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AUTOMATIC DETECTION OF OIL SPILLS BY SAR IMAGES - Dark Spot 
Detection and Feature Extraction 

 

1 INTRODUCTION 

 
Spaceborne Synthetic Aperture Radar (SAR) has proven to be the most efficient satellite 
sensor for oil spill monitoring of the worlds oceans. Oil spills correlate very well with the 
major shipping routes, and do often appear in connection to offshore installations. When taking 
into account how frequent illegal discharges from ships appear, controlled regular oil spills can 
be a much greater threat to the marine environment and the ecosystem than larger oil spill 
accidents like the Prestige tanker accident in 2002. 
 
Oil spills appear as dark areas in the SAR images because the oil dampens the capillary waves 
on the sea surface. A part of the oil spill detection problem is to distinguish oil slicks from 
other natural phenomena (look-alikes) that dampen the short waves and create dark patches in 
a similar way. Oil slicks may include all oil related surface films caused by oil spills from 
oilrigs, leaking pipelines, passing vessels as well as bottom seepages, while look-alikes do 
include natural films/slicks, grease ice, threshold wind speed areas (wind speed < 3 m/s), wind 
sheltering by land, rain cells, shear zones, internal waves, etc. (6) (see figure 1.1 and figure 
1.2). These ambiguities put a challenge on the selection of suitable features for oil spill 
detection. 
 

 
Figure 1.1  Examples of look-alikes that occur frequently in low wind areas. © ESA/KSAT 

2003. 
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Figure 1.2 Section of an ENVISAT ASAR Wide Swath Mode (WSM) image (3 August 2003). 

Oil spill (indicated by arrow) surrounded by low wind look-alikes. The oil spill 
has been classified as oil by a German surveillance aircraft. © ESA/KSAT 2003. 

 
Research in the field of automatic processing of SAR images, in order to detect illegal oil 
pollution, has been ongoing for more than a decade. Several papers, describing fully automatic 
or semi automatic systems, has been published, e.g. (1), (2) and (3). Little attention seems to 
have been given the feature extraction step, where parameters that can be used to discriminate 
oil spills from other phenomena appearing on the sea surface are extracted.  An early study on 
feature extraction for oil spill detection based on ERS images is described by Solberg et al. (4), 
and an evaluation of the discrimination efficiency of typically used features can be found in 
Topouzelis et al. (5). 
 
Segmentation of dark spots and feature extraction are a crucial part of algorithms for oil spill 
detection. If a slick is not detected during segmentation, it cannot be classified correctly.  
If the features have good discriminatory power, the classification problem will be easier and 
several classifiers can work. Keeping these issues in mind, results are hereby presented from a 
study aiming at identifying suitable features that lead to significant improvements in 
classification performance for ENVISAT ASAR WSM images. Improvements done to the 
dark spot detector are also described.  
 
The content of this report has partly been published in (10), (8) and (14).  
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The report is organized in the following manner: section 2 covers a survey of related automatic 
techniques described in the literature for segmentation and feature extraction, our automatic oil 
spill detection algorithm is described in section 3, section 4 outlines the experiment design and 
presents the experimental results, and finally the conclusion can be found in section 5. 
 

2 AUTOMATIC TECHNIQUES FOR DARK SPOT DETECTION AND FEATURE 
EXTRACTION 

 
This section covers related algorithms and techniques described in the literature.  

2.1 Segmentation techniques 

 
As oil spills are characterized by low backscattering levels this suggest the use of thresholding 
for dark spot segmentation. An early attempt on segmentation of ERS-1 SAR images is 
described by Skøelv and Wahl (16). The algorithm simply looks for bimodal histograms in 
widows of size N x N pixels (N was sat to 25 pixels).  This is reported as a good method for 
detection of oil spills provided that the spill is not too thin. A similar approach is briefly 
described in (17) and (18). This algorithm, which is developed for RADARSAT-1 SAR data, 
spatially averages the image before a user defined adaptive threshold is applied. As both these 
algorithms lack a classification step look-alikes will be detected as well. 
 
The use of hysteresis thresholding was introduced by Canny (19) and is applied by Kanaa et al. 
(20) for detecting oil spills in ERS amplitude images. A search is done in the 8-neighbourhood 
directions followed by a merging step of the responses. Linear features are reported 
accentuated by this method. 
 
An oil slick detection approach, based on the Laplace of Gaussian (LoG) and Difference of 
Gaussian (DoG) operators, is described in (21) and (24). The LoG operator is applied on the 
coarsest layer of a 2 x 2 pixel reduced pyramid with three layers. The concave areas of the grey 
level surface are selected. The DoG is used to locate those areas with more than half of the 
slick boundary pixels greater than σµ 75.1+  (as selected for ERS-1, where µ  and σ are mean 
and standard deviation over all image pixels). To improve the result the finer layers of the 
pyramid are processed. 
 
The use of wavelets in ocean feature detection (including oil spills) is described by Liu et al. 
(22) and Wu and Liu (23). In the general linear feature detection scheme the analysing wavelet 
is defined as the LoG. Regions with multiple histogram peaks are selected for the wavelet 
transform. The wavelet is applied as an edge detector as the contours of the zero crossing 
indicates the feature edges (see (19)).  
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As oil spills dampens the capillary waves, Mercier et al. (27) suggest a segmentation method 
based on detecting local variations of the wave spectra. First a multi-resolution analysis is 
achieved by a wavelet packet transform then a Hidden Markov Chain (HMC) model is applied 
to the wavelet coefficients. The technique is tested on an ERS Precision Image Mode (PRI) 
image.  
 
QinetiQ's dark spot algorithm uses a Constant False Alarm Rate (CFAR) algorithm to locate 
dark regions. The dark spots are merged according to a clustering radius and a threshold, and 
the Hough transform is used specially to identify linear targets (7). 
 
To allow dealing with mixed surface-cover classes and unsharp boundaries among regions, 
Barni et al. (25) propose an algorithm based on fuzzy clustering. A membership function 

 is assigned to each pixel x, which measures how much the pixel belongs to a set A. The 
Fuzzy C-means (FCM) algorithm is applied, and a pyramid structure is used in finding the 
membership values. Uncertain pixels are tested in the lower pyramid level. Neighbouring 
regions are identified, and a Sobel operator is used to enhance the main edges of the original 
filtered image. Regions, whose common border does not have a high enough percentage of 
large gradient points, are merged together. One difficulty with fuzzy clustering is to find the 
optimum number of clusters. 

)(xu A

 
A method using mathematical morphology for oil spill segmentation is presented by Gasull et 
al. (26). Combinations of opening and closing1 operations are used for oil spill filtering and 
thresholding. The algorithm aims at detecting spills from sailing tankers, and some features 
used are the elongatedness and dampening of the spill. 
 
Even though a variety of methods are applied, the common goal is to detect all suspicious 
slicks and to preserve the slick shapes. The latter is of most importance for the success of 
discriminating oil spills from look-alikes in the following feature extraction and classification 
steps. 
 

2.2 Slick features  

 
From the thresholded dark spot image, feature extraction is used to extract parameters 
describing each slick. Table 2.1 summarizes the features used in three different algorithms: 
Frate et al. (1), Solberg et al. (3), and Fiscella et al. (2). Frate et al. apply a multiplayer 
perceptron (MLP) neural network classifier with two hidden layers, while Fiscella et al. 
compare a Mahalanobis classifier with a compound probability classifier in their study. The 
method of Solberg et al. is described in section 3. 
 

 

 
   

1 Opening: erosion followed by dilation. Closing: dilation followed by erosion (see (28) for an introduction to 
mathematical morphology). 
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Feature 
class 

# Feature 1 2 3 

1 Slick area (A) X X X
2 Slick perimeter (P) X  X
3 P/A   X
4 Slick complexity  X X  
5 Spreading (low for long thin slicks, high for circular shape) X   
6 Slick width  X  
7 First invariant planar moment (9)  X  

Geometry 
and shape 

8 Dispersion of slick pixels from longitudal axis   X
9 Object/dark area standard deviation X  X
10 Background/outside dark area standard deviation X  X
11 Max contrast (between object and background) X   
12 Mean contrast (between object and background) X   
13 Max border gradient X   
14 Mean border gradient X X  
15 Gradient standard deviation X   
16 Local area contrast ratio  X  
17 Power-to-mean ratio of the slick  X  
18 Homogeneity of surroundings  X  
19 Average NRCS inside dark area   X
20 Average NRCS in limited area outside dark area   X
21 Gradient of the NRCS across the dark area perimeter   X
22 Ratio #9 to #10   X
23 Ratio #19 to #9   X
24 Ratio #20 to #10   X
25 Ratio #23 to #24   X

Backscatter 
level and 
texture 

26 Ratio #19 to #20   X
27 Distance to a point source  X  
28 Number of detected spots in the scene  X  

Contextual 

29 Number of neighbouring spots  X  

Table 2.1 Features applied by various algorithms. 1: Frate et al. (1), 2: Solberg et al. (3), 
3: Fiscella et al. (2). X indicates that the parameter is used in the feature vector 
of the particular algorithm. 

 
In a feature vector that is input to the classifier, the individual features are typically covered by 
the following classes: 
  

• The geometry and shape of the segmented region.  
Geometric and shape features are applied by all methods in table 2.1. To detect 
pollution from sailing tankers cleaning their tanks, an important feature is 
elongatedness that can be expressed as a ratio between the width and length of the slick 
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(26). Another possible feature useful in identifying these spots is the first invariant 
statistical moment of Hu (9). 

 
• Physical characteristics of the backscatter level of the spot and its surroundings.  

Frate et al. (1) found that features containing most valuable information for 
classification by neural networks were features covering information on the gradient of 
the backscattering value when passing from background to spill (#13, #14 and #15). In 
addition, the background standard deviation (#10) was found important which is a 
parameter highly affected by the wind level and is generally high for natural sea slicks. 
Similarly in (2), features connected to the slick surroundings were found to be 
important due to the wind speed dependence of oil spill observations (these features 
could also be classified as contextual features). 

 
• Spot contextual features. 

Examples are slick location relative to the shore and distance to ships and oilrigs. In the 
contextual analysis of the supervised discrimination algorithm described by Espedal 
(32) is a ''hot-spot'' pollution source database used. Improved classification results were 
found by Solberg and Volden (33) when the dark spots are classified in the context of 
their surroundings and weather information is incorporated. Espedal and Wahl (34) 
suggest using wind history information for slick classification and slick age estimation. 
Wind history can also be looked at as an indirect spot feature. 

 
• Texture.  

In contradiction to the pixel intensity itself, texture provides information about the 
spatial correlation among neighbouring pixels. Assilzadeh  and Mansor (35) describe 
an early warning system where texture features based on grey level co-occurrence 
matrices (GLCM)2 are used. Homogeneity and Angular Second Moment were found 
effective in separation of oil spills from other objects. The Power-to-mean ratio of the 
slick and the surroundings are used by Solberg et al. (3) as a measure of homogeneity.  

 
Even though the different methods in table 2.1 does not apply the exact same features are 
several of the features different measures of the same characteristic.  
 
Fractal texture description can be used to describe natural surfaces (31). The use of fractal 
dimension3 as a feature for classifying observed ocean radar signatures is suggested in (36). A 
box-counting algorithm (the method is described in (37)) is used to find the fractal dimension 
D. A difference in D of oil spills compared to other oceanic phenomena is reported found.  In 
another paper on fractal dimension by Benelli and Garzelli (38) was a steady fractal dimension 
value of D = 2.45 found for the sea surface, while an average value of D = 2.15 was found for 
oil spills. A smaller D indicates less roughness.  
 

 
2 GLCM: approximates the grey level joint probability distribution (30). 

 
   

3 A surfaces fractal dimension corresponds closely to our intuitive notion of roughness (31). 
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Good features are important, but the lack of good guidelines on how to acquire them has been 
pointed out by Kubat et al. (29). 
 

3 THE AUTOMATIC OIL SPILL DETECTION ALGORITHM 

 
The framework of this study is a fully automatic advanced oil spill detection algorithm 
developed in cooperation between Norwegian Computing Center (NR) and University of Oslo.  
It was originally intended to process ERS-1/-2 SAR images, but has now been extended to 
work for RADARSAT-1 SAR and ENVISAT ASAR images. The algorithm includes sensor 
specific modules for dark spot detection, spot feature extraction and a classifier that 
discriminates between oil spills and look-alikes (see figure 3.1).  
 

 
Figure 3.1 The automatic oil spill detection system and its context. Arrows indicates data 

flow. 

 
Pre-processing, consisting of converting a land mask to the image grid (to avoid re-sampling 
the speckle pattern) and a normalization of the backscatter with respect to incidence angles, is 
performed ahead of the segmentation step for ENVISAT ASAR images. 
 
 

3.1 Dark spot detection 

 
The dark spot detector applies an adaptive threshold where the threshold is set k dB below the 
local mean backscatter level in a large window. The details can be found in (10) and (3). The 
goal of this step is to segment out all possible oil spill candidates. A high number of look-
alikes will also be segmented out, but these will hopefully be classified as look-alikes during 
the classification step. The thresholding is done in a two level pyramid after applying a simple 
speckle filter with a small window.  k is determined based on the wind level. If no wind 
information is available, we use the power-to-mean (PMR) ratio of the local surroundings as 
an indication of the number of look-alikes in the scene. The number of observed look-alikes 
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will vary according to local wind conditions. See figure 3.2 for an example on how the dark 
spot algorithm works. 
 
 

 
Figure 3.2 Top: section of an ENVISAT ASAR WSM scene (16 September 2003) © 

ESA/KSAT 2003. A long oil spill with a loop is clearly visible. A likely source 
can be seen at the upper end of the spill. Bottom: segmentation result. The oil 
spill, in addition to several other dark phenomena, has been separated from the 
background.   
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3.1.1 Detection of thin, linear slicks 

The procedure above works very well in general, but in some cases it does not work for thin, 
linear slicks. A new approach has been developed for ENVISAT ASAR WSM images for 
detecting these cases. The image is thresholded with the approach described above, but by 
fixing k at a small dB value. This gives an image with too many object pixels, and it is only 
used to locate fragments that can be part of a linear oil spill. Hu's 1st invariant planar moment 
(9) is a good indicator of elongatedness, and fragments with a moment value > 0.5 are selected 
for further processing.  The ratio between the width and the length of the slick is used to 
eliminate broad fragments. For every fragment an object-oriented bounding box  is found. 

 is extended in both directions of the fragments orientation during the search for additional 
object pixels. A sigma filter is used for slight noise filtering of the ASAR image before 
applying the following equation as a threshold inside : T

1B

1B

1B lB −=
2

µ , where 
2Bµ  is the mean 

value found inside an object-oriented bounding box  with increased width and l is a small 
selected dB value. If the backscatter value of a pixel is < T it will only be accepted if it selves 
or one of its 8-neighbour pixels represents an edge pixel (using Sobel convolution kernels). 
The segmented slick is added to the original segmented image. Figure 3.3 shows that 
fragments are merged and that the shape of the thin, linear slick is preserved by this approach.  

2B
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Figure 3.3 Top: section of an ENVISAT ASAR WSM image (19 September 2003). Bottom, 

left to right: original segmentation result and the improved result from the 
object-oriented bounding box approach. 

 
Figure 3.4 shows another oil spill affected by this approach. 
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Figure 3.4 Top: section of an ENVISAT ASAR WSM image (17 August 2003). Bottom, left to 

right:  original segmentation result and the improved result from the object-
oriented bounding box approach. 

 

3.2 Slick feature extraction 

 
After the segmentation process, a set of features are computed and extracted from every region 
above a certain minimum size.  
 

3.2.1 Existing set of features 

A basic set of features was described in (3). The features are a mix of standard region 
descriptors and features tailored to oil spill detection (see table 3.1). Not all of these features 
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were found to be robust and yield the best description of the type of information it was meant 
to extract. A goal of this work is to find new features and compare their performance to the 
existing. 

 

Feature 
# 

Feature Description 

1 WIND The wind level in the scene. 
2 MOM (Moment) 1st planar moment of the region. 
3 COMPL (Slick complexity) Defined as , where P is the perimeter 

and A is the area of the region. 
APC /2=

4 PMR (Power-to-mean ratio) Homogeneity of the regions surroundings, defined 
as the ratio of standard deviation, bσ , and the 
mean, bµ , of near-by background pixels 
surrounding the region. 

5 LCONT (Local contrast) Local area contrast, defined as rb µµ − , where 

bµ  is the background pixel mean and rµ  is the 
region pixel mean. 

6 THICK (Thickness) Thickness of the region, defined as the ratio 
between the area of the region and the diameter of 
the region skeleton. 

7 NOFSN  
(Number of small neighbours) 

The number of small neighbouring regions. 

8 BGRAD (Border gradient) The mean of the magnitude of the region border 
gradient. Sobel is used to compute the gradients. 

9 SMC (Smoothness contrast) Defined as the ratio between the ratio of the 
number of region pixels and the sum of the region 
gradient values, and the ratio of the number of 
background pixels and the sum of the background 
gradient values. 

10 AREA The number of pixels in the region. 
11 DIST (Distance) The distance from the region to closest bright spot 

(ship). 
12 NLN 

(Number of large neighbours) 
The number of large neighbouring regions. 

13 NREG (Number of regions) The total number of detected regions in the scene. 

Table 3.1 Basic feature vector components. The features are based on geometrical 
characteristics, texture, the backscatter level, and contextual information. 

 

3.2.2 New features 

The basic feature set has been extended with the features described in the following.  
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3.2.2.1 Slick border gradient 

The Sobel operator is an edge detector that has been suggested used for oil spill border 
gradient estimation, see e.g. (11) and (3). Originally the mean value of the magnitude was 
applied in the BGRAD feature in our system (see table 3.1). It works generally well, but it 
seems to give inaccurate results for thin linear regions. The main problem is that the edge 
response does not match the real borders of the region. The top row to of figure 3.6 illustrates 
the response of the Sobel operator on the oil spill in figure 3.5.  As we can see, the largest 
gradient magnitude appears outside the true region border.  
 

 
Figure 3.5 Section of an ENVISAT ASAR WSM image (24th of July 2003). A possibly thin 

linear oil spill with a likely source is visible. 

 

 

 
Figure 3.6 Top row: the Sobel operator yields the largest border gradient magnitude 

response outside the region border. The gradient is misplaced according to the 
real border of the region (indicated by the red lines). Bottom row: response 
from improved border gradient estimation.  
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The following 4 additional convolution masks are suggested for gradient estimation of thin oil 
spill regions:  
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The magnitude of the pixel gradient is found by ipp )(max{)( ∇=∇ : i =1 to 4}, where p = 
current pixel, i = mask. The bottom row of figure 3.6 illustrates the response to these masks. If 
the Sobel operator gives stronger magnitude response to any of the border pixels that value is 
kept, otherwise the response from the additional masks is used. The mean of this border 
gradient detector gives us an indication of the contrast to the surrounding background, and it is 
used in the improved feature BGRAD_NEW to replace the BGRAD feature in table 3.1. 
 

3.2.2.2 Texture  

Texture refers to the properties that represent the surface or structure of an object, but there is 
no precise mathematical definition of texture due to its wide variability. In table 3.1 there is no 
feature representing the texture of the slick it self. Solberg et al. (3) have earlier suggested the 
PMR of the slick, defined as rr µσ /  where rσ  is the standard deviation and rµ is the mean 
value of the slick. Frate et al. (1) have simply used the standard deviation of the slick as a 
texture measure. However, the standard deviation of the intensity values of the pixels 
belonging to a slick is highly correlated with the area/size of the region. This is due to the 
inherent nature of speckle statistics. Speckle is a large problem in SAR images since even a 
homogeneous area has a statistical distribution with large standard deviation. As the region 
grows larger the variance in intensity values will increase as well. A better choice would be to 
look at the ratio , where Ar /2σ rσ  is the standard deviation and A is the area of the slick. 
After normalization by area, the measured feature values of larger oil spills are comparable to 
smaller samples. 
 

3.2.2.3 Geometrical complexity 

Features, based on the ratio between the perimeter and the area, aiming at describing the shape 
complexity of regions have been used in several algorithms described in the literature (2), (3), 
(1), and (5). In (3) the complexity feature is implemented as C  (see table 3.1) while in 
(1) it is implemented as 

AP /2=
APC π2/= , where P is the perimeter and A is the area of the 

region4. Generally, this feature is expected to get a small numerical value for regions with 
simple geometry, while a larger value for more complex regions. In contradiction to common 
intuition, the thin linear oil spill in the bottom of figure 3.7 gets a larger complexity value than 

                                                 

 
   

4 This quantity is referred to as compactness in (12). It measures the ratio between the area of the shape and the 
circle that can be traced with the same perimeter: . 2/4 PAC π=
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both the others when using the formula in table 3.1. Frate et al.'s (1) formula gives very similar 
but differently scaled results.  
 

 
Figure 3.7 Section of ENVISAT ASAR WSM images. Top left: 8th of March 2003. Top 

right: 7th of August 2003. Slicks with wide, complex, irregular shapes. Bottom: 
12th of February 2003. Thin, linear oil spill with a regular shape.  

 
This indicates that the ratio between perimeter and area is not a good complexity measure as it 
is not possible to separate complex shaped slicks from linear slicks. This weakness is also 
pointed out by Nixon and Aguado (12), and Topouzelis et al. (5) found that the feature gave 
little contribution to oil spill detection. 
 
To resolve this ambiguity we could introduce additional shape measures, or replace this 
measure with a more robust one. A possibility is to look at the number of branching points5 in 
the skeleton of each region (see figure 3.8). Because we only look at the number of branching 
points, the information level is decreased so much that again it is often not possible to 
distinguish simple regions from more complex ones (e.g. a straight line would get the same 
feature value as an “S” shaped region). It is clear that it is important to preserve more shape 
information in features expressing geometrical complexity.    
 

                                                 

 
   

5 We define the number of branching points as a point with three lines or more connected to it. 
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Figure 3.8 Segmentation result of the oil spill in figure 3.4 and its skeleton (upper right 

corner). 

 
Contour or snake models are commonly applied to ultrasound image segmentation. Lobregt 
and Viergever (13) define local curvature icr  as the difference between the directions of two 

edge segments that join at a vertex:  =   (see figure 3.9). The local curvature has 
length and direction. This provides a measure of the angle between two joining edge segments. 
The length of the curvature vector depends only on this angle and is not influenced by the 
lengths of the two edge segments.  

icr 1
ˆ

−− idˆ
id

 
In our implementation of the curvature feature, we have traced the boundary of every region 
and inserted vertexes with a three-pixel spacing. The angle between two edge segments is 
calculated as described above, and the final CURVATURE feature is the sum of all local 
curvature measures along the boundary. More complex regions get a higher curvature measure. 
 

 

Figure 3.9 Local curvature .  and are the directions (unit vectors) of the edge 

segments   and  meeting at vertex V . 
icr 1

ˆ
−id

id
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3.3 Statistical classification 

 
After a set of M dark spots has been detected, we want to classify them as either oil spills or 
look-alikes. For this purpose, a classification algorithm has been developed, combining a 
statistical model for oil spills of different shapes and seen under different wind conditions,  
a prior model for the probability of observing oil and look-alikes, and a rule-based approach 
which take care of certain expert knowledge related to oil spill detection (3). Only the features 
COMPL, PMR, LCONT, THICK, NOFSN, BGRAD, and SMC from table 3.1 are used to 
compute the probability densities. The WIND and MOM features are used to group the 
samples first in two different subclasses based on wind, and then five different subclasses for 
each wind level according to their value of the shape descriptor. The rest of the features are 
included in rule-based corrections of the class-conditional densities. The classifier is trained 
(that is, the means and the covariance matrices in the Gaussian densities are estimated) on a 
large set of labelled samples. Diagonal covariance matrices are used because the number of oil 
spills in each sub class is small. 
 

4 PERFORMANCE TESTING 

 
ENVISAT's ASAR WSM covers a much wider swath than its predecessors ERS-1 and -2, but 
the resolution is significantly lower. Generally, for efficient oil spill monitoring larger swath 
widths should be chosen on the expense of somewhat lower resolution. C-band single-
polarized VV SAR has so far proven to be the most efficient configuration for oil spill 
detection (39), but no significant difference in practical performance between the detection 
capabilities of the HH-polarized RADARSAT-1 SAR versus ENVISAT ASAR has yet been 
reported for operational use, however the experience might still be limited. Because of 
ENVISAT's good oceanography and oil spill detection properties, we have chosen its WSM 
mode for our experimental design.  
 

4.1 Experimental design 

 
Our results are based on a large set of 83 ENVISAT ASAR WSM images. We have 
benchmark results and aircraft verifications collected by the European Commission (EC) 
project Oceanides for 27 of the scenes. This is done in collaboration with Kongsberg Satellite 
Services (KSAT), QinetiQ, NR, German pollution control authorities (MLZ) and Finnish 
pollution control authorities (SYKE) (see (7)). For performance testing, the set of SAR scenes 
is split into two parts. 56 of the SAR scenes are used for training and adjusting the model 
parameters, and the 27 benchmark scenes are used as a validation/test set to estimate the 
generalization error. The training set is collected from the German and Finnish Baltic Sea, the 
North Sea and some along the Norwegian coastline during March to December 2003 and 
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January to April 2004. The benchmark set is collected mainly from the German and Finnish 
Baltic Sea and the German North Sea between July and December 2003. 
 

4.2 Intermediate results – improved dark spot detection 

 
After improving the dark spot detection of thin, linear slicks (as described in section 3.1.1), the 
leave-one-out6 method was applied to the training set to get a large range of fragmented, linear 
cases to test the algorithm on. A total of 16 linear oil spills were tested, and the classification 
results are presented in table 4.1. 
 
Method Correctly classified thin, linear oil spills 
Original dark spot detector 75% 
Improved dark spot detector 88% 

Table 4.1 Classification by the leave-one-out method of 16 linear oil spills from the 
training set. 

 
The feature vector from table 3.1 and all rule-based corrections of the class-conditional 
densities, see (3), were applied in the classifier. Figure 4.1 presents one of the cases that were 
missed earlier, but classified correctly as oil spill after introducing the improvements from 
section 3.1.1 to the dark spot detector. The improvements were also included in the algorithm 
when we generated all benchmark results presented in the next section. 
 
 
 
 

                                                 

 
   

6 See e.g. (15) for a description of the method. 
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Figure 4.1 Section of an ENVISAT ASAR WSM image (25 August 2003) © ESA/KSAT 2003. 

Example of a thin, linear slick that was correctly detected as oil spill after the 
improvements to the dark spot detector was introduced. 

 

4.3 Classification results  

 
Table 4.1 presents the results from classifying the complete benchmark set of 27 scenes by 
applying feature #3 - #9 in table 3.1. 
 
Basic feature set Correctly classified oil spills Correctly classified look-alikes 
#3 - #9 89 % 90 % 

Table 4.1 Classification results based on the basic set of features. 

 
A doubt category was used to mark slicks we were uncertain about. These cases are left out of 
the classification results. The classification was done without the rule-based corrections of the 
class-conditional densities described in Solberg et al. (3). The rule-based corrections are based 
on the observed values of the basic set of features on the training set. When replacing some of 
the features, the rules have to be modified. This is not done in the current analysis, but will be 
done in the near future. Thus, the rule-based corrections are left out of all performance results 
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hereby presented. The results in table 4.1 can for this reason be used as a reference for table 
4.3 and 4.4. 
 
Table 4.2 gives a definition of the new set of features. 
 
Feature # Feature Description 
14 BGRAD_NEW The mean border gradient. A combination of Sobel 

and the four additional masks described in section 
3.2.2.1 is used as a gradient detector. 

15 VAR_AREA_SLICK  Defined as the ratio , where Ar /2σ rσ  is the standard 
deviation and A is the area of the slick. 

16 CURVATURE Defined as the sum of all local curvature measures 
(changes of slope) along the boundary. 

Table 4.2 Extended set of features. 

 
Tabell 4.3 presents intermediate results after introducing one at the time of the new features 
from table 4.2.  
 
Feature set Correctly classified oil spills Correctly classified look-

alikes 
#3, #4, #5, #6, #7, #14, #9 95% 88% 
#3, #4, #5, #6, #7, #8, #9, #15 92% 89% 
#16, #4, #5, #6, #7, #8, #9 92% 89% 

Tabell 4.3 Intermediate results. 

By introducing each of the new features, the number of correctly classified oil spills is 
increased, while the number of look-alikes correctly classified is decreased compared to table 
4.1. 
 
The results from a forward selection of the features #3 - #13 in table 3.1 in addition to the new 
features in table 4.2 (#14 - #16) is plotted in figure 4.2. 
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Figure 4.2 Forward feature selection of 14 features according to the minimum estimated 

Mahalanobis distance. 3: COMPL, 4: PMR, 5: LCONT, 6: THICK, 7: 
NOF_SMALL_NEIGHB, 8: BGRAD, 9: SMOOTH_CONTR, 10: AREA, 11: 
DIST, 12: NOF_LARGE_NEIGHB, 13: NOF_REGIONS, 14: BGRAD_NEW, 
15: VAR_AREA_SLICK and 16: CURVATURE. 

 
As the figure illustrates, adding more and more features gives little added value to the 
performance results. More research on which combination of features is the most optimal for 
oil spill detection is needed.   
 
Table 4.4 presents the final classification results after substituting the COMPL feature in table 
3.1 with CURVATURE, BGRAD with the improved border gradient detector BGRAD_NEW, 
and adding the VAR_AREA_SLICK as an additional feature to the feature vector.  
 
New feature set Correctly 

classified oil spills 
Correctly classified look-
alikes 

 (#16, #4, #5, #6, #7, #14, #9 and #15) 97 % 90 % 

Table 4.4 Classification results based on the new feature vector. 

5 CONCLUSION 

 
In this report we have presented experimental results from an evaluation of features for oil spill 
detection based on SAR images. We have studied properties of the border gradient and texture 
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measures of the slicks. These are features based on the backscatter level characteristics of the 
slicks and their surroundings. In addition, we have compared several features measuring 
geometrical complexity of the slick. The use of curvature, as adopted from the well-known 
concepts of contour models (snakes), is suggested as a more robust complexity feature than 
those commonly applied in the oil spill remote sensing literature. 
 
The features have been evaluated on a large set of 83 ENVISAT ASAR WSM images, 
achieving an improvement from 89% to 97% in the number of suspected slicks classified 
correctly as oil spills. Further research should focus on increasing the number of 90% correctly 
classified look-alikes, i.e. decreasing the false alarm rate. The rule-based corrections left out in 
this experiment need be to modified according to the new set of features, because the rule-
based corrections are important in reducing the number of false alarms. 
 
The features extracted vary between methods, and our future work will also include a 
comparison between our final selection of features and other feature combinations suggested in 
the literature. 
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APPENDIX 

A ABBREVIATIONS 

CFAR   Constant False Alarm Rate 
DoG   Difference of Gaussian  
EC  European Commission 
ESA  European Space Agency 
FCM  Fuzzy C-means algorithm 
GLCM   Grey Level Co-occurrence Matrices  
HMC   Hidden Markov Chain  
KSAT  Kongsberg Satellite Services 
LoG  Laplace of Gaussian  
MLP   Multiplayer Perceptron 
MLZ  German pollution control authorities 
NR  Norwegian Computing Center 
NRCS   Normalized Radar Cross Section 
PRI  Precision Image Mode 
SAR  Synthetic Aperture Radar 
SYKE  Finnish pollution control authorities 
WSM  Wide Swath Mode 
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