

FFI-rapport 2007/02578

oProbe – an OMNeT++ extension module

Tore J. Berg

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI)

29 November 2007

FFI-rapport 2007/02578

1070

ISBN 978-82-464-1288-7

Keywords

Modellering og simulering

Statistisk analyse

Approved by

Eli Winjum Project Manager

Vidar S. Andersen Director

 2 FFI-rapport 2007/02578

Sammendrag
OMNeT++ er et programvarebasert rammeverk for å bygge simuleringsmodeller av datanett, se
www.omnetpp.org. Denne rapporten beskriver et programvareprosjekt kalt oProbe som utvider
OMNeT++ med en modul for statistisk analyse. Programvaren er publisert som åpen kildekode på
hjemmesiden til OMNeT++.

FFI-rapport 2007/02578 3

http://www.omnetpp.org/

English summary
The simulation community has been accused for producing many simulation studies of bad
quality [4], and the article stresses the importance of producing statistically sound results. The
mission of the oProbe open source project is to provide an instrument that produces statistically
sound results at known quality. Stochastic sampling from a network of queues demands both
confidence and correlation control. An important design goal is to be compatible with the
OMNeT++ framework without introducing changes to this code, as well as making it easy for
existing simulators to make use of oProbe. The oProbe project introduces a probe module, which
is a new simple module in the context of OMNeT++. A probe is the instrument that applies a
controlled stochastic sampling technique. The probe module may have any number of probes. The
oProbe project supports different interface levels according to the functionality required. Based
on the FIFO queue example included in the sample directory in OMNeT++, the oProbe project
provides example code on how the software can be used by existing or upcoming OMNeT++
based simulators.

 4 FFI-rapport 2007/02578

Contents

1 7 Introduction
1.1 9 Terminology

2 9 Getting Started
2.1 12 Using oProbe

2.2 20 The effect of correlated samples

3 24 The Software Architecture
3.1 27 The OMNET-package

4 28 The Probe Module

5 31 Interface Levels
5.1 31 Level 1 (no GUI)

5.2 31 Level 2

5.3 31 Full functionality

6 32 Tips and Tricks
6.1 32 Checking input files

6.2 32 Checking the run-time length

6.3 33 Performance issues

7 33 Installation
7.1 34 Basic Build

7.2 36 Build with HippoDraw

7.3 36 KDevelop users

7.4 36 FAQ

7.4.1 36 Release/debug mode

7.4.2 36 Changing default paths

7.4.3 37 Installation on Mandriva

References 39

FFI-rapport 2007/02578 5

 6 FFI-rapport 2007/02578

1 Introduction
In December 2006 we started a project that used open source code published on the Internet to
build a simulation environment suitable for steady-state performance analysis of wireless
communication networks. To hide the disparities between the different open source projects from
the user at the left of the figure below, we built a dashboard (or a wrapper) between the user and
the imported open source code.

open source code area

Dashboard
based

on
Qt

OMNeT++ kernel

OMNeT++ models

hippodraw

Figure 1.1 The dashboard provides a set of services to set up and run simulations.

The dashboard should provide the following services:

• editors for setting up model parameters (pathloss, radio data, traffic, etc.)
• functions for controlled statistical sampling techniques to produce reliable results of

known quality (analysis of data in run-time is required)
• editors to produce reports from the simulation results

Our research interest is modelling of wireless networks with focus on protocols [5]. We have
tested a number of commercial simulation software, but have rejected usage of commercial
software due to lack of source code. Without access to the source code, we are unable to make
modification to protocols, and often need access to the source to get exact and detailed
information about the protocol behaviour. By using OMNeT++ [1] we have the source code that
provides the basic functionality for building simulators and have found it more attractive to put
resources on developing enhancement to OMNeT++, when required.

The simulation community has been accused for producing many simulation studies of bad
quality, see [4]. This article stresses the importance of producing statistically sound results - a
principle we are used to from earlier research. Despite the high quality of OMNeT++, the
software did not meet our requirements with regard to statistical analysis, so we developed some

FFI-rapport 2007/02578 7

enhancements for setting up experiments using controlled sampling techniques at run-time. Using
OMNeT++ version 3.3 and some commercial software, we developed a simulator of a proprietary
wireless network and conducted a number experiments. We wanted to contribute back to the
OMNeT++ open source project, so we stripped off the source code assumed to be of general
interest and put together a tar ball with source code and documentation. The resulting software is
described in this document and is named oProbe - OMNeT++ extended with probes.

The target group for this document is mainly software developers with focus on OMNeT++.
However, the software providing editor functions, batch means analysis and read/write handling
of XML-file may be of interest to developers using other simulation framework since this part of
the software is independent of OMNeT++.

Many of our OMNeT++ extensions are based on Qt version 3 from Trolltech, see
www.trolltech.com. Why Qt3? The project team members had long experience with the Qt3. The
Qt3 software is stable, is well documented, runs on many platforms and is easy to use. The Qt3
and the Qt4 software are very popular within the open source community, so the decision to use
Qt was easy. The current oProbe version uses Qt3, but shortly we will migrate to Qt version 4.

This document is organised as follows.

Chapter 2 “Getting Started” describes how this software is meant to be used and demonstrates its
capabilities. We recommend that you read this chapter first. If you find the software interesting
and want to test it, we provide an installation guide in chapter 7 “Installation”. The FAQ section
in the same chapter gives some hints on problems that may occur. The oProbe rely on other open
source distributions, so it is likely that the FAQ section will be useful.

This document has focus on the oProbe software, usage and installation. The mathematical
analysis of the batch means method implemented is not explained in detail, but section 2.2 “The
effect of correlated samples” gives an overview.

An automatic documentation system (doxygen, www.doxygen.org) has been applied in this
project, so this document only gives an overview of the implementation. The starting point for a
detailed description of the implementation is the doc/html/index.html file. However, before you
start to browse around, please read chapter 3 “The Software Architecture”, which explains the
relationship between packages and classes, and the naming convention used for assigning file
names.

The oProbe project introduces a probe module, which is a new simple module in the context of
OMNeT++. Chapter 4 describes this module.

The oProbe project supports three interface levels with increasing level of functionality. The
lowest level does not provide a GUI, but only functions to do statistics on sampled data at run-
time. The different interface levels are outlined in chapter 5.

 8 FFI-rapport 2007/02578

http://www.trolltech.com/

1.1 Terminology

OMNeT++
Open source software providing a framework to build simulators [1], including INET.

HippoDraw
Open source software for making graphical plots of data [8].

oProbe
OMNeT++ extended with probes

$OMNET - the home directory for the OMNeT++ installation.
$OMNETI - the home directory for the INET installation
$HIPPO - the home directory the HippoDraw version 19.1 installation
$HOME - the login directory

2 Getting Started
This chapter gives an overview of the basic functionality of oProbe and explains the meaning of
the term probe. The first section in this chapter takes you through a complete simulation session,
starting with the configuration of simulator input data and ending up with an output graph that
presents the results. The second section illustrates the effect of correlated samples.

Now we turn to the design of experiments. A typical simulation experiment for us is to estimate
the expectations of stochastic variables as some input parameters are varied over a set of values.
This is exemplified by Figure 2.1 where the estimate of interest is the average end-to-end delay as
function of the offered traffic taken from the set 1 2 3 4 5{ , , , , }Λ Λ Λ Λ Λ . The index i of these

elements is referred to as session run i. They are all independent of each other, which means that
the simulator is set to its initial state at the very beginning of each run1. The offered traffic iΛ

will at run-time lead to creation of one or more traffic generators. Normally, the offered traffic set
is ordered after increasing load since this eases the process of producing nice output graphs.

1 All queues are set to an empty state at time instance zero.

FFI-rapport 2007/02578 9

offerred traffic

measured average
end-to-end delay

L1 L2 L3 L4 L5

Figure 2.1 An example plot from an experiment.

To take measurements from a network you do need an instrument - we use the term probe. In
practise, you insert a probe into your network by placing some specific statements in the
simulator source code. The practical aspects are dealt with in chapter 4.

A typical simulation run will have many active probes taking samples from different probability
distributions. Unfortunately, network simulations normally imply collecting time-variant and
correlated samples. Probes must use controlled statistical sampling techniques to produce
trustworthy results, and oProbe uses a classical batch means analysis technique to get control of
the correlation. Section 2.2 gives a short description of the technique used. When the uncorrelated
batch size is found, the probe starts to estimate the confidence interval for the first order moment
(the expectation) of the underlying distribution.

a

bprobe 1

probe 3

Measure network
end-to-end delay

Measure link loss
probability(a->b) probe 2

Measure network
throughput

Figure 2.2 Probes are the objects that collect and process samples from probability
distributions.

 10 FFI-rapport 2007/02578

Sampling from probability distributions means that you must have control of the quality of the
estimate. Figure 2.3 shows three hypothetical simulation runs under three different parameter sets.
Given a specific confidence level, you can say set 1 gives less packet loss than set 3. However,
you cannot state any difference between set 1 and set 2 since the confidence intervals overlap.
You have to improve the accuracy under the same confidence level to state any difference
between set 1 and set 2. In practise, this means that you must increase the sample size by running
more simulations.

P(packet loss)

parameter
set 1

parameter
set 3

parameter
set 2

Figure 2.3 Illustration of confidence intervals (as vertical arrows).

The oProbe project defines the following three probe types:

Terminating: The probe shall produce results within a predefined statistical significance.

NonTerminating: The probe shall use a controlled sampling technique but shall not affect the

simulation run length. Then it might be impossible to produce a probe
report since the desired quality cannot be achieved from the sample size
available.

SampleMean: Disable the controlled sampling technique but calculate the sample average.

All our simulation experiments use a set of probes by which we shall give some statements at a
known precision, and the simulation process must run until the required accuracy is reached.
These probes are activated as terminating probes and affect the simulation run length.

FFI-rapport 2007/02578 11

We must always be critical to the outcome of an experience due to the high probability of errors
in the simulation input files and the possibility of software errors2. To detect these types of errors,
we use a set of auxiliary probes - probes not directly of interest to the experiment but added to
reveal suspicious network behaviour. For example, if I detect high packet loss in a network where
I expect no loss then I once more forgot to tune down one of the traffic generators! These types of
probes are activated as sample mean probes since they only calculate the sample average without
using a controlled sampling technique. Moreover, we usually add some sample mean probes to
get additional information to backup up our conclusions made from the terminating probe.

Upon termination, the probe module writes statistics to two files - one using a human readable
text format (probeOutFile) and one based on XML (probeOutFile.xml) suitable for automatic
processing. The last file is used by the report generator included in this project. The following
lines show the probeOutFile from an M/M/1 queue simulation:

state is Accuracy reached
Sample size: 61000
Mean: 6.09886
Half Width: 0.487882
Final Accuracy: 0.0799955
No of batches: 243
Batch size: 250
* Schmeisers confidence interval *
state is Accuracy reached
Sample size: 61000
Mean: 6.10509
Half Width: 0.608542
Final Accuracy: 0.0996777
No of batches: 20
Batch size: 3000
* Autocorrelation confidence intervals *
Lag_1: 0.178896 +-0.212849
Lag_2: -0.0468146 +-0.219555
Lag_3: 0.00804297 +-0.220007

The autocorrelation statistics (Lag_1, Lag_2, Lag_3) is calculated for the topmost confidence
interval (number of batches 243 and batch size 250). The Scheimser’s confidence interval [2] is
less affected by correlated data, and this confidence interval is the preferred choice when we shall
analyse the simulation results.

2.1 Using oProbe

To illustrate the capabilities of the software, this section goes through example 1 included in the
oProbe project. The instructions for building the exe-file are outlined in chapter 7.

2 We often insert invariant checks in our source code to catch software errors, for example assert(invar1()
== true). It is better to halt the simulation than produce bad results!

 12 FFI-rapport 2007/02578

Example 1 simulates an M/M/1-queue by using the fifo source code included with the OMNeT++
distribution ($OMNET/samples/fifo). In this section we measure the response time3 as function of
the offered traffic. We are afraid to produce bad results, so we include two probes. The first probe
named ResponseTime is defined as terminating with 10% accuracy at 90% confidence, and
measures the average response time. The second probe named Throughput is included to catch
errors and measures the traffic out of the queue. An M/M/1 queue cannot drop packets per
definition (since it has infinite queue size). If the throughput deviates from the offered load then
we have one or more errors in the input files, or in the source code4. This second probe is set to
the type sample mean because it is only used to check for errors.

The following table expresses the response time as function of the packet arrival rate (λ) when the
service time (1/μ) is kept fixed at 1.0 seconds.

run N λ [packets/s] E[U]
1 0.250 1.33 s
2 0.333 1.50 s
3 0.500 2.00 s
4 0.667 3.00 s
5 0.800 5.00 s
6 0.830 6.00 s
7 0.910 11.0 s

Figure 2.4 Average theoretical response time E[U] as function of the packet arrival rate λ.

The simulator shall be set up with seven different runs with arrival rates as specified by this table.
The following sections guide you through the necessary steps to configure the input parameters,
start the simulation and finally, plot the simulation results. The steps are sequentially numbered
and can be divided into the following main groups:

Starting the program: step 1
Configuration of input data: step 2 to 5
Execution: step 6
Producing simulation report: step 7 to 8

3 The queuing time plus the service time.
4 Of course, in this case we should have implemented a probe that measured lost packets since a few lost
packets will not be seen in the throughput. However, we probably detect wrong setting of the traffic level.

FFI-rapport 2007/02578 13

Step 1 Start the program

Open a shell and give the input:

$cd oprobe/example1
./example1

The widget shown in Figure 2.5 should appear. The blinking LED at the upper right corner is a
watch dog timer telling about the status of Qt’s event loop. A green colour indicates a healthy
condition, in opposite to red - an error has been detected.

Figure 2.5 The main window for the oProbe application.

Step 2 Set the working path

The simulator needs some setup files and the working path must be set to the directory where
these files are located. For example 1 the correct location is oprobe/example1/omnetFiles. Press
the ”Set Directory”-button, use the widget that pops up to select this directory and then answer
”yes” to save this setting. Your selection is shown in the status panel and is also saved in the file
$HOME/.qt/omnetextensionsrc. This becomes the default work path the next time the program is
started.

The OMNeT++ core demands a simulation setup file named omnettpp.ini and NED-files (cfr the
OMNeT++ manual), and these files reside under the directory named omnetFiles/setup.

 14 FFI-rapport 2007/02578

Step 3 Activate probes

Example 1 includes a default probe specification file (setup/probeInFile.xml) which activates the
probes needed. You may therefore skip this step, but you should activate the probe editor to check
the consistency of your installation.

The editor for the probe module appears when you click on the Probe-button in the Editors-tab
widget, see
Figure 2.6. The probe table window displays the probes activated by the user and is initially
empty. The “Insert Probe”-button brings up the complete list of probe objects and by selecting
one of them, the selected item will be inserted into the probe table.

The normal probe editing sequence is as follows:

1. Insert a probe into the probe table: Click on the “Insert Probe”-button
2. Set probe attributes: Click on the probe name in the probe table
3. Save the probe data: Click on the Save-button

Step 3 creates/updates the file probeInFile.xml, which is parsed by the probe module when the
OMNeT++ kernel starts.

FFI-rapport 2007/02578 15

1

2

Figure 2.6 The probe table is activated from the main window (1) and shows the probes that are

enabled. By clicking on a probe name (2), the probe editor appears and you may
change the probe attributes.

Step 4 Specify the execution environment

Execution controls provide functions to set up the run-time environment for debugging, or for
production. The following four run-time environments supported are: Tk-environment, Cmd
(Express), Cmd(Debug) and File Input Check.

The Tk-environment is a graphical user interface provided by the OMNeT++ framework, see
Figure 2.7. You get an overview of the model and may inspect different parts of the simulator.
When you run the simulator, animation of events is activated, and the text window shows a lot of
trace messages. We suggest that you use this environment first to test example 1.

 16 FFI-rapport 2007/02578

Figure 2.7 The M/M/1 queue running in the Tkenv environment. Press ”Run” and the animation
starts.

The Cmd (Express) is the run-time environment to use during the production phase - this is when
you have validated that all the input data is correct and consistent, and that the simulation process
will reach a steady-state (cfr section 6.2). Terminate the program by clicking on the Exit-button.
Restart the program, select the Cmd (Express) environment and go to the next step. (The usage of
the last two run-time environments (Cmd(Debug), File Input Check) is explained later.)

Step 5 Specify the session run numbers

The oProbe project does not provide a traffic editor and the traffic generators have been specified
in the input file example1/omnetFiles/setup/simsetup.ini. Just select the run numbers by typing
“1-7” as shown below:

The dashboard provides only a window to setup the probe module. The other settings must be
done through the text based files (omnetpp.ini and *.ned) as explained in [1].

FFI-rapport 2007/02578 17

Step 6 Running

The execution starts when you click on the Start-button in the ”Execution Control”-tab. The LED
changes colour from green to yellow and the current run number is shown after some delay:

When the simulation session has ended, the LED becomes green again.

Step 7 Plotting

The dashboard provides a report editor supporting graphical plot of data and saving of plots to
files. As explained before, the probe module produces two different output files. The report editor
operates on an XML based file (probeOutFile.xml). Before you start to build a report, you should
carefully scan through the output file output/probeOutFile looking for suspicious entries.
Restart the program (step 1) and activate the report editor from the main window as shown in
Figure 2.8.

step 7a
step 8

step 7b

Figure 2.8 The Report Editor is activated from the main window.

Then use “File Controls”->”Read file” to open the probe report file
(example1/output/probeOutFile.xml). Select the probe named ResponseTime and decorate the
graph with text by filling in the lines within the “Graph Controls”-panel. If the program has been
installed correctly with usage of HippoDraw, the following should appear on your screen:

 18 FFI-rapport 2007/02578

Step 8 Exporting probe data

In our research we use Mathematica, www.wolfram.com, and have added functions to convert
probe output data to a syntax accepted by this program. When we produce simulation reports, the
reports combine results from different simulations and often we also include curves based on
theoretical results. Select “File Controls”->Convert in the “Report Editor”-widget and open the
probe report file (probeOutFile.xml). We want to plot the delay as function of the packet arrival
rate, and the mapping between the run set and X-axis set for the M/M/1 queue is:

{1,2,3,4,5,6,7} -> {0.25, 0.333, 0.500, 0.667, 0.800, 0.830, 0.910}.

Answer “yes” to the question in the pop up window and fill in the transformation set:

Press Ok and select a file name (e.g., math.txt) and all the probes in the file probeOutFile.xml are
now saved to this file. Here is an example:

FFI-rapport 2007/02578 19

responseTime:={

{{0.25,1.36698},ErrorBar[0.0676571]},

{{0.333,1.54679},ErrorBar[0.0672866]},

{{0.500,1.93905},ErrorBar[0.130872]},

{{0.667,2.95668},ErrorBar[0.21679]},

{{0.80,4.81411},ErrorBar[0.459481]},

{{0.83,5.64865},ErrorBar[0.498509]},

{{0.91,11.5382},ErrorBar[1.12785]}

};

The file mathematica.txt found under example1 contains the complete code to produce the
response time plot for the M/M/1. The plot is shown in the figure below.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Offered traffic @packets êsD

2

4

6

8

10

12

esnopseR
emiT
@

ces
D

Figure 2.9 Simulated results exported to Mathematica and plotted together with the theoretical
results (the red line). The file example1/mathematica.txt contains the complete code
to produce this plot.

Reference [4] presents a survey of published papers on simulation studies and reports that 98%
used plots to illustrate the simulations results. However, only 12% used confidence intervals on
the plots. The study says nothing about correlation tests but we suspect only a fraction of the 12%
even know about the correlation problem. The correlation problem is the subject of the next
section.

2.2 The effect of correlated samples

This section is concerned with steady-state analysis of the average response time (queue time plus
service time) of queues and the effect of correlated samples. Most communication networks have
queues and we wish to give the reader an impression of the practical aspect of neglecting
correlated samples.

 20 FFI-rapport 2007/02578

The probe software uses a classical non overlapping batch means analysing technique starting
with 100 batches. Each batch Bk is calculated as

0

,
10

1 M

k
j

k jB s
M =

= ∑

where sk,j is the sampled value j in batch k. B1, B2,...Bn have unknown distribution, but if M0 is
large then the batches are approximately normally distributed.

B1 B2 Bn

transient
period

steady-state
period

transient
period

determine
batch size estimation accuracy

reached

Figure 2.10 The principle of batch means analysis is illustrated at the top. The state diagram
shown illustrates the states of a probe. The probe module prints out these states
during execution when the user activates probe tracing from the probe editor widget.

A probe is set to an initial state when a simulation run starts and then changes state as the number
of samples increases. The text below describes these states.

Transient period
All samples are discarded in this state.

Determine the uncorrelated batch size
Starting with 100 batches, each containing 0 50M = samples, the autocorrelation between the

blocks is calculated. If the correlation is above the threshold roLimit, more samples are collected
to get larger batches. When a batch size fulfilling roLimit is reached, the estimation phase is
entered.

Estimation
The previous phase has found a batch size with acceptable rest correlation according to the user’s
input parameter roLimit. All the samples collected will be reorganised to batches of this size. The
user has selected the accuracy and the confidence level for this run. The estimated

FFI-rapport 2007/02578 21

accuracy ˆ ˆ/Bε μ= Δ , where BΔ is the half width of the confidence interval and μ̂ is the sample

average. The batch means software estimates the accuracy in run-time and checks against the
user’s accuracy threshold. When the estimated accuracy becomes smaller than the user’s
threshold value, the accuracy reached state is entered.

Accuracy reached
This state is entered when both the correlation and the accuracy threshold have been fulfilled. The
batch means software signals that this probe does not need further samples. The current run may
have many terminating probes that not yet have reached their accuracy limits, and the simulation
must not terminate. The probe module continues to save and process incoming samples for this
probe also in the “accuracy reached”-state. Due to the stochastic nature of this process, the
estimation state may be entered again.

To illustrate the effect of correlated samples, we use the M/M/1 packet queue as the example of a
communication network. This is beneficial since it has two parameters only, the packet arrival
rate λ and the service rate μ, and we have an exact analytical expression for the response time
E[U] (the queuing time plus the service time):

1 1[]

1
E U

ρ μ
=

−
 where λρ μ=

We also know from the queuing theory that:

• the transient period increases with increasing traffic (remember we are interested in
steady-state)

• the samples taken from the M/M/1 queue response time distribution are correlated

The practical justification of the correlation test is based on two simulation experiments using the
M/M/1 queue. The queue parameters settings are:

service rate m = 1.0 packets/sec.
arrival rate l = 1/1.05 packets/sec.

With these parameters, we have a queue under high load 0.95λρ μ= = . We know from the

queuing theory that the samples have a high positive correlation. The theoretical response time
for this queue is 21.0 seconds.

The first experiment of the queue sets roLimit to 0.99 meaning that we neglect the correlation
problem. The figure below shows the course of the confidence interval during the simulation. The
solid green horizontal line marks the theoretical response time (21.0 seconds), and shows that the
confidence interval does not enclose the true value during the entire simulation run. This
experiment discarded the first 1000 samples only, the transient period is probably longer, so you
should neglect the leftmost confidence intervals in Figure 2.11.

 22 FFI-rapport 2007/02578

200000 400000 600000 800000 1×106

Simulation time

20

22

24

26

28

30

32
metsyS

emit

Figure 2.11 95% confidence intervals for the response time using batch means analysis with
roLimit 0.99 (that is, the correlation control is disabled).

The second experiment changes one parameter only - the roLimit is set to 0.4. The experiment is
repeated and Figure 2.12 shows that the confidence intervals cover the true mean during the entire
simulation. The last run has fever but larger batches.

During a number of simulation studies we have found that the following parameter set gives a
reasonable balance between statistically sound results [4] and run-time length:

Accuracy 0.1ε = , confidence level 0.9 and roLimit ρ = 0.4.

The relative frequency at which the confidence intervals contain the correct response time is
named coverage [3]. The last simulation setup had an excellent coverage and the simulation could
be terminated at any time instance and still cover the true value.

FFI-rapport 2007/02578 23

200000 400000 600000 800000 1×106

Simulation time

18

20

22

24

metsyS
emit

Figure 2.12 95% confidence intervals for the response time using batch means analysis with
roLimit 0.4.

3 The Software Architecture
One objective of the oProbe project is to improve data analysis and execute control of the
OMNeT ++ kernel. An important design decision is to try to be compatible with the OMNeT++
original source code without introducing changes in this code. However, we are allowed to
implement OMNeT ++ simple modules as long as we follow the principles given by OMNeT ++.

The analysis model below expresses that we are bounded by two external interfaces. A UI5-
package provides widgets to the human user by which he can edit input parameters, perform
execution control and handle output data in different formats. An OMNET-package contains the
functions required to communicate with the OMNeT ++ program/software, and may be regarded
as a wrapper package between the OMNeT ++ and our extension module.

5 User Interface

 24 FFI-rapport 2007/02578

UI OMNET

OMNeT++
source code area

cEnvir
cSimpleModule
cSimulation
...

Omnet extension module

Figure 3.1 The analysis model for oProbe. The two most important interfaces to the external
environment are shown as red vertical lines. The solid arrows should be read as
”depends on” (e.g., the UI-package depends on the OMNET-package).

The OMNET-package is the user of the OMNeT ++ on behalf of the human user, and must use a
number of OMNeT ++ classes to carry out this task. We must have a responsive user interface
while the simulator runs and hence, we must have one additional thread to the main thread (the
GUI-thread as called by Qt). Let the OMNET_Thread be the class that implements this second
thread. It is natural to let the analysis class OMNET_Thread be the “main()” as seen by the
OMNeT++. The most important OMNeT++ class is then cEnvir, which is the OMNeT++ user
interface to the simulator. OMNeT++ has one instance only of this class - a static global variable
named ev.

We make use of the Qt Designer to build GUI widgets and rely on the Qt class library as much as
possible. In contrast to many of the OMNeT++ classes, most of the Qt classes are thread-safe. To
implement our services we certainly need services from the OMNeT++ kernel. This is
accomplished by introducing a new simple module (cfr. the OMNeT++ class cSimpleModule) as
shown in the Figure 3.2.

The oProbe provides functions to the user for setting up simulation sessions. Data shall not be
sent directly from the probe module to the OMNeT++, but shall be stored in files and read via the
OMNeT++ kernel when the simulator starts (cfr OMNeT++::initialize()). The same principle
shall apply to output data (cfr OMNeT++::finish()). The communication between the extension
module and the OMNeT++ is then mostly based on files. The preferred file format is XML.

FFI-rapport 2007/02578 25

Qt based
GUI widgets

Qt class library

OMNeT++
source
codeOmnet

extension
module

extension
files

ordinary
OMNeT++ setup files
omnet.ini, *.ned,...

oProbe :
cSimpleModule

Figure 3.2 The oProbe software architecture.

GUI OMNET

PRB

GRAPH

UTL

GUIA HippoDraw

OMNeT++

Figure 3.3 Design packages and their relationship.

The analysis model in Figure 3.1 is expanded to the design package diagram shown in Figure 3.3.
The packages outside the red dotted rectangle are external packages. The analysis package UI
(User Interface) is expanded to the packages GUI (Graphical User Interface) and GUIA (GUI
Automatic). This project uses the Qt3 Designer for widget production, and the C++ classes
produced by this tool belong to the GUIA-package. The GUI-package uses the GUIA-package to
build widget for interaction with the user. The GRAPH-package contains classes to plot data and
is based on the open source project HippoDraw, see www.slac.standford.edu/grp/ek/hippodraw.
The PRB (probe) package is a class set to handle probe input data and output data, and the
controlled statistical sampling technique used to produce reliable results is placed in this package.
The package UTL (Utility) contains classes of general usage, and is used by many internal
packages.

 26 FFI-rapport 2007/02578

In our research we build models including the entire OSI stack - spread spectrum radio models at
the bottom and application layer protocols at the top. Yes, we need fast processors and are faced
with large input sets. An important principle for us is to save all model input data together with
the output data from the simulation experiments. We are then able to repeat our experiments later
- we often do to check, among others, the effect of bug fixes. Figure 3.4 illustrates the basic
design principle applied to fulfil this work principle. All input/output are saved in XML-files. The
probe module reads the XML-file probeInFile.xml upon startup and produces the file
probeOutFile.xml at the end of simulation. Most users do not like to edit XML directly, therefore
we build editors to read and write XML files. For example, the class GUI_ProbeEditor is an
editor tailored to the file probeInFile.xml. All interactions with XML-files go via DOM trees.
This is easy due to the excellent XML API module provided by Qt [6].

XML file

DOM tree

class XML_Zzzz

read

write

class Container

class GUI_Zzzz

read

write

Figure 3.4 Creation and visualisation of XML file content.

The file and class name convention used for the oProbe project is to tag the names with a prefix
to identify the design/implementation package they belong to. In our simple project, we do not
find it practical to differentiate between a design package diagram and an implementation
package diagram. When you see ZZZZ_zzzz, you know that this class belongs to the ZZZZ-
package defined in Figure 3.3, while zzzz expresses something about its functionality. For
example, GUI_ProbeEditor belongs to the GUI-package and implements a widget by which the
user can edit probe attributes, hence “ProbeEditor”. GUIA_ProbeEditor is the corresponding C++
class produces by the Qt Designer, and this class shall never be touched by any editor!

3.1 The OMNET-package

The OMNET-package is the user of the OMNeT++ on behalf of the human user, and in this
perspective, the most important class is the OMNET_Thread. As the name says, this is a thread
and is based on the Qt class QThread. The OMNET_Thread::run() is the main loop of the thread
and this is the only point where the oProbe interacts with the OMNET++ kernel (except for start-
up where XML-input files are read).

The OMNeT++ kernel looks for the file omnetpp.ini upon start-up. The oProbe builds this file
automatically before the OMNET_Thread starts the OMNeT++ kernel (ev.run()). The class
OMNET_IniFile takes the user setting on the oProbe dashboard (e.g., “run in Tkenv”) and inserts

FFI-rapport 2007/02578 27

the corresponding statements in the omnetpp.ini file. The oProbe overwrites any existing
omnetpp.ini file, but expects to find a file simsetup.ini instead, and copies the content of this file
into the omnetpp.ini.

4 The Probe Module
This chapter gives an overview of the probe module, which is implemented as an OMNeT++
simple module (cfr the OMNeT++ class cSimpleModule). The module is implemented by the
class OMNET_Probes.

Since OMNET_Probes is a simple module, a file named OMNET_Probes.ned must also exist.
The entire file layout to simulate the M/M/1 queue example from chapter 2 is shown below. The
probeInFile.xml is the XML based probe set up file, but oProbe provide a widget to make this
easy.

fifo.nedgen.ned

omnetpp.ini

fifonet.ned

sink.ned

C++ class
FFGenerator

C++ class
FFBitFifo

C++ class
FFSink

OMNET_Probes.ned

C++ class
OMNET_Probes

probeInFile, probeOutFile,
probeOutFileXml

simsetup.ini

Figure 4.1 The file hierarchy for the M/M/1 queue example. The files to the right of the vertical
line are probe specific files.

The probe module looks for input files under the directory named setup and places the output files
under a directory named output. If an output directory with this name exists, it will not be deleted
but renamed to prevent accidental loss of earlier simulation results. The probe module overwrites
any existing setup/omnetpp.ini file, but expects to find the file setup/simsetup.ini instead, and
copies the content of this file into the omnetpp.ini before the oProbe specific data (e.g. the run-
time environment to use) is written to the omnetpp.ini. The top level simulation directory of
example 1 in the “Getting Started” section is omnetFiles and the directory structure looks like
this:

 28 FFI-rapport 2007/02578

Here you see examples of the setup directory and two output directories. The directory prefixed
by “zzz” is the renamed version of the old output directory.

Upon termination, probe statistics are written to two files - one in a human readable text format
(probeOutFile) and one based on XML (probeOutFile.xml) suitable for automatic processing.
The last file is the input to the report generator (GUI_ReportEditor).

The OMNET_Probe class is the manager of all the probe objects, and provides an API that other
simple modules may use for sending samples to the probes. Each probe is identified by a unique
text string - two probes cannot have identical names. The code section below illustrates how the
probe named ResponseTime is used by the M/M/1 queue example.

FFI-rapport 2007/02578 29

void

FFSink::initialize()
//called by the omnet kernel on startup
{

001 ...your code
002 ...
003 responseTimeId = OMNET_Probes::getId(“ResponseTime”);
004 assert(responseTimeId > 0);
}

void
FFSink::handleMessage(cMessage* msg)
//called by the omnet kernel when a message arrives
{
001 ...your code
002 ...

003 double d = simTime() - msg->creationTime();
004 OMNET_Probes::sample(responseTimeId, d);
}

FFSink::initialize() line 003 calls the probe module to get an identifier from the probe name. The
motivation for introducing this step is improved performance since we do not want to make a
string comparison for each sample (at FFSink::handleMessage() line 004). The variable
responseTimeId in the class FFSink should be a private variable of type
OMNET_Probes::ProbeIdentifier. Do not omit the assert statement at FFSink::initialize() line
004 because this simple test may detect many errors at low cost (e.g., spelling error in the string
“ResponseTime”, or a missing name in the internal probe object container).

The last line of FFSink::handleMessage() sends the samples to the probe module. The probe
module performs real-time data analysis of Terminating/NonTerminating probes. When all the
Terminating probes have reached their accuracy, the probe module will raise an exception to
terminate the OMNeT++ kernel. The OMNeT++ kernel will then call the finish() method in all
simple modules (i.e., all class that inherits the OMNeT++ class cSimpleModule).

Probes are created by editing the file PRB_ProbeContainer.cpp. Open the file in an editor and
insert a call to the PRB_ProbeContainer::ProbeData() constructor as shown here:

The statements shown declare two probe objects. The first argument of the ProbeData
constructor is a unique name for the probe and the second is an optional text string.

 30 FFI-rapport 2007/02578

A rate probe (e.g, throughput [packets/s]) possesses a special challenge because samples must be
collected over a time window. Generally, event rates change during a simulation session (run 1, 2,
...) and the window size should be sized automatically to catch a certain number of events. The
current version supports only change of window sizes before the simulator starts, either from the
front end, or the XML based probe input file.

The current software release shows traces of source code for adaptive rate probes. However, this
part of the code has been disabled since it needs more work, so our suggestion is to stay off the
code. We have not deleted the source code since we use the functionality daily. Our ambition is to
improve the quality suitable for public usage.

5 Interface Levels
This oProbe project supports three interface levels according to the functionality wanted and the
distribution includes three example projects to assist users. The oProbe core software is built as a
shared library and placed under oprobe/lib, and the header files are located in oprobe/src.

5.1 Level 1 (no GUI)

This is the lowest level where you want minimum functionality - you accept to edit the probe
input XML file directly in a text editor, or by other means set the probe parameters. The directory
example3 of the oProbe tar file contains an example project for this case. None of the Qt
Designer files (*.ui) is needed since no GUI shall be provided.

5.2 Level 2

This is an intermediate level where the user wants to use the probe editor functionality supported
by this project. The directory example2 of the oProbe tar file contains an example project for this
case.

5.3 Full functionality

This is the case where the user wants all the functionality. The easiest way is probably to start out
with the source code found under oprobe/example1/src and remove all files but the main.cpp and
the PRB_ProbeContainer.cpp. Modify the constructor of the class PRB_ProbeContainer to create
your own probe objects.

FFI-rapport 2007/02578 31

6 Tips and Tricks
The objective of this chapter is to communicate tips and tricks we have experienced by using
oProbe in our modelling and simulation activities.

6.1 Checking input files

It is annoying to simulate for many hours and then crash in simulation run i due to an error in one
of the input files. In general, simulators have many input files, and it is easy to set input
parameters that are inconsistent, or assign illegal values. If some of the XML based input files are
edited by a standard text editor, you have no syntax checks nor range checks.

To prevent this situation, the oProbe provides the function “File Input Check” shown in Figure
2.5. Select this function and then start the execution from the execution controls page. Each run
defined on the run line of the simulation controls page is executed for a time limited period. This
assures that all the input files are read and converted to internal data structures within the
simulator. A number of events are executed and the simulator stops whenever an error is detected.

6.2 Checking the run-time length

Section 6.1 described a procedure to check the correctness of the input data with regard to value
ranges and consistency. But will the simulation run forever when terminating probes are added?
To get an answer to this, you should find answers to the following three sub questions by running
some test simulations under the Cmd-environment:

Question 1: What is the lowest sampling rate among the terminating probes?

Question 2: Will the simulator reach a steady-state?

Question 3: Will the correlation be sufficient low in the steady-state?

The following paragraphs give some hints about these questions.

Question 1
Only terminating probes affect the run-length, so select one or more terminating probes that you
anticipate will have a low sampling rate (e.g., a probe that measures the link delay on a single
point-to-point link in a large network), and the session run which gives the lowest event rate for
the probes. Use the probe editor to activate tracing and set the transient period to, say 100.
Execute the single run in the Cmd-environment and observe the output trace. When the sample
size passes 100, the probe module outputs “Transient period ended at”. The probe module needs
5000 samples before data analyse is started and this gives you an estimate of the convergence
speed.

 32 FFI-rapport 2007/02578

Question 2
Select the run within the simulation session which gives the highest traffic load and execute it
using the Tk-environment. Look at the number of created messages (cfr OMNeT++ cMessage)
and continue the execution until the number reaches a steady-state. As long as the average
increases, the process is in transient state, or you experience memory leaks :(.

Question 3
In a scenario with high load the most demanding stochastic variables are those who measure
queuing delays due to the positive correlation problem in queues. Select a queue delay probe and
activate trace from the probe editor. Then start the simulation using the Cmd-environment and
observe the output trace. The first output is the “Transient period ended at”. This gives you an
impression of the sampling frequency of this probe. If the sampling frequency is satisfying, the
next challenge might be correlated samples. The probe module outputs the correlation test results
during tracing and you can follow its progress in run-time.

6.3 Performance issues

Probes disabled during simulations introduce small overhead since the OMNET_Probes::sample()
returns nearly immediately. Enabled probes specified as non-terminating/terminating use batch
means analysis and will therefore use processor resources. In our research we study complex
network protocols with use of spread spectrum radios [5], so the burden introduced by the batch
means analysis is insignificant.

A good practice is to redefine non-terminating/terminating probes as sample mean probes if you
do not need the confidence and correlation control, and disable all rate probes you do not need.
Note that disable means to remove a probe from the probeInFile.xml only, and not to remove it
from the source code!

7 Installation
This chapter explains how to install the oProbe project. A prerequisite to succeed is that the
following software components have been installed on the computer:

• Qt version 3.3.86
• the omnetpp-3.3 include files and libraries

The build process assumes the following default paths:

$OMNET /usr/local/omnetpp-3.3
$OMNETI /usr/local/INET-20061020/Base
$HIPPO /usr/local/hippodraw

6 The development was done under 3.3.8. However, oProbe may work under earlier versions, but this has
not been tested.

FFI-rapport 2007/02578 33

The FAQ section in this chapter explains the step needed if the omnetpp-3.3 files are located in
other directories. Hippodraw is an optional component, but to have the full functionality you need
it. The installation process depends on what functionality you want, and we have supplied
subsections for the most likely cases.

The installation steps described herein have been tested on an “out-of-the-box” installation of
Mandriva 2007.0, and the FAQ section contains a description of the steps. Also see the file
oprobe/mandrivaInstall. No testing has been conducted on other Linux variants, nor on Windows.

7.1 Basic Build

The section assumes that HippoDraw is not required. Follow the steps below.

Step 1 Unpack the tar file

Go to the directory where you want to install the project and then execute the command “tar xvfz
oprobe.tar.gz”. The simulator configuration files and source code files are extracted from the tar
ball.

Step 2 Build the oProbe library

The previous step placed the oProbe source code under oprobe/src. Execute the following
commands:

cd oprobe - you are now located at the top level of the oProbe project
cd src - you are now located at the source code directory of the oProbe
qmake -makefile oprobe.pro - build the makefiles from the qmake file “.pro”.
make distclean - remove files from earlier build
make - compile the source code and build the library named liboprobe.so

Check that the oprobe/lib looks like this:

 34 FFI-rapport 2007/02578

If not, this step failed and you have to search for error message in the text stream. The FAQ
section in this chapter may be useful. To bring the installation back to the qmake stage , just type
“make distclean”.

Step 3 Add shared libraries

Create a link to the oProbe lib directory as follows:
su
cd /usr/local
mkdir oprobe
cd oprobe
ln -s YOUR_INSTALL_PATH/oprobe/lib lib

The link to the location of liboprobe.so is now ready, and it is time to update the system file with
this and the other shared libraries needed. Add the following directories to the system file
/etc/ld.so.conf:

/usr/local/omnetpp-3.3/lib, /usr/local/oprobe/lib, /usr/local/lib.

Then make the changes active by the command:
ldconfig

Step 4 Build example1

Build the example1 program as follows:

cd oprobe - you are now located at the top level of the oProbe project
cd example1 - you are now located at the source code directory for example1
qmake -makefile example1.pro - build the makefiles from the qmake file “.pro”.
make distclean - remove files from earlier build
make - compile the source code and build the executable file example1

Step 5 Start example1

Start the program as follows:
cd oprobe/example1
./example1

Reference [6] describes qmake projects.

FFI-rapport 2007/02578 35

7.2 Build with HippoDraw

We recommend that you try a basic build before you include HippoDraw. If not, you must go
through step 1 (unpack the tar file) as explained in the section ”Basic Build”. Then give the
following sequence of commands:

cd oprobe/src - you are now in the source code directory of the oProbe project
qmake -makefile withhippo.pro - build makefiles that include hippodraw
make distclean - remove files from earlier build
make - compile the source code and build the library named liboprobe.so

Continue with step 3 in the section ”Basic Build”.

The C pre-processor macro that enables HippoDraw is ENABLE_HIPPODRAW.

7.3 KDevelop users

The oProbe development has been done using KDevelop and the KDevelop project files are
included in the distribution. KDevelop users need only to open the KDevelop project files
(*.kdevelop) as they are used to. The development environment used in this open source project is
KDevelop 3.3.6 running on the Linux version Mandriva 2007.0. The desktop environment is
KDE release 3.5.4. Doxygen version 1.4.7 was used to generate html based documentation. Qt
version 3.3.8 was used to develop the user interface and for handling XML-files. Currently, the
software has not been tested on other platforms, but since we use Qt, it should be portable.

7.4 FAQ

7.4.1 Release/debug mode

The oProbe project compiles by default in debug mode. If you changes the “CONFIG += debug\”
to “CONFIG += release\” in a qmake project file (*.pro) and runs qmake, the makefiles will build
in release mode.

7.4.2 Changing default paths

Instead of making links, you may change the qmake input files. If, for example, omnetpp is not
placed under /usr/local, the build process will fail. Then you must edit the file
oprobe/src/oprobe.pro (or oprobe/src/withhippo.pro if hippodraw shall be included). Open the
file in your favourite editor and change the INCLUDEPATH elements to fit your environment.
Then continue from step 1 as explained in the section “Basic Build”. The qmake command will
create new makefiles.

Of course, KDevelop users must never edit the file. They make the changes needed through
KDevelop menus.

 36 FFI-rapport 2007/02578

7.4.3 Installation on Mandriva

This section contains the building steps conducted to install all the software components on
Mandriva 2007.0. The following components were installed from rpms: bison-2.3, libtcl8.4-
devel-8.4.13, libtk8.4-devel-8.4.13, doxygen-1.4.7, flex-2.5.4a. Then we installed qt-x11-free-
3.3.8 from source:

$./configure -thread
$make
$su
$make install

To build OMNeT++ we used:

$PATH=$PATH:/home/tore/software/omnetpp-3.3/bin
$export PATH
$./configure
$make

You must replace the red bold text to fit your path. When the build completed, we created the
following links to the OMNeT++:

$su

$cd /usr/local
$mkdir omnetpp-3.3
$cd omnetpp-3.3
$ln -s /home/tore/software/omnetpp-3.3/lib lib
$ln -s mnetpp-3.3/bin bin /home/tore/software/o
$ln -s mnetpp-3.3/include include /home/tore/software/o

The OMNeT++ installation was validated by running the OMNeT++ FIFO queue example:

$cd samples/fifo
$LD_LIBRARY_PATH=$PATH:/usr/local/omnetpp-3.3/lib
$export LD_LIBRARY_PATH
$TCL_LIBRARY=/usr/lib/tcl8.4

$export TCL_LIBRARY
$./fifo

Installation of INET started by editing the INET configuration file inetconfig where we changed
ROOT to ROOT=/home/tore/software/INET-20061020. Then the following commands were
given:

$PATH=$PATH:/usr/local/omnetpp-3.3/bin
$./makemake
$make

Finally, we made links to the INET:

FFI-rapport 2007/02578 37

$su
$cd /usr/local
$mkdir INET-20061020
$cd INET-20061020
$ln -s /home/tore/software/INET-20061020/Base Base

The HippoDraw demands graphviz, which was installed from the rpm graphviz-2.8-6mdv2007.0.
Then we unpacked the HippoDraw tar ball and built it:

$./configure --enable-boostbuild=no
$make
$su
$make install

All the external software required by the oProbe project is now installed. We then continued with
the installation steps in section 7.1.

 38 FFI-rapport 2007/02578

References
[1] OMNeT++, www.omnetpp.org

[2] Bruce Schmeiser, ”Simulation output analysis: A tutorial based on one research thread”,

Proceeding of the 2004 Winter Simulation Conference

[3] Edjair de Souza Mota, “Performance of sequential batching based methods in distributed

steady-state stochastic simulation”, www.edocs.tu-berlin.de

[4] Kurkowski, Camp and Colagrosso, ”MANET Simulation Studies: The Incredibles”, Mobile

Computing and Communication Review, Volume 9, Number 4

[5] Berg, et.al, ”Spread spectrum in mobile communication”, The Institution of Electrical

Engineers, 1998, ISBN 0-85296-935-X

[6] Alan Ezust and Paul Ezust “An introduction to design patterns in C++ with Qt 4”, Prentice

Hall 2007, ISBN 0-13-187905-7

[7] Qt Centre, www.qtcentre.org

[8] HippoDraw, www.slac.standford.edu/grp/ek/hippodraw

FFI-rapport 2007/02578 39

http://www.omnetpp.org/
http://www.edocs.tu-berlin.de/
http://www.qtcentre.org/
http://www.slac.standford.edu/grp/ek/hippodraw

	1 Introduction
	1.1 Terminology

	2 Getting Started
	2.1 Using oProbe
	2.2 The effect of correlated samples

	3 The Software Architecture
	3.1 The OMNET-package

	4 The Probe Module
	5 Interface Levels
	5.1 Level 1 (no GUI)
	5.2 Level 2
	5.3 Full functionality

	6 Tips and Tricks
	6.1 Checking input files
	6.2 Checking the run-time length
	6.3 Performance issues

	7 Installation
	7.1 Basic Build
	7.2 Build with HippoDraw
	7.3 KDevelop users
	7.4 FAQ
	7.4.1 Release/debug mode
	7.4.2 Changing default paths
	7.4.3 Installation on Mandriva

	References
	Word-bokmerker
	RapportnrSide2
	Gradering_S2
	OLE_LINK1
	OLE_LINK2
	OLE_LINK13
	OLE_LINK14
	OLE_LINK3
	OLE_LINK4
	OLE_LINK8
	OLE_LINK9
	OLE_LINK5
	OLE_LINK6
	OLE_LINK15
	OLE_LINK16
	OLE_LINK10
	OLE_LINK7
	OLE_LINK11
	OLE_LINK12

