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EMITTER IDENTIFICATION – STATISTICS OF DIGITALLY I-Q DEMODULATED
RADAR PULSES AND EFFECTS OF ENSEMBLE AVERAGING

1 INTRODUCTION

One of the issues addressed in Project 864 Profil II is radar emitter identification by means of
radar pulse shape recognition. Software and hardware developed for this purpose have been well
documented (5, 11, 10). It is crucial that our system does not obscure the signal characteristics in
order to identify radar emitters. In this report we consider a digital signal processor which
samples the incoming radar signal before the signal is decomposed into � and � signals. The
signal processor DIPP (Digital Intermediate frequency Pulse Processor), developed for the Krest
and Profil projects (6, 3, 2), is of this type. We study the signal statistics in terms of the number of
bits, input signal to noise ratio, and the number of pulses used in ensemble averaging. The goal of
the investigation is to optimize the algorithms used for processing the � and � output data in
order to achieve the sufficient accuracy needed for emitter discrimination and identification. We
will concentrate on ways to reduce the statistical uncertainties by different means of ensemble
averaging.

2 QUANTIZATION IN NOISE: PRINCIPLES AND BENEFICIAL EFFECTS FROM
ENSEMBLE AVERAGING

This section gives a brief introduction to the statistics of a quantized noisy signal, and
demonstrate that the expectation of the quantization error diminishes with increasing noise, but at
the cost of a larger error variance. As the ensemble average approximates the expectation, it
follows that the quantization error (in the ensemble average) can be made much smaller than what
corresponds to the bit resolution of the system. We will later encounter a similar analysis in
conjunction with the I-Q demodulator when we consider a radar signal model.

2.1 Statistics of the quantizer and noise errors

Consider an analog signal ���� with additive noise,

����� � ���� � ������

where � is time, and � is random noise. We observe � realizations of �, and the index
	 � ��� 

� � � denotes one particular realization 	 (or radar pulse 	). We assume that � is repetitive
(independent of 	), while � varies with 	. We assume a general noise distribution function with
zero mean and variance ��.

The recorded signal is sampled at discrete ��, yielding

���� � �� � ����
 (2.1)
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These samples are quantized through a function � to obtain the sampled and A/D converted
digital signal,

���� � �������


We consider the quantization to be uniform, i.e. the separation between any two neighboring
quantization levels is �. The probability distribution function (pdf) of � ��� is discrete and
generally asymmetric even if the pdf of � is continuous and symmetric. We define the error in the
quantized signal as

��� � ���� � ���

accounting for both noise and quantization effects 1.

To illuminate the effect of ensemble averaging, we consider the one-bit case for which the
quantizer has two levels: 	� �. If the input ���� is larger than ��
 the output ���� will be �.
Otherwise the output is 	. Consider a constant "signal" �� � ��
. For zero noise the output is
always �, giving an error ��� � ���� � �� � �� ��
 � ��
. If we introduce noise with a
symmetric pdf with zero mean, the quantizer output "flips" between 	 and � randomly. The
expectation value of the output is then ��
, since we expect an equal number of zeroes and ones
on the output. The expectation value of the error is then zero, ������ � 	.

If the input signal �� is larger than ��
, there will be an error such that ������ �� 	. For Gaussian
noise combined with a uniform quantizer with many levels, one can derive the trigonometric
series ((1), equation (33))

������ ��� �
�

�

��
���

�����
�

����
����������� ����
�������
 (2.2)

It is easy to see that ������ ��� is reduced for increasing noise, such that

������ ���� 	


The reason for this is that for increasing noise, the discrete pdf of ���� becomes a more accurate
representation of the continuous pdf of ���� (with expectation ��). The pdf of ���� gets "broader"
and is thus better resolved on the fixed grid defined by the quantizer cells. For zero noise,
������ ��� attains the largest values, and becomes a "sawtooth" function of ��. For intermediate
noise, ������ ��� is more sinusoidal as function of ��, since only the first few terms in the series
expansion are important. See Figure 2.1.

Along with the expectation value of the error, there will be an error variance. One can also derive
the variance in terms of a trigonometric series (see Appendix A). We have

1The noise between different samples of the ensemble, � ��� and ���� , is uncorrelated such that the expectation
���������� � � � for � �� �. We assume that the correlation time is sufficiently small such that the noise between
different time-samples, ���� and ����, is also uncorrelated, i.e. ����������� � � for � �� �. Thus, in general it holds that

����������� � ��Æ��Æ���

where Æ�� is the usual Kronecker delta.



9

1 1.5 2 2.5 3 3.5 4

−0.4

−0.2

0

0.2

0.4

0.6

s
j

   
 E

[e
ij;s

j]

σ=0.02
σ=0.2
σ=0.5

Figure 2.1 The expected error ����� ��� as a function of the signal �� for � � 	
	
 (solid line),
� � 	

 (dashed) and � � 	
� (dashdotted). Here � � �.
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Figure 2.2 The variance ������� ��� as a function of the signal �� for � � 	
	
 (solid line),
� � 	

 (dashed) and � � 	
� (dashdotted). Here � � �. For the case � � 	
� the
straight line �� � ����
 is plotted to indicate convergence towards this value with
increasing noise.



10

�������� ��� � �������
�� ���� ������� ���, where ������ ��� is given in (2.2). For Gaussian noise,

�������
�� ��� �

��

�

� �� �

��

��

��
���

�����
�

�

��
� ��������

�
�

����
������� ����
�����������
 (2.3)

Combining (2.2) and (2.3) the variance can be calculated. The error variance as a function of �� is
plotted in Figure 2.2 for three values of �. It is apparent from the exponential factors, that for
large noise, ������ �,

�������� ���� ����
 � ���

such that the error variance becomes independent of the signal ��.

Both a vanishing error expectation, and a variance of �� in the limit, is exactly the property of the
analog signal before quantization. We note that since �� is deterministic,

��������� ��� � �������� ���� ����
 � ���

and

������� ��� � �� � ������ ���� ��


2.2 Ensemble averaging

We will consider the ensemble average of ����,

��� �
�

�

��
���

����


Ensemble averaging has the desired effect of reducing the variance, as we expect from basic
statistics. Using the relations above, one can show that the variance of the ensemble average is

�������� ��� �
��������� ���

�
� ����
 � ��

�
�

where the arrow refers to the large noise limit (���� �). Thus, the variance of the ensemble
average can be made arbitrarily small for increasing ensemble size � . Similarly, in the same limit,

������ ��� � �� � ������ ���� ��


It is important to note that the expectation of the ensemble average converges to the input signal
�� for increasing noise. Noise is therefore beneficial in this respect, but at the cost of larger
variance. A larger variance can of course be compensated by increasing � . It is also important to
note that for small noise, the expectation of the ensemble average differs from �� . Ensemble
averaging will not remove this difference, since it originates from the deterministic property of
the quantizer and not from the noise.
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Figure 2.3 An example of the effect of ensemble averaging. A sinusoidal with unit amplitude
plus Gaussian noise is quantized by a simple roundoff to the nearest integer. We
have performed averaging over an ensemble of � � �		 realizations.

We illustrate the effect of noise in Figure 2.3. We have here used
���� � �������� � ������ � �� � ���� as an example, where � is Gaussian noise with variance ��.
We used a simple roundoff to integer numbers as the quantizer function:
���� � ������� � �����������, yielding � � �. We have averaged over an ensemble of � � �		
realizations. With no noise we obtain a staircase function as expected (upper panel). As the noise
increases, the staircase function is smoothed out to resemble the sine-wave ��, as ������ ���� �� .
The noise on these curves (or variance) can be reduced to an arbitrarily small level by increasing
the ensemble size � .

3 EXPECTATION AND VARIANCE FOR ENSEMBLE AVERAGED � AND �

We consider a signal processor which treats the incoming signal in the following order: first, the
analog raw signal is sampled, then it is quantized (A/D converted) and finally � and � are
calculated by digital mixing and lowpass filtering. These steps represent the DIPP-processor. The
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Figure 3.1 Illustration of the signal processing chain. The analog signal is sampled, quantized
and split into � and � components. These blocks represent the DIPP. The last blocks
represent the pulse processing software which extracts amplitude and phase and
performs averaging. The details of the I-Q demodulator are given in Figure 3.2.

Figure 3.2 Details of the I-Q demodulator. The digitized (sampled and A/D-converted) signal
���� is split into � resp. � by multiplication with a cosine, resp. sine, function and
subsequent filtering with a lowpass filter (LPF).

post-procssing is done in software and consists of calculating amplitude and phase via ensemble
averaging over all available radar pulses. The DIPP with post-processing is depicted in Figures
3.1 and 3.2.

Ensemble averaging can be done in two ways; either (i) by computing the average � and � prior
to the computation of amplitude and phase or (ii) by computing amplitude and phase for each
pulse followed by averaging. We investigate how the complete system affects the uncertainty and
expectation of the output amplitude and phase estimates.

3.1 Signal model

We use a representative model for received radar pulses,

����� � ������ � ������

where 	 denotes radar pulse number, ���� is the repetitive radar pulse, �� is a scaling which varies
with pulse number, and ����� is (non-repetitive) random noise associated to pulse 	, with variance
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��. We will consider the scaling �� as a positive random variable (�� � 	) with a distribution ����
and expectation ���� � �
	. Without loss of generality, we normalize the model such that the
amplitude ���� of ���� is of order one during the pulse, and such that � expresses the noise/signal
ratio for �� � �. With this normalization, ����� is of order one.

The continuous ����� represents the analog signal before sampling. After sampling, we obtain the
time-discrete ���� � ���� � ����. After A/D conversion (quantization) we obtain ���� � �������,
which is discrete also in magnitude. This discrete signal is then I-Q demodulated digitally 2.

The functionality of the digital I-Q demodulator is equivalent to the analog version where the
input signal is mixed with a local oscillator signal (LO), with subsequent lowpass filtering,

���� � ��� ����� ���������� � ����� ����������� ���

���� � ��� ����� ���������� � ����� ����������� ��


Here, �� is the LO-frequency, and � denotes convolution with the impulse response �� of the
lowpass filter. We now consider ensemble averaging of � and �, and treat only � hereafter, since
� follows a similar calculation. We have now two choices for ensemble averaging � and �. The
first one is a straight ensemble average,

��� �
�

�

�
�

����


The second one involves normalization,

��� �
�

�

�
�

����
��

� (3.1)

where we we have estimated the scaling �� from averaging the amplitude
�

������� � ������� over
a suitable interval in �. We obtain

��� � ���� ����������� ���

where

��� �
�

�

�
�

����

in the first case, and

��� �
�

�

�
�

����
��

�

when we use normalization. By invoking the central limit theorem for the sum of random
variables, we note that ��� (for fixed �) has a pdf which is approximately Gaussian due to the
weighted sum of the convolution. For a large ensemble, ��� is also close to Gaussian distributed
since the ensemble average is also a sum of random variables.

2We note that with the given normalization, the quantizer cell size � is less than unity to resolve the signal.
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3.1.1 Expectation and variance

The goal is to find expressions for the expectation and variance for � (and �). Obviously,

�� ���� � ������ � ��� ����������� ��


The fluctuating part of ��� is

��� � �� ���� � ����� � ������ ���� ����������� ���

where Æ��� � ��� � ����� � ��� is the fluctuation in the ensemble average of the quantizer output. We
show in Appendix D that the variance is

�������� � ������ � �� �����
�� � ����Æ����

�� ������������ ��
� 


It is very convenient to rewrite this as

�������� � �
�



���Æ����

���� � ����
�������� ��
� 


The cosine-term shows that ���Æ����
�� is mixed with two times the LO frequency and filtered with

the squared impulse response ��
� . These expressions are general and exact, based on the initial

model. We now specialize to the two cases of ensemble averaging, and to the large noise limit
���� �.

3.1.2 Simple averaging

We show in Appendix C.1 that for increasing noise,

������ ���� ������� � ���

since ����� � �. The expectation does indeed reflect the exact �-signal of �, ������, as desired,

�� ���� � �������� ����������� �� � ������


In the same limit, we show that

���Æ����
��� �����
 � ��� � ���������

�



With constant scaling, ������ � 	, and we may return to the result shown in Section 2.2. It is
undesirable that the variance is quadratic in the signal �� . By inserting �� � ����� ���������, we
obtain, in the large noise limit,

��������� �����
 � ���


�
�
������ �

������

�
� ���� � (3.2)

where � ���� � is due to ��� in ���Æ����
��. We note that 
����� comes from the relation


����� �

� ��

��
��������
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Figure 3.3 For normalized averaging (left panel), the joint probability distribution is symme-
tric in the complex plane (the �-� plane), while it is elongated for simple averaging
(right panel) due to the different realizations of the scaling � �. The elongated distri-
bution results in oscillating variances as the phase evolves throughout the pulse. For
simple averaging, the variances are the same, ���� ���� � ���� ����, and constant
with respect to phase.

where we have assumed an ideal filter with ������ � � in the passband. The sampling frequency
is ��. The integral over the squared filter is simply proportional to the cutoff frequency ��.

One can show that � ���� � � 	, since the convolution producing this term is always between two
positive definite quantities. Outside the radar pulse, �� � 	, and � ���� � � 	 such that the variance
is a minimum (and constant). Inside the pulse � ���� � � 	 varies with time (or �). The significance
of the result is that the variance of ��� (and ���) is generally dependent on the input signal.
Normalized averaging yields in contrast a constant variance also inside the pulse as we shall see
in the next section.

Figure 3.3 explains qualitatively why the variance oscillates for simple averaging and is constant
for normalized averaging. For simple averaging (left panel), the probability distribution is
symmetric in the complex plane (the �-� plane), while it is elongated for simple averaging (right
panel) due to the different realizations of the scaling ��. The angle between the line through the
center of the distributions and the �-axis is the phase of the pulse at a certain time. As the phase
changes with time, the variances for the simple averaging oscillate with twice the frequency of �
(or �).

3.1.3 Normalized averaging

We show in Appendix C.2 that for increasing noise,

������ ���� ��


The expectation is again the exact �-signal of �,

�� ���� � ��� ����������� �� � ������
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In the same limit, we also show that

���Æ����
��� �����
 � ���

� ��
�� ���������

�



We note that the quadratic term in �� has vanished, but we have introduced the expectation of
���� as a scaling factor instead. Since now the variance is independent of �, we easily obtain, in
the large noise limit,

���������
�����
 � ���

� ��
�� ���������


�
�
������ 	 ���

	���

� ��

��
���������� (3.3)

where we assume that the lowpass filter corresponding to ��
� removes the component modulated

with ����
�����.

For a uniform distribution ���� with support in ��� �� � � �� (noting that ���� � �),� ��
�� ��������� � ����� ��� � �. Thus, the factor due to the integral is larger than unity.

Therefore, the variance of normalized averaging is larger than the minimum variance of the simple
average.

3.2 Numerical test

We adopt a uniform distribution ���� with ���� � � and support in ��� �� � � ��. We choose
� �

�
��
, and get ������ � �
�����
 � ��� and

� ��
�� ��������� � ����� ��� � 
. The

noise/cell size ratio is set to ��� � 

	 with � � ��� and � � ���. The LO frequency is
�� � 	

��� (or half the Nyquist frequency). We use �� � ����� ��������� with carrier frequency
�� � 	

���, giving a relatively small difference frequency �� � �� for �����. The lowpass filter
cutoff is approximately ����� � 	

�.

We calculated � realizations of � and �, i.e., ����

����


���� , with accompanying realizations of
the noise and the scaling. Figure 3.4 shows simple and normalized ensemble averages of � for
� � �		 (thin lines). The thick line shows �����, and we see that both methods give ensemble
averages which converge to the correct value, �����.

The standard deviations
�

������� for the two averaging methods are shown in Figure 3.5
(labeled "normalized" and "simple"). The thick solid and dashed lines are the analytical results.
The thin curves show the numerical estimate of the standard deviation taken over �	
�
realizations of the signal. We see that the theory for the variances agrees very well with the
numerical result.

We have �	 �
�

�����
 � ���������� � 	
�
� for our choice of parameters. This is the
minimum standard deviation for simple averaging (as seen outside the pulse), and is given by the
first term in 3.2. Inside the pulse, we have an oscillating standard deviation with twice the
frequency of ����. The variance �������, is shifted half a period inside the pulse, relative to
������� (not plotted).

For normalized averaging, we obtain
�

������� 

�

� 	
�
� � 	
��� from the theory (3.3),

and �������� � ���� ����. The random fluctuations in the ensemble averages in Figure 3.4 reflect
the standard deviation plotted in Figure 3.5, but scaled with ��

�
� (0.1 in our case).
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Figure 3.4 Simple and normalized ensemble averages ��� for � � �		 (thin lines). The thick line
shows �����. We see that both ensemble averages coincide with �����. The random
fluctuations on the thin curves reflect the variance.
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Figure 3.5 Standard deviation
�

������� (given by � � � in the general expressions). The
thick solid line is the analytical result for simple averaging, and the thick dashed
line is the analytical result for normalized averaging. The thin curves show the
numerical estimate of the standard deviation taken over �	
� realizations of the
signal.
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4 PHASE AND AMPLITUDE UNCERTAINTIES (VARIANCES)

Ensemble averaging reduces the uncertainties in both signal amplitude and phase. This section
addresses how the averaging should be performed in order to minimize the uncertainty.

There were two ways of handling � and � before post-processing: A) we normalize � and � with
the amplitude scaling �, or B) we use � and � as they are. We noted that the variances after
normalization were lower than the mean variance within the un-normalized pulse (Figure 3.5).
For this reason, it seems that normalization is the best choice and we will therefore only discuss
normalization hereafter.

There are two different ways of generating the phase and the amplitude: Method I refers to
calculating phase and amplitude of ensemble averaged ��� and ���. Method II refers to
calculating phase and the amplitude of each individual realization of the pair ���������, before
ensemble averaging 3. In radar-terms, Method I can be regarded as "coherent integration" and
Method II as "incoherent integration", where "integration" is to be understood as ensemble
averaging.

4.1 Phase and amplitude of ensemble averaged � and � (Method I)

For sufficiently large ensemble � (say, � � �	), we have noted that the corresponding averages
�� and �� (3.1) tend to normal distributions (Gaussian random variables) by invoking the Central
Limit Theorem from basic statistics. For normalized averaging, the joint distribution of �� and �� is
also symmetric. One can then immediately use the classical "Rician" probability distributions for
the amplitude and the phase which applies to Gaussian and symmetric joint distributions.
Appendix E gives a discussion of these distributions in their asymptotic limits.

4.1.1 Amplitude distribution

Let �� 	
�

�������� � �������� be the amplitude corresponding to the expectation values (we
have shown that ����� � ����� and ����� � ����� in the regime ���� �). The pdf of the
amplitude �� �

�
����� � ����� is Rician ((7), page 498) for each time sample �,

������� �
�
	��� � ����

	����

��
�

�
�������� ��������

�
	���� (4.1)

where �� is the modified Bessel function of zero order. In our case,

��
	�� � ���

	���

� ��

��
���������

��
	 � ���������

���
 � ���� (4.2)

corresponding to (3.3).

3We note that normalization does not matter for the phase, since ���	�	

 ��	
� � ���	� 
 ���.
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4.1.2 Phase distribution

The pdf of the phase, � � �� ��� � 	���, is ���� �����  �, where (page 501 in (7) and page 167
in (4)),

����  �� �
��


�
�

�
 � �������� �	
����

�
��

�
� � 
!�"�

�

 � �������

�
�  � �

��
�


��
	��

� (4.3)

where !�" denotes the usual error function; !�"��� � ���
�

��

� �

�
��

��� ��. Due to symmetry
properties in the complex plane, the expectation of the phase ���� is independent of �� and is
equal to that of the input signal �:

���� � �� ������ � 	������ � �� ����� � 	�����


It is important to note that the variance of the phase, ������, is dependent only on the square of
the signal to noise ratio via  � � ��

��
�
�
	�� , where �	�� is given in (4.2).

4.2 Ensemble averaged phase and amplitude (Method II)

We now calculate the phase and the amplitude of each individual realization of the pair
���������, before ensemble averaging. One can show that the joint distribution ���������� is
non-Gaussian. This can be handled by treating the Rician distributions as conditional
distributions for given �, and then integrating over ���� to obtain the non-Rician amplitude and
phase distributions. The resulting variances can then be calculated numerically. The variances for
the ensemble averaged quantities are then obtained by scaling with ��� , by the assumption of
uncorrelated realizations.

4.2.1 Amplitude distribution

For given �, ��� and ��� are Gaussian random variables with equal variances, ��
	��

�. The
corresponding expected amplitude is ��. The marginal Rician distribution is then obtained by
inserting the fixed ��, and the variance ��

	��
�. On integrating over ���� we obtain the amplitude

distribution,

������� �
�
	 � �

� �

�

�������
	 �

����
��
�

�
������ ����

������
�
	 �������� (4.4)

where �	 is given in (4.2).

4.2.2 Phase distribution

For the phase, we make a similar substitution,  � �� , and obtain

����  � �

� �

�

	
��

�


�
�

�
�� ��������

� �	
����

�
��

�
� � 
!�"�

�

�� �������

�

�������

 �
��

�


��
	

� (4.5)
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where, again, ��
	 is given in (4.2). We note that normalization does not matter for the phase

calculation for the pair ���������, such that the expression above is valid also for the
un-normalized case.

4.3 Large signal to noise ratio

4.3.1 Phase variance

The phase variance for both methods tend to the same value for �� � �	 . In this limit �� � �
(for not too small �), such that the integrand of (4.5) for Method II can be replaced by (E.3) of
Appendix E. The resulting phase variance is

��
���� �

�


 �

� ��

��
��������� � ��������

	��
�
��

� ��

��
���������
 (4.6)

Similarly, the phase distribution (4.3) for Method I has the variance ���
 �� in the same limit,
and it follows that ��

���� � ��
����. We conclude that the two methods give different phase

variance only for moderate signal to noise ratios, which means a low amplitude radar pulse, or on
the rising and falling edges of the pulse in general.

4.3.2 Amplitude variance

Also the amplitude variance for both methods tend to the same value for �� � �	 . In this limit,
the amplitude distribution tends to a Gaussian near ��. The integrand of (4.4) is then a Gaussian
with expectation ���� �� � �� � ���

	���
���
���. One can then show that

��

��� � ���

	���

�� ��

��
��������������

	��
�
��

�



Similarly, the amplitude distribution (4.1) for Method I has variance ��
	�� , in the same limit. It

then follows that ��

��� � ��


��� for ����	 �. We conclude that the two methods give
different amplitude variances only for moderate signal to noise ratios.

4.4 Comparison of the methods

We ask: Which of the two methods leads to the smallest amplitude and phase variance for
moderate signal to noise ratios? The answer to the above question is non-trivial, since the
computation of amplitude and phase is nonlinear.

We need to express how the variances depend on the noise, the signal amplitude and � . With
��
	�� in the amplitude and phase pdfs (4.1) and (4.3), we obtain for Method I:

��

������� ��

�
	��

�
�����

for the amplitude, and

��
�������

�
	��

�
�����
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Figure 4.1 Output NSR as function of input SNR, ����	 , when �� � 	
� for Method I (solid
line) and Method II (dashed line) with � � 
	 (blue), � � �	 (green) and � � 
		
(red).

for the phase.

For Method II, we can assume that the terms in the averaging sum are uncorrelated, and obtain
the usual ��� -law,

��

������� ��

�
	��

�
�����

for the amplitude, and

��
�������

�
	��

�
�����

for the phase. The difference between the methods then arises when we scale the argument with
� , in contrast to scaling the variances with � . Either way, it is trivial to note that the amplitude
as well as the phase variance decrease with increasing � .

Comparing the performance of Methods I and II then comes down to establishing which is the
smallest of the functions !������� and !������� , where � � ��	����

� and the ! ’s express the
phase variance or the amplitude variance. Thus, given the value of � we should be able to
establish for which signal-to-noise ratios Method I is favorable over Method II and vice versa.
One can expect that the differences between the variances of Method I and II vary as function of
� and �	 in general. Below, we quantify these differences.

In the following we choose the half width of ���� equal to � � 	
�. For given signal strength and
noise level, we find the variances by integrating over the pdf’s, when an explicit form is not
available.
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Figure 4.2 Output NSR as function of input SNR, ����	 , when �� � � for Method I (solid line)
and Method II (dashed line) with � � 
	 (blue), � � �	 (green) and � � 
		
(red).

4.4.1 Method I vs Method II for amplitude

There are two independent parameters in the amplitude pdf; �� and �	 . Figures 4.1 and 4.2
illustrate how the output noise to signal (NSR) ratio �
��� relates to the input signal to noise
(SNR) ratio ����	 for �� � 	
� and �� � �, respectively, for � � 
	� �	� 
		. Method I is
shown with a full line and Method II with a dashed line.

From Figure 4.1 it is evident that at very low input SNR there is very little difference between the
two methods for all the chosen � . For high input SNR we also expect equal variances as
discussed previously. This is also seen in Figure 4.2 where the variances for the two methods
coalesce near SNR=10. Both figures display the same tendency regarding medium input SNR,
namely that Method II is the best (Method II has lower output NSR than Method I).

We also plot the output NSR as function of � for several choices of the input SNR. The cases for
�� � 	
� and �� � � are plotted in Figures 4.3 and 4.4, respectively. We reach the same
conclusion, namely that Method II is the best choice.

4.4.2 Method I vs Method II for phase

The variance of the phase depends only on the input SNR via  � ��
���

�
	�
. Figure 4.5 displays

the standard deviation of the phase (measured in degrees) for several values of � as a function of
input SNR. For poor input SNR less than about 2, Method II is the best. For input SNR� 
,
Method I is the best. The two methods have indistinguishable variances for input SNR larger than
about 20. This is also expected from the previous analysis.

In Figure 4.6, the standard deviation of the phase is plotted against the number of realizations �
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for several values of the input SNR (����	 ). Again, for poor input signal-to-noise ratios
(illustrated by SNR=1 and SNR=0.2), Method II is the best. Method I is the best for the larger
input SNR’s (3 and 10). The difference between the two methods converges rapidly to zero with
increasing input SNR.

Finally, we illustrate the results in Figure 4.7 with an artificial radar pulse. The top panels show
the pulse amplitude (solid line) and the noise standard deviation �	 (dashed line). The signal to
noise ratio (input SNR) is about 5 when the pulse reaches unity amplitude. We note that the SNR
varies throughout the pulse. The two columns are for � � 
	 and � � �		. For the amplitude,
we conclude again that Method II is favorable, regardless of the input SNR. For this example, we
find about 25-30 % difference between the standard deviations on the rising and falling edges, and
about 5 % within the pulse. For the phase, we conclude that Method I is favorable when the SNR
is relatively large, and that Method II is favorable when the SNR is poor (we note that poor SNR
occurs in general on rising and falling edges of an otherwise strong pulse). The figure shows
about 15 % difference between the standard deviations within the pulse and about 80 % difference
leading and trailing edges of the pulse.

5 A NOTE ON PROCESSING WITH AN INTEGER I-Q DEMODULATOR WITH A
FIR-FILTER

For numerical purposes, it is an advantage to implement integer I-Q demodulators. The FIR-filter
is integer valued and operates on (quantized) integer signals. We have

���� � ��� ��������������� � ������������� ����

where

�� � ����������

and equivalently for ����. The LO frequency is chosen as one quarter the sampling frequency,
�� � 
��!����, ���� � �����!�� � ����
�, such that ��������� is integer, i.e. on the form
�


���� 	� �� 	� 


�, and similarly for ���������. We conclude that all samples of � and � are
integer multiples of �;

����� ���� � �


� ��� 


���� 	���� 


����


�


For � integer, �=1, such that � and � are also integers. We note that the roundoff of the impulse
response introduces a (deterministic) modification of the filter response, and has no consequence
for stability or accuracy for the filtered signal.

An important effect in the context of stability comes from the finite length of the FIR-filter which
display ripples in the frequency response. Many radars transmit signals with various carrier
frequencies. Altered carrier frequency will then alter the filter characteristics in the bandwidth of
the signal, and change the shape of the filtered radar pulse.

Figure 5.1 exemplifies the effect from filter ripples on the pulse shape. The amplitude of an
artificial radar pulse with zero noise is depicted for three values of the carrier frequency,
!� � 	,!� � �	 and !� � 
�. The amplitude spectrum of the signals are plotted over the filter
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response in Figure 5.2, and we see that the two lowest frequencies represent the filter passband,
while the highest frequency represents the the edge of the filter. Given these deterministic filter
effects, the analysis proceeds as in the preceding sections, but with a ����� which is dependent on
carrier frequency.

6 DISCUSSION

Some potentially important effects were not included in our analysis. These are uncertainty in the
time sampling (the pulses are sampled at varying time lags determined by the trigger threshold
and thermal noise), uncertainty in estimated scaling �, multi-path effects (8) and uncertainties due
to pulse-to-pulse phase offset. We will discuss phase offset and time sampling uncertainty below,
and propose a way to further reduce the uncertainty by elimination of an optimal number of low
amplitude pulses.

When we perform averaging on � and � in Method I, we need to estimate the phase offset for
each pulse. This introduces extra uncertainty which we have not accounted for in the analysis. In
particular, one may then in the end come to the conclusion that Method II is better for the phase
than Method I, since Method II does not depend on the phase offset in the same manner.

To further elaborate on phase calculation via Method II, we note that the phase corresponding to
������ ����� can be expressed as

���� � ��� � ���� � "� � Æ�����

where ��� corresponds to the expected frequency modulation of the pulse, ���� corresponds to
the carrier frequency, with a possible pulse dependent frequency ��, "� is the phase offset which
varies from pulse to pulse, and Æ���� is the phase noise which is distributed according to (4.5). By
averaging (Method II), we obtain an ensemble average with expectation ��� � ������� � "�. One
may now estimate the linear part ������� � "� from the averaged ���� and subtract in order to
obtain the modulation or "fingerprint" ��� . In order to avoid the extra uncertainty associated with
the estimation of the linear part, one should choose a representation in the form of coefficients
where the linear part affects only one of these coefficients. This coefficient can then be discarded.

Time sampling uncertainty manifests itself as an extra noise contribution with non-zero
correlation length – if the pulse is approximately linear over the sampling interval ��, the extra
noise has a distribution of the same form as the time lag probability distribution, and with a
standard deviation proportional to the signal slope. Since the radar pulse represents an oscillating
signal, we can imagine that the total noise variance can be time-dependent. Possible fluctuations
in the emitted pulse (stochastic deviations from the expectation) can probably also be regarded as
extra noise with non-zero correlation length.

For moderately large signal to noise ratios, we showed that both methods have variances that are
proportional to the integral� ��
�� ���������

�



An interesting possibility is to discard data for which � # �� (�� is a threshold to be determined),
to minimize the variances. Let ���� be the available number of pulses. If we eliminate those
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pulses for which � # ��, we obtain a new distribution ���� ���. The integral above may be
rewritten as

$���� �

� ��
�� ���� �����

���

����

� ��
��

���������



One can now see the possibility of minimizing $ (and therefore the variances) by finding an
optimal threshold ��. In an operative situation, ���� is determined by the actual data-set.

We have shown that bit-resolution (the number of bits for a given signal range) is not the only
crucial parameter for obtaining accuracy. First, one can minimize the effect of quantization error
in the ensemble averages, if the input noise is larger than the quantizer step-size (��� � �). In
the large noise limit, the expectation value of � and � corresponds to the noise-free analog signal,
and the variances are approximately equal to the variances of the analog � and �. Second, the
uncertainties in the phase and amplitude estimates can be reduced to an arbitrary low level by
ensemble averaging of a larger number of pulses. For coarser bit resolution (larger �), and with
the requirement � # �, we need a larger number of pulses � to average over to obtain the same
accuracy. Thus, high resolution A/D converters are not necessarily needed when � is large
enough. For given � and �, the lower limit on � can only be determined by first obtaining the
required accuracy needed to distinguish the emitter pulse forms.

We did not discuss the probability distributions in the context of un-normalized � and � although
we argued that the amplitude variances for both methods are generally larger than for normalized
� and �. We also showed that the phase variance for Method II is the same whether we normalize
or not. By numerical experiments we have observed that the phase variance for Method I (without
normalization) is similar to the normalized case. We may then, for Method I and phase
calculation, choose not to normalize � and � before averaging.

We discussed only a uniform scaling distribution ����, with a certain half-width of � � 	
�. We
have also tested the procedures for � � 	
	 (constant �), and arrived at similar conclusions. It is
therefore unlikely that a different form of ���� (say Rayleigh distribution) will alter the
conclusions dramatically.

7 CONCLUSIONS

This report forms a theoretical basis for the statistics of ensemble averaged (intra-pulse) radar
data. Quantization errors were accounted for in the context of a digital I-Q demodulator. The
results are directly applicable to project 864 Profil II, as an aid in constructing "smart" pulse
processing algorithms which minimize the uncertainties in estimated pulse shapes.

Based on experience with recorded radar data, we adopted a signal model including a repetitive
radar pulse � scaled randomly in amplitude with the parameter �, and including additive noise
with given variance ��. We have investigated two methods: I) normalized averaging for � and �
with subsequent calculation of amplitude and phase, and II) averaging of phase and amplitude
from samples of normalized � and �. The normalization consists of dividing the signal with
estimates of the scaling parameter �.

The uncertainty in the phase and amplitude estimates depends on the choice of method, the the
number of radar pulses � to average over, and the average signal to noise ratio ���������. The
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following question was asked: Which method gives the smallest uncertainty in the amplitude and
phase estimates? Both methods give the same variances for large signal to noise ratios (greater
than 10). For smaller SNR, we find significant differences between the variances especially at
leading and trailing edges of the pulse.

We find that Method II is better than Method I for amplitude regardless of the input SNR and � .
We gave an example using a radar-pulse with moderate SNR of 5. The example showed about
25-30 % difference in standard deviations (uncertainties) on the rising and falling edges of the
pulse, and about 5 % difference within the pulse. For phase, we find that Method I is better than
Method II for moderate SNR, regardless of � . The example showed about 15 % difference
between the standard deviations within the pulse. For very small signal to noise ratios, we
conclude that Method II is the best also for the phase, regardless of � . Here, the example gave
about 80 % difference on leading and trailing edges of the pulse.

The uncertainties diminish roughly as ��
�
� for both methods, such that when the standard

deviation is reduced to one half by choice of method, we need only ��� radar pulses to average
over to obtain the same accuracy. Thus, choosing the best method is important in the context of
processing speed. If processing speed is of no concern due to otherwise fast algorithms and
equipment, we note that any of the methods can be sufficient by simply increasing the number of
radar pulses � to average over. We have also shown that bit-resolution is not the only crucial
parameter for obtaining accuracy when we perform ensemble averaging – lower bit-resolution
can be compensated by larger � in general.
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APPENDIX

A A NOTE ON THE FIRST AND SECOND MOMENTS OF THE ERROR

Omitting subscripts, � � �� �, � � ����, and ���� � �. The expectation (given �) of the
moments of the error  � �� � can be found by using the discrete ���� ��. Alternatively, one can
write  � ������ �� � �� � �����, where the first bracket is the quantization error for a given �,
and the second bracket is the deviation from the average �. Thus, one can obtain the mean error
by using ���� �� in the following way,

��� �� �

�
������ ��������� �� � �� � ������ �

�
������ �������� ��


Carbone and Petri (1) use the Fourier series for  ��� 	 ������ �� to obtain ��� �� in terms of the
characteristic function $ of ���� ��. This comes about due to the weighting by trigonometrical
terms (in the Fourier series) when integrating over �. We note that � is arbitrary.

Using Æ� 	 � � ����, we obtain for the second moment

���� �� �

�
������ ��� � Æ��� �

�
������ ��� � � 
 Æ� � Æ���


By using the Fourier series for  , we obtain

�� �� �� �
��

�

�

��

��

��
���

�����
��

���$����� ���	
��������


For the cross term, one cannot easily express the result in terms of the characteristic function, as
we see from the general expression


�� Æ�� �� � 

�

�

� ��

��
����� � ��

��
���

������� � �� ����
��������


For Gaussian noise, we get


�� Æ�� �� � ���
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���
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Finally,

��Æ��� � ���

which is simply the noise variance. We get

�������
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for Gaussian noise. This procedure becomes more complex for higher moments, and one might
consider the first approach using the discrete ���� ��. Finally we note that
��������� �� � ���Æ����

�� �� � �������
�� ��� ������� �� since Æ��� � ��� � ������ ��.
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B MEAN SQUARE ERROR AND OPTIMAL NOISE

The mean square error over % samples of the ensemble averaged signal is defined as

%&!����� �
�

%

��
���

������ � ���
��


This quantity measures the deviation from the signal � in a global sense, and accounts for both the
expectation of the error ��� � ����� � �� and the variance of the error. Since the expected error
diminishes and the variance increases for growing noise, we may expect a minimum point for the
mean square error as function of the variance of the noise, �. One can show (see (9)) that the
mean square error can be expressed in variances and expectations;

%&!����� �
�

%

��
���

�
��������� ���

�
� ������� ����

��


The first contribution, ��������� ����� , is the variance of the quantized signal, divided by the
number of realizations the averaging is performed over, and ������ ��� is the expectation value of
the error.

For large noise, � � �, ������ ��� can be neglected and ��������� ��� 
 ����
 � �� regardless
of the signal level ��, as noted above. This situation gives a mean square error

%&!����� 
 �����
 � �����


For small noise, the variance can be neglected, and the contribution from the error ������ ���
dominates. One can show that %&!�	� �� � ����
 for a linear � (or sufficiently small �). In (9)
we proved that there is an optimum noise level where the MSE is minimum, for arbitrary noise
pdf’s. For Gaussian noise, we found the relation

����� �
�


�

�
'��
�� � ���


The optimum noise level ����� � 	
#�� for � � �		 is demonstrated in Figure 2.3.

C VARIANCE AND EXPECTATION OF THE QUANTIZED, AND THE QUANTIZED
AND SCALED SIGNAL

We remind the reader that the quantized signal is ���� � ������ � �����. The goal is to find, for
fixed time index �, the expectation and variance of the quantized signal, ���� , and for the quantized
and scaled signal �������. We will in the following suppress the subscripts 	 and �, for clarity.

C.1 Simple average

We define the conditional probability distribution ���� ��� as the probability density of � given
the scaling �. The total pdf of � is then

���� �� �

� ��

��
�������� ������
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where ���� is the pdf of the scaling �. The expectation

���� �� �

� ��

��
����� ���� �

� ��

��
�������� �����

is simply the average of the conditional expected value ���� ��� (given �). According to the initial
considerations for increasing noise, we conclude that ���� ���� �� such that ���� ��� �����.

With

�� ���� �� � ��� ���� ���� � ����� ���� ���� ��� 	 Æ� ������ ����

the variance is generally

������ �� �

� ��

��
��� ���� �������� ����

�

� ��

��
��Æ��� � ������ ���������� ����

�

� ��

��
����������� ��� � ������ ��������

�

� ��

��
���������� ������

� ��

��
��������� ������ ����� ��


This is the average of the conditional variance ������ ���, plus a term involving
������ ����� � ����� ���� ���� ����. In the large noise limit,� ��

��
��������� ������ ����� ��� ��������


We also know from the initial discussion that, with increasing noise,

������ ���� �����
 � ���

regardless of the amplitude of the scaled signal, ��. Therefore,

������ ��� �����
 � ��� � ��������


We note the specific form of the pdf ���� is here irrelevant. We identify that the variance
increases with ��. This undesirable effect can be eliminated when we normalize before averaging.

C.2 Normalized average

The signal in question is now ������� � ������ � ��������. The output � is scaled �� ���, such
that its mean and standard deviation are also scaled with ���. To the random variable ���
corresponds a new pdf,

� ����� �� �

� ��

��
����������� �������
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where ������ ��� is the conditional pdf of the scaled output (conditional on �), and � is the
conditional pdf of the un-scaled output defined in the previous section. In general (e.g. (7),
Sect. 5-28), the scaled output has an expectation of ������ � ������ and a variance
�������� � & �$������, expressed in the expectation and variance of the unscaled output. We
get

������ �� �

� ��

��
�� ����� ���� �

� ��

��
���������� ������

������ ��� �
���� ���

�



As the noise increases, ������ ���� � such that ������ ��� �.

Now for the variance. With

���� ������ �� � ����� ������ ���� � ������� ���� ������ ��� 	 Æ����� � ������� ����

we obtain

�������� �� �

� ��
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������������� ��� � �������� ���������

������� ��� � ������ ���� ������ ���

�������� ��� �
������ ���

��



Also in this case can we use integrals over known conditional variances and expectations with
���� as weight. We obtain for the term ������� ���;

�������� ����� � ������� ���� 
������ ��������� �� � ������� ��

� ������� ���� ������� ��� 
������� ��������� ��


When integrating over ����, ������� ��� fluctuates around zero and gives a relatively small
integrated result, such that

�������� �� 

� ��

��
������������ ��� � & �$����� ������� ������� ��


This approximate result is on the same form as for simple averaging, except that the integrand is
scaled with ����.

As the noise increases, ������� ���� 	, because ������ ���� � and ������ ��� �, such that

�������� ���
� ��

��
������������ �����


The quadratic term in � is now eliminated as desired, although for small scaling �, the conditional
�������� ��� is amplified as compared to ������ ���. For large noise, we know that
�������� ��� � ������ ������ � �����
 � ������, regardless of the conditional argument,
such that

�������� ��� �����
 � ���

� ��

��

����

��
��


We note the dependency on the specific form of ���� in this case.
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D THE VARIANCE OF � AND �

The variance of ��� is

�������� � ������ � �� �����
�� � ����Æ��� ����������� ���

��


For discrete convolution it generally holds that

�� � '� �
�
�

��'����

where � is stochastic in our case. The expectation of the squared term ��� � '��
� is then

����� � '��
�� �

�
�

�
�

�������'���'���


For zero (or less than the sampling interval) correlation length, ������� � Æ��, and

����� � '��
�� �

�
�

����
��'

�
���


Thus, the variance can be written in terms of the variance of the averaged quantized signal before
I-Q demodulation;

�������� � ����Æ����
�� ������������ ��

� 


Since the samples of the ensemble average are uncorrelated, we have

���Æ����
�� �

�
��������� ����� &�(�'� )*��) �� 
������������ ����� +��()'�,�� )*��) �� 

E AMPLITUDE AND PHASE DISTRIBUTIONS FOR GAUSSIAN AND
SYMMETRICALLY DISTRIBUTED � AND �

In this section we review the statistics of amplitude and phase for arbitrary � and � obeying
Gaussian statistics. The probability distributions apply at any given time-lag within the pulse.

E.1 Amplitude distributions

Let �� 	
�

�������� � �������� be the amplitude corresponding to the expectation values (we
have shown that ����� � ����� and ����� � ����� in the regime ���� �). The pdf of the
amplitude �� �

�
����� � ����� is then Rician ((7), page 498) for each time sample �,

������� �
�
	 � � ����

	
��
��
�

�
������ ��������

�
	 �� (E.1)

where �� is the modified Bessel function of zero order, and ��
	 � ������� � ������� . The first

and second moments are
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where �� is the modified Bessel function of first order.

For �� � �	 , the quantity � � ��
����

�
	 is very large. Thus the asymptotic relations
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��
��� #

��
��

are valid. After some algebra we arrive at the following expressions for the expectation and
variance of the amplitude:

���� � �� �
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����
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	 ����
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��

���


It can be shown, using the asymptotic relations above, that the amplitude pdf approaches a
Gaussian with mean �� �

��
�
�

and variance ��
	 as � � ��

����
�
	 grows (see e.g. Figure E.1, left

panel, bottom).

For �� � �	 , the pdf has support mainly for small �, and the argument of �� and �� is very small.
Thus ����� can be replaced by 1, ����� can be replaced by ��
 and �� can be replaced by �� �
to a reasonable approximation. Thus the expectation and variance of the amplitude are

���� � �	


�
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����
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 �
� ��
���
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�


In the case �� � �	 the amplitude pdf is approximately a Rayleigh distribution (Figure E.1, top
left).

It is important to note that ���� � �� in general due to the variance (due to noise) in �� and �� .
That is, the expected amplitude is larger than the amplitude �� of the I-Q demodulated signal �.
The noise to signal ratio �
��� for �� � � is plotted in Figure E.2 as function of the input signal
to noise ratio ����	 . The dashed and dashdotted lines represent the asymptotics of �
��� in the
limits ����	 � 	� and ����	 �. Note that the amplitude noise to signal ratio lies between
the two asymptotics for all input signal to noise ratios.

E.2 Phase distributions

The pdf of the phase, � � �� ��� � 	���, is ���� �����  �, where (page 501 in (7) and page 167
in (4)),
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� (E.2)
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Figure E.1 The amplitude pdf (left panel) and the phase pdf (right panel) for �� � 	, �	 � �
(top), �� � #, �	 � � (middle) and �� � �, �	 � � (bottom).
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Figure E.2 The relative standard deviation of the amplitude �
��� when �� � � as a function
of ����	 (solid line) and the asymptotics of the standard deviation in the limits
����	 � 	� (dashdotted) and ����	 � (dashed).
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and !�" denotes the usual error function; !�"��� � ���
�

��

� �

�
��

��� ��. Due to symmetry
properties in the complex plane, the expectation of the phase ���� is independent of �� and is
equal to that of the input signal �:

���� � �� ������ � 	������ � �� ����� � 	�����


It is important to note that the variance of the phase, ������, is dependent only on the square of
the signal to noise ratio via  � ��

��
�
�
	 ;
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�������
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� �

��
������  � ���

where the last equality is due to the periodicity of ����  � with period 
�. In the rest of the section
we consider, without loss of generality, the case ���� � 	.

One can argue intuitively that the phase variance should be decreasing with increasing ��: The
concentration of the associated random numbers in the complex plane is further away from the
origin for larger �� so the phase variance gets smaller (Figure E.1, right panels). Note that the pdf
is uniform when the signal amplitude is zero (Figure E.1, right panel, top), as expected, and that
the pdf approaches a Gaussian distribution with increasing �� (Figure E.1, right panel, middle
and bottom). The Gaussian shape of the pdf can be explained by the following argument. When
 � ��

���
�
�
	 �� �, the support of the pdf is mainly in the vicinity of � � 	, where the

approximations ���� � 
 �� and ���� 
 � are accurate. Furthermore, the argument of the error
function,

�

 ������, is large so that !�"�

�

 ������� 
 !�"�

�

 � 
 ��
. Thus we obtain the

asymptotic expression
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� (E.3)

i.e. a Gaussian with mean zero and variance ��
 � ��	����
�.

In the opposite limit  � ��
���
�

�
	�� �, the pdf is, approximately,

����  � � �


�
�


 

��
�������

which has mean zero and variance ���#� 

�
 �. The phase standard deviation in degrees as

function of the signal to noise ratio ����	 (solid line) and the asymptotics of the standard
deviation in the limits  � 	� (dashdotted) and  � (dashed) are depicted in Figure E.3. We
note that the phase standard deviation lies below the asymptotic in the limit  � (dashed) for
small values of ����	 , crosses this asymptotic and later converges to this asymptotic as  
increases. Interestingly, �� decreases very slowly for relatively low signal to noise ratios ����	 .
When ����	 increases beyond 3, the decrease of �� picks up speed.

E.3 Comments in relation to Method I

If we consider both variances to be functions of ����	 , the ensemble averaging represents
compression of the ����	-axis, according to

�
�����	 . In other words, the variance function in

terms of ����	 is forced in the direction of the vertical axis given by ����	 � 	. The amplitude
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Figure E.3 The standard deviation of the phase �� (in degrees) as a function of ����	 (solid
line) and the asymptotics of the standard deviation in the limits  � ��
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(dashdotted) and  � ��
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�

�
	 � (dashed).

and phase variances as functions of ����	 are strictly decreasing, and this implies that the
variances are also decreasing with increasing � . Consider the solid curves in Figures E.2 and E.3
representing amplitude and phase standard deviations for � � �. Using Method I, the
corresponding curves for � � � are obtained by contraction of the ����	 -axis using the
transformation ����	 �

�
�����	 , i.e. forcing the curves in the direction of the vertical axis.
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