 0 cos(pitch)]; 
Rz = [cos(yaw) -sin(yaw) 0; sin(yaw) cos(yaw) 0; 0 0 1]; 
  
R = Rx*Ry*Rz; 
rays.D = D*R; 
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A.4 castRaysScan.m 

function rays = castRaysScan(pos,orient,w,h,hfov,vfov) 
% CASTRAYSSCAN Cast rays according to a scanning camera model. 
%    RAYS = CASTRAYSSCAN(POS,ORIENT,W,H,HFOV,VFOV) cast rays 
%    according to a camera model for vertical and horizontal scans,  
%    where the origin for the two scan axes is given by the 1-by-3  
%    vector POS, W is the image width in number of pixels, H is the  
%    image height in number of pixels, HFOV is the horizontal  
%    field-of-view (FOV) in radians and VFOV is the vertical FOV in  
%    radians. 
% 
%    The 1-by-3 vector ORIENT describes the roll-pitch-yaw orientation  
%    of the camera. With ORIENT = zeros(1,3), straight ahead is along 
%    the x-axis, and the z-axis points up. 
% 
%    RAYS is a structure with the fields 'O' for the ray origins, and 
%    'D' for the ray directions. 
  
% Copy origin to O matrix. 
rays.O = repmat(pos, w*h, 1); 
  
% Compute directions in camera frame. 
[phi,theta] = meshgrid(linspace(0.5*hfov, -0.5*hfov, w), ... 
                       linspace(0.5*vfov, -0.5*vfov, h)); 
  
phi = phi(:); 
theta = theta(:); 
  
D = [cos(theta).*cos(phi), cos(theta).*sin(phi), sin(theta)]; 
  
% Rotate camera in world. 
roll = orient(1); 
pitch = orient(2); 
yaw = orient(3); 
  
Rx = [1 0 0; 0 cos(roll) -sin(roll); 0 sin(roll) cos(roll)]; 
Ry = [cos(pitch) 0 sin(pitch); 0 1 0; -sin(pitch) 0 cos(pitch)]; 
Rz = [cos(yaw) -sin(yaw) 0; sin(yaw) cos(yaw) 0; 0 0 1]; 
  
R = Rx*Ry*Rz; 
rays.D = D*R; 
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A.5 findKDSplitPlane.m 

function s = findKDSplitPlane(node, orient, model) 
% FINDKDSPLITPLANE Determines the position of a k-d tree split plane 
%    S = FINDKDSPLITPLANE(NODE,ORIENT,MODEL) determines the split 
%    plane in the node NODE along the axis given by ORIENT. With 
%    ORIENT == 1 is the x-axis, ORIENT == 2 the y-axis, and ORIENT == 3 
%    the z-axis. MODEL is a model built by BUILDMODEL. 
% 
%    S is a structure with the fields 'pos' for the positon of the 
%    split plane, and 'orient' for the split axis. 
% 
%    See also BUILDMODEL, SPLITKDNODES 
  
bestCost = inf; 
cTrav = 1; 
cIntersect = 10; 
  
f = model.faces(node.faceNums,:); 
vInd = unique(f); 
numFaces = size(f,1); 
rightNum = [numFaces 0 0.5*numFaces]; 
leftNum = [0 numFaces 0.5*numFaces]; 
  
pos = sort(model.vertices(vInd,orient)); 
oMed = pos(ceil(0.5*length(pos))); 
  
candSplit = [pos(1) pos(end) oMed]; 
     
for i = 1:length(candSplit) 
    tmpS.orient = orient; 
    tmpS.pos = candSplit(i); 
  
    rightBb = node.bb; 
    rightBb(1,orient) = tmpS.pos; 
    rightDist = node.dist; 
    rightDist(orient) = rightBb(2,orient) - rightBb(1,orient); 
  
    leftBb = node.bb; 
    leftBb(2,orient) = tmpS.pos; 
    leftDist = node.dist; 
    leftDist(orient) = leftBb(2,orient) - leftBb(1,orient); 
  
    rightArea = 2 * rightDist(1)*rightDist(2) ... 
        + rightDist(2) * rightDist(3) ... 
        + rightDist(1) * rightDist(3); 
    leftArea = 2 * leftDist(1)*leftDist(2) ... 
        + leftDist(2) * leftDist(3) ... 
        + leftDist(1) * leftDist(3); 
  
    cost = 2*cTrav + rightArea * rightNum(i) * cIntersect ... 
        + leftArea * leftNum(i) * cIntersect; 
  
    if cost < bestCost 
        bestCost = cost; 
        s = tmpS; 
    end 
end 
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A.6 intersectKDNode.m 

function [hit,hitF] = intersectKDNode(node, O, D, tMax, model) 
% INTERSECTKDNODE Intersects a set of rays with a k-d tree node. 
%    [T,FID] = INTERSECTKDNODE(NODE,O,D,TMAX,MODEL) traverses the node 
%    recursively, and intersects the rays, given by the origins in the 
%    N-by-3 matrix O and directions in the N-by-3 matrix D, with the 
%    k-d tree representation of the 3D model in MODEL. TMAX is a 
%    N-by-1 vector representing the maximum range for each ray. 
% 
%    T is a N-by-1 vector containing the distances along each ray to the 
%    point of intersection. Rays that do not intersect returns INF. F is 
%    a N-by-1 vector containing the face ID (the row in the MODEL's 
%    face matrix) for the triangle each ray hit. 
% 
%    See also RAYKDTREEINTERSECT, INTERSECTKDNODERANGE 
  
hit = inf(size(D,1),1); 
hitF = zeros(size(D,1),1); 
  
if isempty(node) 
    return; 
end 
  
if node.isLeaf 
    n = length(node.faceNums); 
  
    for i=1:n 
        f = node.faceNums(i); 
  
        N = model.N(f,:); 
        Q = model.vertices(model.faces(f,1),:); 
  
        denom = N(1).*D(:,1) + N(2).*D(:,2) + N(3).*D(:,3); 
  
        t = -(N(1).*(O(:,1)-Q(1)) ... 
            + N(2).*(O(:,2)-Q(2)) ... 
            + N(3).*(O(:,3)-Q(3)))./denom; 
  
        candT = find(t < hit); 
  
        if ~isempty(candT) 
            px = O(candT, model.dimInd(f,1)) + t(candT) .* ... 
                D(candT, model.dimInd(f,1)); 
            py = O(candT, model.dimInd(f,2)) + t(candT) .* ... 
                D(candT, model.dimInd(f,2)); 
  
            Vx = model.vx(f,:); 
            Vy = model.vy(f,:); 
             
            u = model.ood(f) .* ((Vx(3)-Vx(2)).*(py-Vy(2)) - (px-Vx(2)).*(Vy(3)-Vy(2))); 
            v = model.ood(f) .* ((Vx(1)-Vx(3)).*(py-Vy(3)) - (px-Vx(3)).*(Vy(1)-Vy(3))); 
            w = 1-u-v; 
             
            within = v >= 0 & w >= 0 & (v+w) <= 1; 
  
            hit(candT(within)) = t(candT(within)); 
            hitF(candT(within)) = f; 
        end 
    end 
else 
    % Compute distance to splitting plane. 
    t = (node.split.pos - O(:,node.split.orient)) ./ D(:, node.split.orient); 
    tol = 1e-2; 
  
    leftRays = O(:,node.split.orient) < node.split.pos | ... 
              (O(:,node.split.orient) == node.split.pos & ... 
               D(:,node.split.orient) > 0); 
    rightRays = ~leftRays; 
    nearOnly = t >= tMax | t < 0 | D(:,node.split.orient) == 0; 
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    if any(nearOnly & rightRays) 
        % Whole interval is on near node. 
        curr = nearOnly & rightRays; 
        [hit(curr),hitF(curr)] = intersectKDNode(... 
            node.right, O(curr,:), D(curr,:), tMax(curr), model); 
        rightRays = rightRays & ~nearOnly; 
    end 
     
    if any(nearOnly & leftRays) 
        % Whole interval is on near node. 
        curr = nearOnly & leftRays; 
        [hit(curr),hitF(curr)] = intersectKDNode(... 
            node.left, O(curr,:), D(curr,:), tMax(curr), model); 
        leftRays = leftRays & ~nearOnly; 
    end 
     
    if any(rightRays) 
        % The ray intersects the plane. 
        % Test near node. 
        [hit(rightRays),hitF(rightRays)] = intersectKDNode(... 
            node.right, O(rightRays,:), D(rightRays,:), t(rightRays), model); 
  
        rightRays = isinf(hit) & rightRays; 
        if any(rightRays) 
            t(rightRays) = t(rightRays) - tol; 
            updOrig = O(rightRays,:); 
            updOrig(:,1) = O(rightRays,1) + t(rightRays).*D(rightRays,1); 
            updOrig(:,2) = O(rightRays,2) + t(rightRays).*D(rightRays,2); 
            updOrig(:,3) = O(rightRays,3) + t(rightRays).*D(rightRays,3); 
             
            % Test far node. 
            [hit(rightRays),hitF(rightRays)] = intersectKDNode(... 
                node.left, updOrig, D(rightRays,:), tMax(rightRays)-t(rightRays), model); 
            hit(rightRays) = t(rightRays) + hit(rightRays); 
        end 
    end 
     
    if any(leftRays) 
        % The ray intersects the plane. 
        % Test near node. 
        [hit(leftRays),hitF(leftRays)] = intersectKDNode(... 
            node.left, O(leftRays,:), D(leftRays,:), t(leftRays), model); 
  
        leftRays = isinf(hit) & leftRays; 
        if any(leftRays) 
            % Test far node. 
            t(leftRays) = t(leftRays) - tol; 
            updOrig = O(leftRays,:); 
            updOrig(:,1) = O(leftRays,1) + t(leftRays).*D(leftRays,1); 
            updOrig(:,2) = O(leftRays,2) + t(leftRays).*D(leftRays,2); 
            updOrig(:,3) = O(leftRays,3) + t(leftRays).*D(leftRays,3); 
             
            [hit(leftRays),hitF(leftRays)] = intersectKDNode(... 
                node.right, updOrig, D(leftRays,:), tMax(leftRays)-t(leftRays), model); 
            hit(leftRays) = t(leftRays) + hit(leftRays); 
        end 
    end 
end 
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A.7 intersectKDNodeRange.m 

function hit = intersectKDNodeRange(node, O, D, tMax, model) 
% INTERSECTKDNODERANGE Intersects a set of rays with a k-d tree node. 
%    T = INTERSECTKDNODE(NODE,O,D,TMAX,MODEL) traverses the node 
%    recursively, and intersects the rays, given by the origins in the 
%    N-by-3 matrix O and directions in the N-by-3 matrix D, with the 
%    k-d tree representation of the 3D model in MODEL. TMAX is a 
%    N-by-1 vector representing the maximum range for each ray. 
% 
%    T is a N-by-1 vector containing the distances along each ray to the 
%    point of intersection. Rays that do not intersect returns INF. 
% 
%    The only difference between this function and INTERSECTKDNODE, is 
%    that this version performs a little faster, since it does not need 
%    to return the face IDs for the triangle each ray hit. 
% 
%    See also RAYKDTREEINTERSECT, INTERSECTKDNODE 
  
hit = inf(size(D,1),1); 
  
if isempty(node) 
    return; 
end 
  
if node.isLeaf 
    n = length(node.faceNums); 
  
    for i=1:n 
        f = node.faceNums(i); 
  
        N = model.N(f,:); 
        Q = model.vertices(model.faces(f,1),:); 
  
        denom = N(1).*D(:,1) + N(2).*D(:,2) + N(3).*D(:,3); 
  
        t = -(N(1).*(O(:,1)-Q(1)) ... 
            + N(2).*(O(:,2)-Q(2)) ... 
            + N(3).*(O(:,3)-Q(3)))./denom; 
  
        candT = find(t < hit); 
  
        if ~isempty(candT) 
            px = O(candT, model.dimInd(f,1)) + t(candT) .* ... 
                D(candT, model.dimInd(f,1)); 
            py = O(candT, model.dimInd(f,2)) + t(candT) .* ... 
                D(candT, model.dimInd(f,2)); 
  
            Vx = model.vx(f,:); 
            Vy = model.vy(f,:); 
             
            u = model.ood(f) .* ((Vx(3)-Vx(2)).*(py-Vy(2)) - (px-Vx(2)).*(Vy(3)-Vy(2))); 
            v = model.ood(f) .* ((Vx(1)-Vx(3)).*(py-Vy(3)) - (px-Vx(3)).*(Vy(1)-Vy(3))); 
            w = 1-u-v; 
             
            within = v >= 0 & w >= 0 & (v+w) <= 1; 
  
            hit(candT(within)) = t(candT(within)); 
        end 
    end 
else 
    % Compute distance to splitting plane. 
    t = (node.split.pos - O(:,node.split.orient)) ./ D(:, node.split.orient); 
    tol = 1e-2; 
  
    leftRays = O(:,node.split.orient) < node.split.pos | ... 
              (O(:,node.split.orient) == node.split.pos & ... 
               D(:,node.split.orient) > 0); 
    rightRays = ~leftRays; 
    nearOnly = t >= tMax | t < 0 | D(:,node.split.orient) == 0; 
         
    if any(nearOnly & rightRays) 
        % Whole interval is on near node. 
        curr = nearOnly & rightRays; 
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        hit(curr) = intersectKDNodeRange(... 
            node.right, O(curr,:), D(curr,:), tMax(curr), model); 
        rightRays = rightRays & ~nearOnly; 
    end 
     
    if any(nearOnly & leftRays) 
        % Whole interval is on near node. 
        curr = nearOnly & leftRays; 
        hit(curr) = intersectKDNodeRange(... 
            node.left, O(curr,:), D(curr,:), tMax(curr), model); 
        leftRays = leftRays & ~nearOnly; 
    end 
     
    if any(rightRays) 
        % The ray intersects the plane. 
        % Test near node. 
        hit(rightRays) = intersectKDNodeRange(... 
            node.right, O(rightRays,:), D(rightRays,:), t(rightRays), model); 
  
        rightRays = isinf(hit) & rightRays; 
        if any(rightRays) 
            t(rightRays) = t(rightRays) - tol; 
            updOrig = O(rightRays,:); 
            updOrig(:,1) = O(rightRays,1) + t(rightRays).*D(rightRays,1); 
            updOrig(:,2) = O(rightRays,2) + t(rightRays).*D(rightRays,2); 
            updOrig(:,3) = O(rightRays,3) + t(rightRays).*D(rightRays,3); 
             
            % Test far node. 
            hit(rightRays) =  t(rightRays) + intersectKDNodeRange(... 
                node.left, updOrig, D(rightRays,:), tMax(rightRays)-t(rightRays), model); 
        end 
    end 
     
    if any(leftRays) 
        % The ray intersects the plane. 
        % Test near node. 
        hit(leftRays) = intersectKDNodeRange(... 
            node.left, O(leftRays,:), D(leftRays,:), t(leftRays), model); 
  
        leftRays = isinf(hit) & leftRays; 
        if any(leftRays) 
            % Test far node. 
            t(leftRays) = t(leftRays) - tol; 
            updOrig = O(leftRays,:); 
            updOrig(:,1) = O(leftRays,1) + t(leftRays).*D(leftRays,1); 
            updOrig(:,2) = O(leftRays,2) + t(leftRays).*D(leftRays,2); 
            updOrig(:,3) = O(leftRays,3) + t(leftRays).*D(leftRays,3); 
             
            hit(leftRays) = t(leftRays) + intersectKDNodeRange(... 
                node.right, updOrig, D(leftRays,:), tMax(leftRays)-t(leftRays), model); 
        end 
    end 
end 
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A.8 rayKDTreeIntersect.m 

function [t,fID] = rayKDTreeIntersect(root, rays, model) 
% RAYKDTREEINTERSECT Intersects a set of rays with a k-d tree. 
%    [T,FID] = RAYKDTREEINTERSECT(ROOT,RAYS,MODEL) recursively intersects 
%    the k-d tree given by the root node ROOT with the rays given 
%    by the ray structure RAYS, containing the fields 'O' for the ray 
%    origins and 'D' for the ray directions. The k-d tree represents 
%    the 3D model given by MODEL, which is built using the function 
%    BUILDMODEL. 
% 
%    See also BUILDMODEL, BUILDKDTREE, CASTRAYSPINHOLE, CASTRAYSSCAN 
  
nRays = size(rays.O,1); 
tMax = inf(nRays,1); 
  
if nargout <= 1 
    t = intersectKDNodeRange(root, rays.O, rays.D, tMax, model); 
else 
    [t,fID] = intersectKDNode(root, rays.O, rays.D, tMax, model); 
end 
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A.9 raysToImg.m 

function img = raysToImg(t,h,w) 
% RAYSTOIMG Constructs an image from ray tracing results. 
%    IMG = RAYSTOIMG(T,H,W) returns an image, given the  
%    data in the N-by-1 vector T, and the image 
%    height H and width W. 
% 
%    This function assumes that the rays have been constructed by 
%    the functions CASTRAYSPINHOLE or CASTRAYSSCAN, or a function 
%    that cast the rays in the same order as these. 
% 
%    See also CASTRAYSPINHOLE, CASTRAYSSCAN, RAYKDTREEINTERSECT 
  
img = reshape(t,h,w); 
img(isinf(img)) = 0; 
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A.10 splitKDNode.m 

function node = splitKDNode(node, d, orient, model, maxD, maxN) 
% SPLITKDNODES Recursively splits the k-d tree nodes. 
%    NODE = SPLITKDNODES(NODE,D,ORIENT,MODEL,MAXD,MAXN) splits 
%    the node NODE using the function FINDKDSPLITPLANE. D is the 
%    current depth, ORIENT is the current split orientations 
%    (ORIENT == 1 is the x-axis, ORIENT == 2 the y-axis,  
%    and ORIENT == 3 is the z-axis), MODEL is the 3D model the k-d tree 
%    represents, MAXD is the maximum depth of the tree, and MAXN 
%    is the maximum number of triangles in a leaf node. 
% 
%    See also BUILDMODEL, BUILDKDTREE, FINDKDSPLITPLANE. 
  
% Number of triangles in node. 
n = length(node.faceNums); 
  
% Check if leaf node. 
if n <= maxN || d >= maxD 
    node.isLeaf = true; 
    return; 
end 
  
% Find split plane position and orientation. 
s = findKDSplitPlane(node, orient, model); 
  
% Partition the triangles. 
f = model.faces(node.faceNums,:); 
nearV = model.vertices(:,s.orient) <= s.pos; 
farV = ~nearV; 
nearF = all(nearV(f),2); 
farF = all(farV(f),2); 
intersectF = ~(nearF | farF); 
nearSplit = nearF | intersectF; 
farSplit = farF | intersectF; 
  
% Right child 
right.faceNums = node.faceNums(farSplit); 
right.bb = node.bb; 
right.bb(1,s.orient) = s.pos; 
right.dist = node.dist; 
right.dist(s.orient) = ... 
    right.bb(2,s.orient) - right.bb(1,s.orient); 
  
% Left child. 
left.faceNums = node.faceNums(nearSplit); 
left.bb = node.bb; 
left.bb(2,s.orient) = s.pos; 
left.dist = node.dist; 
left.dist(s.orient) = ... 
    left.bb(2,s.orient) - left.bb(1,s.orient); 
  
% Store split. 
node.isLeaf = false; 
node.split = s; 
  
% Split children. 
if orient == 3 
    orient = 1; 
else 
    orient = orient + 1; 
end 
  
node.right = splitKDNode(right, d+1, orient, model, maxD, maxN); 
node.left = splitKDNode(left, d+1, orient, model, maxD, maxN);  
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Appendix B Example and test scripts 

This appendix presents different Matlab scripts that have been used to produce data in this report. 

 

B.1 MovingScanExample.m 

% Load dataset. 
load('Eidsvoll_with_3_M60A3.mat'); 
  
% Build model and k-d tree. 
model = buildModel(FV); 
root = buildKDTree(model); 
  
% RayCast a line scan. 
w = 1; 
h = 500; 
roll = 0; 
yaw = pi/4; 
t = linspace(0,1,h); 
pStart = [-50 -50 370]; 
pEnd = [50 50 370]; 
pos = repmat(pStart,h,1) + t'*(pEnd-pStart); 
pitch = -pi/2 + (pi/180)*sin(t*4*pi); % Makes the platform "roll" 
  
rays.O = zeros(h^2, 3); 
rays.D = zeros(h^2, 3); 
for i=1:h 
    tmp = castRaysPinhole(... 
        pos(i,:), ... 
        [roll pitch(i) yaw], ... 
        w, h, (pi/9)/h, pi/9); 
     
    rays.O((i-1)*h+1:i*h,:) = tmp.O; 
    rays.D((i-1)*h+1:i*h,:) = tmp.D; 
end 
  
% Intersect the rays with the k-d tree. 
r = rayKDTreeIntersect(root, rays, model); 
  
% Construct the range image. 
rImg = raysToImg(r,h,h); 
  
% Construct the point cloud. 
px = rays.O(:,1) + r.*rays.D(:,1); 
py = rays.O(:,2) + r.*rays.D(:,2); 
pz = rays.O(:,3) + r.*rays.D(:,3); 
  
% Plot the model surface. 
figure; 
hold on; 
p1 = patch(FV); 
heights = FV.vertices(:,3); 
heights = heights-min(heights); 
heights = heights/max(heights); 
cmap = summer(128); 
cdata = cmap(round(1+(heights*127)),:); 
set(p1,'FaceColor','interp',... 
'FaceVertexCData',cdata,... 
'EdgeColor','flat'); 
  
% Plot the point cloud 
plot3(px,py,pz,'k.', 'MarkerSize',1); 
axis equal; axis off; 
  
% Plot the range image. 
figure; 
imagesc(rImg); 
colorbar; 
colormap(jet(256)); 
axis image; axis off; 
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B.2 OcclusionExample.m 

% Load dataset. 
load('M60A3.mat'); 
  
% Construct a plane. 
planeV = [ ... 
    0 0 0; ... 
    0 1 0; ... 
    0 1 1; ... 
    0 0 1]; 
planeF = [1 3 4; 1 2 3]; 
  
% Translate and scale the plane. 
planeP = [6 -5 0]; 
planeS = [1 4 4]; 
planeV = repmat(planeP,size(planeV,1),1)+ planeV*diag(planeS); 
  
% Add the plane to occlude the tank and remember the plane face IDs. 
planeIDs = [1 2] + size(FV.faces,1); 
FV.faces = [FV.faces; planeF + size(FV.vertices,1)]; 
FV.vertices = [FV.vertices; planeV]; 
  
% Build model and k-d tree. 
model = buildModel(FV); 
root = buildKDTree(model); 
  
% RayCast using a pinhole camera model. 
w = 500; 
h = 200; 
  
rays = castRaysPinhole([100 0 2], [0 0 -pi], w, h, 0.11, 0.05); 
  
% Intersect the rays with the k-d tree. 
[r,fid] = rayKDTreeIntersect(root, rays, model); 
  
% Compute the range image. 
rImg = raysToImg(r,h,w); 
  
% Plot the range image. 
figure; 
imagesc(rImg,[min(r(:))-2 max(rImg(:))]); 
colorbar; 
colormap(jet(256)); 
axis image 
axis off 
  
% Construct the point cloud for those rays that hit the tank. 
tankOnly = ~ismember(fid, planeIDs); 
x = rays.O(tankOnly,1) + r(tankOnly).*rays.D(tankOnly,1); 
y = rays.O(tankOnly,2) + r(tankOnly).*rays.D(tankOnly,2); 
z = rays.O(tankOnly,3) + r(tankOnly).*rays.D(tankOnly,3); 
  
% Plot the model surface. 
figure; 
hold on; 
p1 = patch(FV); 
heights = FV.vertices(:,3); 
heights = heights-min(heights); 
heights = heights/max(heights); 
cmap = summer(128); 
cdata = cmap(round(1+(heights*127)),:); 
set(p1,'FaceColor','interp',... 
'FaceVertexCData',cdata,... 
'EdgeColor','k'); 
  
% Plot the point cloud 
plot3(x,y,z,'b.', 'MarkerSize',5); 
axis equal; 
axis off; 
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B.3 PanoramaScanExample.m 

% Load dataset. 
load('Eidsvoll_with_3_M60A3.mat'); 
  
% Build model and k-d tree. 
model = buildModel(FV); 
root = buildKDTree(model); 
  
% RayCast a 360 degree scan. 
w = 3600; 
h = 200; 
  
rays = castRaysScan([-20 0 180], [0 0 0], w, h, 2*pi, pi/9); 
  
% Intersect the rays with the k-d tree. 
t = rayKDTreeIntersect(root, rays, model); 
  
% Construct the range image. 
rImg = raysToImg(t,h,w); 
  
% Construct the point cloud. 
x = rays.O(:,1) + t.*rays.D(:,1); 
y = rays.O(:,2) + t.*rays.D(:,2); 
z = rays.O(:,3) + t.*rays.D(:,3); 
  
% Plot the model surface. 
figure; 
hold on; 
p1 = patch(FV); 
heights = FV.vertices(:,3); 
heights = heights-min(heights); 
heights = heights/max(heights); 
cmap = summer(128); 
cdata = cmap(round(1+(heights*127)),:); 
set(p1,'FaceColor','interp',... 
'FaceVertexCData',cdata,... 
'EdgeColor','flat'); 
  
% Plot the point cloud 
plot3(x,y,z,'k.', 'MarkerSize',1); 
  
% Use the range image as texture on scan surface 10 meters from O. 
surf = rays.O + 10*rays.D; 
x = raysToImg(surf(:,1),h,w); 
y = raysToImg(surf(:,2),h,w); 
z = raysToImg(surf(:,3),h,w); 
warp(x,y,z,rImg,jet(64)); 
set(gca, 'YDir','normal'); 
caxis([0 64]) 
colorbar; 
axis equal; 
axis off; 
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B.4 PerformanceTest.m 

% Load dataset. 
load('Eidsvoll_with_3_M60A3.mat'); 
  
% Test performance for differenct number of rays and triangles. 
r = [1000 5000 10000 25000 50000 75000 100000]; 
rayDims = [100 250 500 750 1000 1500 2000]; 
  
tModelBuild = zeros(size(r)); 
tTreeBuild = zeros(size(r)); 
tCast = zeros(length(r),length(rayDims)); 
tCastScan = zeros(length(r),length(rayDims)); 
tIntersect = zeros(length(r),length(rayDims)); 
t = cell(length(r),length(rayDims)); 
  
for i=1:length(r) 
    % Reduce the model. 
    fvr = reducepatch(FV,r(i)); 
  
    % Build model and k-d tree. 
    tic; 
    model = buildModel(fvr); 
    tModelBuild(i) = toc; 
    tic; 
    root = buildKDTree(model); 
    tTreeBuild(i) = toc; 
  
    for j=1:length(rayDims) 
        % RayCast pinhole rays covering most of the scene. 
        w = rayDims(j); 
        h = rayDims(j); 
        roll = 0; 
        pitch = -pi/2; 
        yaw = 0; 
        tic; 
        rays = castRaysPinhole([0 0 370], [roll pitch yaw], w, h, 0.80, 0.80); 
        tCast(i,j) = toc; 
         
        % RayCast scan rays covering most of the scene (not used). 
        w = rayDims(j); 
        h = rayDims(j); 
        roll = 0; 
        pitch = -pi/2; 
        yaw = 0; 
        tic; 
        tmp = castRaysScan([0 0 370], [roll pitch yaw], w, h, 0.80, 0.80); 
        tCastScan(i,j) = toc; 
  
        % Intersect the pinhole rays with the k-d tree. 
        tic; 
        t{i,j} = rayKDTreeIntersect(root, rays, model); 
        tIntersect(i,j) = toc; 
    end 
end 
  
% Save results. 
nRays = rayDims.^2; 
nTriangles = r; 
save('performanceResults.mat','t','tModelBuild','tTreeBuild', ... 
    'tCast','tCastScan','tIntersect','nRays','nTriangles'); 
  
% Plot results 
figure; 
hold on; 
plot(nTriangles,tModelBuild,'-g.'); 
plot(nTriangles,tTreeBuild,'-bo'); 
hold off; 
legend('Model', ... 
    'k-d Tree', ... 
    'Location','NorthWest'); 
title('Time used building the model and k-d tree'); 
xlabel('Number of triangles'); 
ylabel('Seconds'); 
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figure; 
hold on; 
plot(nRays,tCast(end,:),'-b.'); 
plot(nRays,tCastScan(end,:),'-gx'); 
hold off; 
legend('Pinhole camera model', ... 
    'Scanning camera model', ... 
    'Location','NorthWest'); 
title('Time used on casting rays'); 
xlabel('Number of rays'); 
ylabel('Seconds'); 
  
figure; 
hold on; 
plot(nRays,tIntersect(3,:),'-r.'); 
plot(nRays,tIntersect(5,:),'-go'); 
plot(nRays,tIntersect(7,:),'-bx'); 
hold off; 
legend( ... 
    sprintf('Number of triangles = %d',nTriangles(3)), ... 
    sprintf('Number of triangles = %d',nTriangles(5)), ... 
    sprintf('Number of triangles = %d',nTriangles(7)), ... 
    'Location','NorthWest'); 
title('Time used intersecting the rays with the k-d tree'); 
xlabel('Number of rays'); 
ylabel('Seconds'); 
  
% Construct and show the range image. 
i = 7; 
j = 5; 
rImg = raysToImg(t{i,j},rayDims(j),rayDims(j)); 
  
rMin = floor(min(rImg(:))/10)*10; 
rMax = ceil(max(rImg(:))/10)*10; 
v = rMin:1:rMax; 
  
figure; 
hold on; 
imagesc(rImg); 
[C,handle] = contour(rImg, v, 'k'); 
clabel(C,handle,rMin:10:rMax); 
axis off; 
axis image; 
  
colormap(jet(256)); 
 

 

 

 

 


