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MATLAB TOOLBOX FOR PROCESSING OF GREAC CELL DATA

1 INTRODUCTION

FFI Project 766 has as a main goal to establish reliable methods for describing penetration
into concrete and rock, with emphasis on studies and use of hydrocodes.  The obtained re-
sults and skills will be used by FFI’s vulnerability studies group, contributing to future
studies of military installations.

In hydrocode simulations, as well as with other prediction tools, it is vital to use physically
realistic mathematical descriptions of the materials involved.  Values for the different ma-
terial parameters must then be found by performing suitable experiments.

One such experiment is the GREAC (Gauged Reactive Confinement) cell test.  This is a
tri–axial compression test, in which a cylindrical test specimen confined by a steel (or sim-
ilar) jacket is compressed in a hydraulic testing machine.   Depending on the sample size,
the machine and the properties of the confining jacket, hydrostatic pressures in the GPa
range can be achieved.  The GREAC cell setup at FFI is based on the methods and equip-
ment developed at Imperial College in London .

The material parameters are not measured directly in this test, and hence the output data
must be processed in order to produce the relevant information.  In this report, a computer
program (GREAC cell toolbox) which performs this task will be described.  The program
requires a version of Matlab (1) installed on the system.

Basically, measurements of external strains on the confining cylinder, together with axial
compression and force are used for calculating the stresses and strains in the material sam-
ple.  Based on this, an equation of state and a pressure dependent yield (failure) surface can
be calculated.   These curves constitute the basic data sets in common material models.

When processing the raw data from the GREAC cell, the behaviour of the confining cylin-
der must be modelled.  The toolbox includes the option of choosing between two different
methods for this task, either the standard analytical thick cylinder theory which is a planar
description with circular symmetry, or a 3D finite element calculation which also includes
the ”barreling” which occurs when the material sample becomes shorter than the confining
jacket.

For completeness, a brief description of finite element theory (2) has been included in Ap-
pendix A.  Further detail about the GREAC test method, interpretation of the results and
their application in material models can be found in the references (3)–(5). 



2 SHORT OVERVIEW OF THE GREAC CELL TOOLBOX

The GREAC  cell toolbox is divided into two separate programs.  The first part computes
stresses and strains inside a steel jacket that is loaded by a given inner pressure or shear
stress.  The second part is a menu based program which processes raw experimental data
and thereby determines the material properties of the (concrete) sample.

� The first part requires no input from experimental data.  The calculation is purely
numerical/analytical and the user only needs to specify values for the initial and 
boundary conditions of the problem in the file �	�����
� The results for the various 
elements are calculated and stored in the variable 	�	
	���	� by executing the 
comand 	�	
	���	� � ��	��
	
�������� where the input parameters are explained
in Chapter 4.  

� The second part requires an input file containing the measured values for results of 
force, strains and displacements.  (It is here assumed that some basic data processing 
has been performed to convert the logged voltages to physical quantities).  The format 
and content of this file is described in Chapters 6 and 7.

� A file describing the geometry and material of the confining jacket is also needed.  
How to create such a file is described in detail in Chapters 6 and 7.

� The program is executed by the command ��	��
	��, which will cause a menu to 
appear.  From the menu one can select which data files to process, as well as the
method for processing (thick cylinder theory or finite element calculations).  After 
having finished the processing, the results are plotted automatically and (if chosen) 
estimates for the elastic constants are given.  On exiting, the option of  saving the 
results in a file is given.  Complete details and examples are given in Chapter 5.

3 DOCUMENTATION  OF THE GREAC CELL TOOLBOX

The Matlab functions for analysing GREAC cell results have been collected in a socalled
“toolbox”, which is a typical way of gathering useful Matlab functions.  This GREAC cell
toolbox is available from FFI.

The toolbox is platform independent and should run without modifications under both
Unix and Windows.  However, it requires that Matlab 5.0 or higher is installed on your
computer.

3.1 Installation

To install the toolbox, you run Matlab and change to the directory where the toolbox is lo-
cated.  On a Unix workstation connected to the internal computer network at FFI, this is
done in the following way:



cd /net/p$'*.��,���",/++ ,�+
		�('�", ��

The installation procedure is now found by typing:

# '+ � ��( 

3.2 Directory structure of the Matlab functions

The Matlab  functions have been  organised in the following directory structure:

� ", �� � Directory with the main user functions.

� ", ���! (-/�!/) – Directory with help functions for the FEM–calculations of the 
GREAC cell jacket.

� ", �������
( )/-/�!/) – Directory with help functions for the menu based 
processing of the GREAC cell data.

� ", �����.� – Directory containing data for steel cylinders along with various other
experimental data.

A summary of the main user functions are found by typing  # '+ ", ��.   The following
text will then appear:

 

  ����
 � '' .**'�*1 � ��2 ��� ����

  � ,��'�0 �/-3-

  

  � �/"" � �2 ��) �,$'� � '�)�� ��,$/- ��'-4, �)� ��,- �0$!.  � � �,/�,2 ����

 

 

  ����
 � '' ��'�/'�.$*)- �)� $). ,+, .�.$*) *!  1+ ,$( ).�' ��.� !,*( ����


  � '' . -.-

 

  ��� ��'�/'�.$*)- *! .#  ����
 � ''

    (�& -.  '�2'$)� ,��.�    � ��,$+. .#�. +,*�/� - ��.� !*, ����
�� '' +,*� --$)"

    ", ��! (                 � 
�'�/'�. - -., -- - �)� -.,�$)- $) .#  -.  ' %��& .

    - .+�,                   � � !$) - .#  +�,�( . ,- � -�,$�$)" .#  %��& . �)� .# 

                               ��'�/'�.$*) ( .#*�

    , -$))-$�                � 
�'�/'�. - -.,�$)- �)� �$-+'�� ( ).- *) .#  $)-$� 

                               *! .#  -.  ' %��& .

    +'*.",$�                 � 
, �. - � � !*,(�.$*) +'*. *! .#  -.  ' %��& .

    +'*.",$�, -              � 
, �. - � �*).*/, +'*. *! -., -- - �)� -.,�$)- $)-$� 

                               .#  -.  ' %��& .

    +'*.-.,�$)*/.-$�         � 
, �. - � +'*. *! .#  -., -- - *) .#  */.-$�  *! .# 

                               %��& .

 

  � '+ !/)�.$*)- !*, .#  ������'�/'�.$*)- �,  '*��. � $) .#  �$, �.*,2 ! (-/�!/)�   

 



  �#$�& �2'$)� , .# *,2

    .#$�&�2'                 � �- - .#$�& �2'$)� , .# *,2 .* ��'�/'�.  -., -- - �)�

                               -.,�$)- $) .#  -.  ' %��& .

 

  � )/ �,$0 ) +,*� --$)" *! ����� � '' ��.��

    ", ��( )/                � ��.$0�. - .#  ( )/ !*, +,*� --$)" ����� � '' ��.�

 

  � '+ !/)�.$*)- !*, ", ��( )/ $- '*��. � $) .#  �$, �.*,2 �����( )/-/�!/)�

 

A summary of the help functions for the FEM–code is found by typing:

# '+ ! (-/�!/):

� � '+ !/)�.$*)- !*, ������'�/'�.$*)- *! .#  ����� � '' . -.

�

� �/)�.$*)- .#�. �,  /- � $) ������'�/'�.$*)- *! .#  ����� � '' . -.

�  �-#�+ � �#�+  !/)�.$*)- �$). ,+*'�.$*) !/)�.$*)-� !*, 	�  ' ( ).- ���

�  �(�. � �'�-.$�$.2 (�.,$1 !*, 	� �1$�' -2(( .,2 ���

�  
-.,�$)�$-+ � �.,�$)��$-+'�� ( ). (�.,$1 �
�

�   '-.$!! � �' ( ). -.$!!) -- (�.,$1

�  �-- (�' � �-- (�' -� $� � �, �. - � -.,/�./,�' -.$!!) -- (�.,$1

�                     !,*( .#   ' ( ). -.$!!) -- (�.,$� - ���

�  '*��0 �.*, � �#  �*).,$�/.$*) *! �++'$ � -., -- - .* .#  '*�� 0 �.*, ���

�  �$-+'�� �*)� � �#�)" - � �)� � .* -�.$-!2 .#  �$-+'�� ( ). �*/)��,2 �*)�$.$*)-

�  ��'�-., -- � ��'�/'�. - -., -- !,*( -.,�$)-

�

� � '+ !/)�.$*)- !*, +*-. +,*� --$)"

�  !$)� ' ( ). � �$)�- �)  ' ( ). �*).�$)$)" � "$0 ) �**,�$)�. 

�  +'*.-.,�$) � �'*.- -.,�$)- �)� -., -- - �- !/)�.$*) *! .#  ,��$�' �**,�$)�. 

Again a description of various functions can be found by using the Matlab command
# '+�

4 COMPUTING STRESSES AND STRAINS IN THE GREAC-CELL JACKET

Here we give an example of how to use the toolbox to calculate stresses and strains:

1. Create a symbolic link to the directory where the toolbox is located.  On a Unix work-
station at FFI this is achieved in the following way:
�� 3

') �- �) .�+$'*.�/- ,�+�

 +�



2. Run Matlab (To ensure that the paths in startup.m are enabled, you must run it from
your home directory.)



3. Create your own directory for storing results and change to this directory:
�� .,&+2 .8)2'#%

�� %& .8)2'#%

4. Copy 3'41#2	. from the p766-directory (or wherever the toolbox is located):
�� �%1 9
1���
.-
)2'#%
3'41#2	. 	

5. Use a text editor to edit 3'41#2	., and define the variables you desire.  An example is
given below: 

(5/%4+0/  1*831#2�/5.1#2! � 3'41#2

� ������ &'(+/'3 4*' 1#2#.'4'23 &'3%2+$+/) 4*' 34''- %8-+/&'2 #/& %#-%5-#4+0/ .'4*0&

�    (831#2�/5.1#2! � 3'41#2 )+6'3 6#-5' 40 4*' 1#2#.'4'23

�   �#,' # %018 0( 4*+3 (+-' #/& 1-#%' +4 +/ 8052 &+2'%4028	  �/-8 .#,'

�   %*#/)'3 40 4*' %018	

� �������������������������������������

� �#2#.'4'23 (02 .#4'2+#-3 #/& )'0.'428

� �������������������������������������

� )'0.'428

� �#2)' %8-+/&'2 &+#.'4'2 ��	
..

1*831#2	+//'2"2 � ��        � ��	� .. +//'2 2#&+53

1*831#2	054'2"2 � ��	�
��	�� � ��	� .. 054'2 2#&+53

1*831#2	* � ��
��	��        � ��	� .. *#-( 0( 4*' %8-+/&'2 *'+)*4

� 38..'42+% #$054 8��

1*831#2	38. � ��           � � �38..'42+%� 02 � �/04 38..'42+%�

� #7+3 38..'428 �1-#/' 342#+/ +( /0 #7+3 38..'428�

1*831#2	#7+338. � ��

� .#4'2+#- 1201'24+'3

1*831#2	� � ��             �
�� ��#

1*831#2	/5 � �	
���

� �������������������

� $05/&#28 %0/&+4+0/3

� �������������������

�

� +//'2 12'3352'

1*831#2	1� � �'���         � �	�����

� +//'2 3*'#2 342'33



$�,'$�&�(�)	 � 	�          � $#'�(�*� �" $#'� ,���&��(�#"

� +#&�' )$ (# (�� �#  #+�"� �,�*� )��

$�,'$�&�,$	 � $�,'$�&���	���

� �#"'(&��" ) �( #)(�& &���)' ��%)�  (# -�&# �#& "#&!�  ����� ��   �� �) �(�#"'�

$�,'$�&��#"'(&��") � 	�     � 	 �  �& 


� ���(#& �#& $ #((�"� #� ��'$ ���!�"('

")!$�&�$ #(���(#& � 
	�

From this version of '�($�&�!, we see that stresses are calculated in units of E
(Young’s modulus) when the cylinder is loaded by an internal pressure of magnitude
0.001*E.  The internal pressure is applied between the symmetry plane y=0 (whose
normal vector points in the axial direction) and 0.9 times the cylinder height.  The inner
radius is defined as unit length.
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Figure 4.1  Examples of plots created by �&�����!�

6. Calculations are run and results are stored in the structured variable � �!�"(&�':

�� � �!�"(&�' � �&�����!���
����



(See ���# �$�����  for an explanation of the parameters associated with �$����� ).
Figure 3.1 shows the results which now appear in new windows that pop up on the
screen.

7. Display the contents of ��� �!&$�%:

�� ��� �!&$�%

��� �!&$�% 


       ��� �!&� +�)��	 ����,

         !"��%� ��)� %&$'�&�

       #�*%#�$� ��)� %&$'�&�

        !' #�$� ��)� %&$'�&�

             �� ����
)���
 %#�$%��

             �� �����)� �"'����

            � � ��)� �"'����

    �*�"'&%���� ��)� %&$'�&�

     �*��!%���� ��)� %&$'�&�

8. Description of ��� �!&$�%���� �!&.
We can now extract results for each element.  As an example, we display the results for
element nr. 12

�� ��� �!&��
��� �!&$�%���� �!&+��,

��� �!&�� 


               )� ��)� �"'����

               *� ��)� �"'����

            ��#%� ��)� �"'����

          �%�� �� ��)� �"'����

              �'� ��)� �"'����

              �(� ��)� �"'����

              �)� ��)� �"'����

              �*� ��)� �"'����

            #%��� ��)� �"'����

              #!� ��)� �"'����

    �%�� �� �%�%� ��)� �"'����

             �#%� ��)� �"'����

           %�� �� ��)� �"'����



               $� ��&
 ��$����

               %� ��&
 ��$����

Table 4.1 Description of the variables inside the structured variable
������#!�"�������#(�):

Variable Description

&� �
&� ��$���� &��� is radial coordinate for node � of the element.

'� �
&� ��$���� '��� is axial coordinate for node � of the element.

�&� ��&
 ��$���� �&��� is radial coordinate for the quadrature point of ele-
ment �.

�'� ��&
 ��$���� �'��� is axial coordinate for the quadrature point of ele-
ment �.

$� ��&
 ��$���� $��� is radial coordinate for node � of the element.

%� ��&
 ��$���� %��� is axial coordinate for node � of the element.

� "� ��&
 ��$���� Matrix containing the strains of the element nodes.
Rows 1–4 contain radial, tangential, axial and shear strain.
Column � gives the strain of node �.

"����� ��&
 ��$���� Matrix with the stresses of the element nodes.
Rows 1–4 contain radial, tangential, axial and shear stress.
Column � gives the stress of node �.

�� "� ��&
 ��$���� Similar to � " defined above, but for the quadrature points
of the element.

�"����� ��&
 ��$���� Similar to "���� defined above, but for the quadrature po-
ints of the element.

�$� ��&
 ��$���� Similar to $ defined above, but for the quadrature points of
the element.

�%� ��&
 ��$���� Similar to % defined above, but for the quadrature points of
the element.

 "��� ��&� ��$���� Principal stresses in the middle point of the element.

 �� ��&� ��$���� The principal stress directions are the columns of  ��

�"�������"�"� ��&
 ��$���� �"�������"�"��� is the von Mises stress in quadrature
point �.

The values of a variable in ������#!�"�������#(�) can be retrieved in the following
way:



 ��!��# "��!# �



 "�����������#!�"�������#(��)�"����

"���� �

  ���$��" � #�!�$�� 	



  �����������  ���


�����  ���
��
����  �����������  ���
�������  ���
�
�����

   
��	
����
   
��	�����
   
��	�����
   
��	
	���
   
��������
   
��	
����


  �	���������  ����
�
����  ����
������  �	���������  �
�
�������  ���
��
����

   	�

	����
   ����
����
   
���	
���
   ��
�
����
   	��������
   	�	��
���


  �# (!"& � '�%#(�� �

  ���
��	����  ������	����  ���
�������

   
���
����
   
��	�����
   
���	����


  �
��
	
����  �	���	�����  �
��
	�����

   ��	

����
   
��
�����
   
��������


 

9. Other results are also stored in elementres:

�� � �!�"'%�&��+ �"&���

�"& �

           +� ��*
� �#(� ��

       �$&�%� ��*
� �#(� ��

    �$&�'�'�� ��*
� �#(� ��

       �$&�+� ��*
� �#(� ��

           (� ��*
� �#(� ��

           )� ��*
� �#(� ��

�� � �!�"'%�&��+ #('&���

�"& �

          +� ��*��� �#(� ��

    �$&'�'�� ��*��� �#(� ��

       �$&+� ��*��� �#(� ��

These variables contain the strains on the inside and outside boundary of the cylinder
for the points with axial coordinate +.

10. Display the results graphically:

The deformed cylinder with displacements magnified 10 times (Figure 3.2):

�� $ #'�%���� �!�"'%�&������

The strain on the outside boundary of the cylinder:



�� �������	�������
�����������������

This gives the plot to the right in Figure 3.2.

Create plots that show stresses and strains, like in Figure 3.3:
�� ����
��
���������������������������������	������

11. Store ���������� as the file ’������������	�’

�� �	�� ������������	� ����������

The results can later be retrieved with the following command:
�� ��	
 ������������	�
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Figure 4.2 Deformed cylinder with displacements magnified by a factor 10.  Created by
 ����
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5 MENU BASED METHOD FOR PROCESSING OF GREAC CELL DATA

1. Follow points 1–3 of the example given in Chapter 3,  if this has not already been done.

2. Copy the files containing GREAC cell data into your own directory:
�� �� .�#+�&���

�� ��% .�%
���#"��&������(��� �

3. Now the program which processes the GREAC cell data should be run:

�� �&���#�$)

Figure 4.1 shows the the menu that will now be displayed.  The program searches the
directory from which it was started and displays all the files (with the relevant exten-
sion) in the upper left corner.  By default all these files will be analysed, unless the
“Remove file” option is used to deselect it.  (This option does not delete the file, but
only removes it from the list of files to be analysed.)  Use the “Refresh” option to se-
arch the directory for new files.

4. After the relevant options have been selected, you must push the button marked “Pro-
cess data” in the lower left corner.  This will run the calculations and display the rele-
vant results extracted from the data.  As an exercise, you should try processing with the
same options as selected in Figure 5.2.  The final results should then be as shown in
Figure 5.3.  

Note that the unit for stress in this example is Pa since the Young’s modulues of steel is
given as ’206e11’, i.e with unit Pa.  The units of variables with units of stress (f.ex.
pressure, bulk modulus, shear modulus) are thus indirectly given by the unit which is
chosen for  the Young’s modulus of the steel (By putting a ’1’ in the menu, one can al-
so use the Young’s modulus of the steel as a unit, which is sometimes convenient.)

5. The results are stored in the global variables �����(� �!�+"&�' and ��������&�'�
In our example all the results are stored in �����(� �!�+"&�'� since we only selected
’Thick Cylinder theory’.  By selecting ’FEM–calculations’, we can make the program
store results in ��������&�' as well. 

�� �����(� �!�+"&�'

�����(� �!�+"&�' �

    �	*	 '(&)�(�    �	*	 '(&)�(�    �	*	 '(&)�(�    �	*	 '(&)�(�

The results for the raw data stored in ��!
��������(��

�� �����(� �!�+"&�',
-

�$' �



    �('�*�,�� ��/� +,*-�,�

       +,��%� ��/� +,*-�,�

To only retrieve results for the concrete:
�� �����,"#�$�0%*�+2�3��('�*�,�

�'+ �

              )� ��	��/� �(-�%��

          �)+�.� ��	��/� �(-�%��

          �)+�*� ��	��/� �(-�%��

          �)+�1� ��	��/� �(-�%��

        �)+�#  � ��	��/� �(-�%��

        +#!&��1� ��	��/� �(-�%��

        +#!&��*� ��	��/� �(-�%��

      +#!&��#  � ��	��/� �(-�%��

              �� ��	��/� �(-�%��

              �� ����������
 ��	������
�

              �� ����	�����
 ���
�����
�

              �� �	��������
 
���

���
�

             '-� ������� �����
�

     �#+,�'�*!0� ������
���	 ����

���	�

Most of these variables should be self–explanatory, perhaps with an exception for  the-
se ones: 

� The total shear force from the steel on the concrete for the upper half of 
the concrete.

�#+,�'�*!0 The distortion energy that is lost (converted to irreversible forms of 
energy) during the loading and unloading cycles. 
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Figure 5.1 Illustration of stresses and strains produced by &"%)�' �'�(.

6. It is now very simple to extract a plot of the material properties, say the equation of sta-
te: 

�� & 
 �����)� �!�-"'�(.
/��%$�'�)��&�

�� �&(�+ 
 �����)� �!�-"'�(.
/��%$�'�)���&(�+�

�� � �*'� 

�� &"%)��&(�+�&�	����

�� ,"���"���%"*#�)' � ()'� $��

�� -"���"���'�((*'� �������

Note that sometimes the data happens to contain various types of noise.  The program
should be robust to handle this most of the time, but if a calculated slope turns out to be
obviously incorrect (this will always be easy to spot), you have the option of “smoothing
the data” by defining a number of interpolation points from the menu.  However, usually
this should not be necessary.



Figure 5.2 The menu based program for processing GREAC–cell data.
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Figure 5.3 Plots of the various results shown on screen by the GREAC–processor.

6 CREATING NEW DATA FOR THE MENU BASED GREAC PROCESSOR.

A result file from the GREAC cell experiments must contain the data in columns separated
by a space.  Each column contains data for a specific quantity.  Comments can be included
in the file by putting a ’%’ in front.  As an example, we’re using the result file
’-���%�
�'%5’, where the first few lines look like this:

� (45 �10531.                  �5%35('                        ,/(�     �����
�����

�          �%.(0'%3  ,/(�      ���������� ������
�

�          �,.( �%/(�          ��# ��# !�"#������������

�          �31&('63( �%/(�     �������� �()%6.5 �31&('63(

�          �2(3%513�           � �

�           (4545%3 �10),*�    ��# ��#������#��������5&&

�

���� �31&(44 �%5%              '%5%$)%*45                     ,/(�     ���������

� ,/(        �(0*5+ �    �13&( �     �.15 �	      �.15 �


��(&         //          -�          /,&31453%,0  /,&31453%,0

���������
 �����	

���� ����
��
	�
 ���		����� ����
��

�

��	������� �����	


��� ��������	� ����
���	� ����	�����



���������� ������������ ���������� ���������� ���������

���������� ����������� ���������� ����������� ����������

���������� ����������� ���������� ���������� ������������

���������� ����������� ���������� ����������� �����������

���������� ����������� ���������� ����������� �����������

���������� ����������� ���������� ����������� �����������

��������� ����������� ��������� ����������� �����������

These datapoints are read into the following Matlab function:
3<1-/
 (���819?=?.2?9
<1-0 (���0->-�8

If one is using another data format, it will become necessary to create a new block in this
file, to be able to read the new format correctly.  This block can be found in the function
<1-0 (���0->-�8�

� ��������������������������������������������������������������

� #-61 - /:;C :2 >45= .7:/6 -90 105> 5> >: -00

� - 91A 2571 2:<8->�

� )41 9-81 :2 >41 2571 2:<8-> 5= =>:<10 41<1�  +:? 8?=> -7=: -00

� >41 9-81 59 >41 @-<5-.71 �2:<8->75=>� 59  (819C,595>�8

�!"��%(#�),$�#� � �!9=1<> 9-81 :2 >41 2571 2:<8-> 41<1��

 52 <-A0->- � =></8;�0->-2:<8->
�!"��%(#�),$�#��

   � &?>= >41 59@1<=1 =;<593 /:9=>-9> :2 >41 8-/4591 >: D1<: .C 012-?7>�

   52 5=25170�=C70->-
�6��

      6 � =C70->-�6�

   17=1

      6 � ��

   190

�  '?-9>5>C                                          *95>        �1=/<5;>5:9

�  ����������������������������������������������������������������������������������

    (���0->-�> � 0->-��
���                         � =          >581

    (���0->-�2D � �0->-��
����1��                   � $          -B5-7 2:</1

    (���0->-�?D � 0->-��
����1�� 	 6� (���0->-�2D�  � 8          -B5-7 05=;7-/1819>

    (���0->-�1;=>1>- � 0->-��
����1���              � =><-59     >-9319>5-7 =><-59

    (���0->-�1;=D � 0->-��
����1���                 � =><-59     -B5-7 =><-59

�  ����������������������������������������������������������������������������������

190

� ����������������������������������������������������������������

Follow the above description.  The data from the result file has been put into the matrix
0->-
 with rows and colums as in the result file.  Now the last part of the block has to be



edited to ensure that data from each column is put into the correct variable.  It is very im-
portant that the data is given in the units specified above.  (For example if the displacement
is given in millimeters, it has to be converted to meters in the variable �����$!2!�37).

The steel cylinder data has to be stored in a file with the extension �16+�  The filename
itself can be chosen arbitrarily.  The following data must be stored:

� Length (m)
! Inner radius (m)
!." Ratio between inner and outer radius (1)
* The inverse of the machine’s spring constant (m/N).  Default value is 0.

The applied units are given in the parantheses.

Use the following command to store the variables:

�� 1!4% &)+-!4-�16+ ! !." � * �,!2

If these are the only variables stored, only thick cylinder theory can be used to process the
data.  To use FEM–calculations, follow the instructions in the next chapter.

7 CALCULATIONS OF STRESSES AND STRAINS FOR USE IN THE FEM–
BASED PROCESSING OF THE GREAC–CELL RESULTS

Here we describe how to create data for use in a FEM–based processing of the the
GREAC–cell test.

The first task is to copy the file /���	,+	'0%!#	,!*%12%%+#6+)-$%0$!2!�,  to your di-
rectory.  Then use a text editor to edit the file and insert data for the steel cylinder.  The file
may look something like this:

� ��������������������� �#0)/2 5()#( /0.$3#%1 $!2! &.0 ������#%++ /0.#%11)-'

� �!+#3+!2%1 0%13+21 &.0 4!0).31 (%)'(21 .& 2(% #.-#0%2%

� �./6 ,!*%12%%+#6+)-$%0$!2!�, 2. 6.30 $)0%#2.06 !-$ ,!*% -%#%11!06

� #(!-'%1 !1 $%1#0)"%$ )- 2(% &)+%�

� �./6 1%2/!0�, 2. 6.30 $)0%#2.06 !-$ %$)2 )2�

� �$!/2 2(% $!2! )-1)$% 2()1 "+.#*

� ��������������������������������������

� �)+%-!,% &.0 12.0%$ $!2! �,312 "% .- 2(% &.0, ��16+�

&)+%-!,% � �12.0�� 
��16+�


� �--%0 0!$)31 .& 2(% 12%%+ #6+)-$%0 �,%2%01�
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This script creates a file with the extension .syl, containing the variables described in Table
7.1.  It is very important to use the units that are given in the table.  (Here E is the elasticity
modulus of the steel, while a is the inner radius of the cylinder. )

The files with extension ��#� are read by the program which processes the GREAC–cell
results based on a FEM–analysis, and have to contain the variables described in Table  7.1
However, if only �� � and ��� are stored, thick cylinder theory can still be used.

Table 7.1 Variables stored in *.syl

Variable Description Unit

 �!
 The shear stress on the inside boundary of the cylinder .E

����
 The radial stress on the inside boundary of the cylinder.E

� The length of the steel cylinder. m

� Inner radius of the steel cylinder. m

��� Ratio between inner and outer radius of the steel cylin-
der.

1

���� ��� �� Vector containing the length of concrete over the length
of steel.

1

��� � ���� ���$�� Tangential and axial strain in the middle of the outside
boundary of the steel cylinder, when only the inner pres-
sure is applied.  These vectors have the same length as
���� ��� ���

1

��� � �� � ���$� Same as ��� � ��� and ���$��� but with applied in-
ner shear stress.

1

!�������� Radial displacement with only applied inner pressure .�

!������� Radial displacement with only applied inner shear
stress.

�

� The inverse spring constant for the test machine.  If not
given, it is by default assumed to be zero.

m/N



7.1 List of registered results and data formats

Results from GREAC cell tests performed at FFI, or  at Imperial College have been adapt-
ed to the GREAC–cell processor.  In Table 7.2 result files with corresponding steel cylin-
der data and data format are given.  On running the GREAC–cell processor, the correct
combinations have to be given.  Notice that the files densit*.prn contain already interpreted
data from Imperial College, which means that no data about the steel cylinder is necessary.
 To enable the use of these data it is also necessary to push the ’Processed data’ button.

Table 7.2 Corresponding result files, steel cylinder data and data formats.

Result file Steel cylinder file Data format

k250a*.dat liten.syl 5 col rawdata

pullen0399_1.prn stor76_2.syl 17 col rawdata

pullen0399_1a.prn stor78_2.syl 17 col rawdata

pullen0399_2.prn stor78_2.syl 17 col rawdata

densit*.prn –––––– processed data 1
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APPENDIX

A THE FINITE ELEMENT METHOD FOR STRESS CALCULATIONS IN A

HOLLOW CYLINDER

The purpose of the finite element method described here is to calculate the stress and strain
distribution in a hollow cylinder that is being loaded from the inside by a given stress.
This stress, which is often referred to as the traction, is assumed to be symmetric around
the cylinder axis, and as a consequence the resulting stresses and strains will have the same
property.  The FEM–code is based on a displacement formulation, which means that the
displacements are the primary unknowns from which strains and stresses are derived.

A.1 The principle of minimum potensial energy.

In a Finite element method, no attempt is made at solving the differential equations of
equilibrium.  Instead the solution is found from an equivalent variation principle.  In this
report, we have chosen to calculate the displacements that correspond to minimum poten-
sial energy.  In our problem, this potensial energy is the elastic strain energy which is ab-
sorbed by the structure when the inside of the cylinder is loaded by a given traction.

Because of the cylindrical symmetry of the problem, it is convenient to use cylindrical co-
ordinates (r,�, z) defined in the conventional manner shown in Figure 8.1.  We note that
due to symmetry requirements there will be no displacements in the angular direction, thus
enabling us to only consider the displacement in the r– and z–direction.  These components
of the displacement vector u are denoted by  u and v.

u � �uv�. (A .1)

We now define the strain matrix, �, in the following way:
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u. (A .2)

By introducing a more compact notation, we can write Equation (A .2) as:

� � �u. (A .3)

Similarly, we define a stress matrix, �, by

� ��
�
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. (A .4)
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Figure 8.1 Hollow cylinder in a cylindrical coordinate system.

This enables us to express Hooke’s law in the following familiar form:

� � E� � E�u, (A .5)

where the elasticity matrix, E, is defined by

E � (1� �)E
(1� �)(1� 2�)
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,

and

f � �
1� �

 ,  g� 1� 2�
2(1� �)

(A .6)

where E is Young’s modulus and � the Poisson ratio.

Our main objective is to calculate the displacement field which gives minimum potensial
energy when a traction � is applied to the the inner surface of the hollow cylinder.  The
potensial energy is known to be given by:

� ��
V

1
2
�

TE�dV��
S

uT
�dS, (A .7)

When � is minimal, a small variation of the displacement field will give zero variation of
the potensial energy:

�� � 0. (A .8)

This condition will be used to determine the displacement field u.



A.2 Formulation of the element method

To apply the finite element method, it is necessary to divide the volume into elements.  In
our problem we are going to use elements with eight degrees of freedom, as is shown in
Figure 9.1.     The four nodes are the easily seen to have two degrees of freedom each, na-
mely the displacement in the r - and z- directions, denoted by ui, and vi  for  i=1,2,3,4 re-
spectively.

1 2

34

�

�

Figure 9.1 Element with four nodes, one in each corner.

A local coordinate system (�,�) is defined for each element, with the elements being qua-
dratic and stretching from –1 to 1 in the   �  and  � directions.  Inside every element we are
going to approximate the displacement field with a linear combination of socalled shape
functions.  These are defined as follows:

N1 �
1
4

(1� �)(1� �) (A .9)

N2 �
1
4

(1� �)(1� �) (A .10)

N3 �
1
4

(1� �)(1� �) (A .11)

N4 �
1
4

(1� �)(1� �). (A .12)

We see that the shape functions Nj are defined to have the value 1 in node j and 0 in all ot-

her nodes.  In addition they are zero at all sides of the element which do not contain node j.
The last property implies that the displacement field (which is created by a linear combina-
tion of the form functions) at one element side only depends on the values of the nodes at
that side.  Since displacements on a common boundary of two elements are found by a li-
near interpolation between the values in the end points of the boundary, we are then gua-
ranteed continuity in the displacement field.



When the displacement field is continuous over the element boundaries and the displace-
ment field inside the elements is unique, we say that the finite element method formulation
is compatible.  This implies that no holes appear and that the unphysical situation of over-
lapping materials is not possible.

The displacement field is created by a linear combination of the four shape functions:

�uv� � �N1

0
N2

0
N3

0
N4

0
0

N1

0
N2

0
N3

0
N4
������
�

�

u1u2u3u4v1v2v3v4

�����

	




. (A .13)

It is easily seen to have the correct values in the node points of the four element corners.
This displacement field can also be considered as a bilinear interpolation between the disp-
lacement values of the four node points.  In a more compact notation, we can write the in-
terpolation as

u ����
N0[1�4]

0[1�4]

0[1�4]

N0[1�4]
�	

�vu[4�1]

vv[4�1
� � N[2�8]v[8�1], (A .14)

In the column vector v, the eight degrees of freedom of the element are gathered, and it is
therefore called the element degree of freedom vector.  The matrix N is called the shape
function matrix.

From Equation (A .3) we now find the strains in the elements as

� � �u � (�N)v. (A .15)

This can be written as:

� � Bv, (A .16)

where B is called the strain–displacement matrix, which can be found by letting the opera-
tors in the matrix � of Equation (A .2) work on N.  

However, before this is possible we have to relate the local �� coordinate system to the
global rz system.  Since the geometry in our problem is very simple, we can let the �–axis
be parallell with the r–axis and the �–axis parallell with the z–axis for all elements.  In ad-
dition, all the elements are given the same size, i.e. length 2a in radial direction and 2b in
axial direction, so that

�
�r �

1
a
�
��

    ,     ��z�
1
b
�
�� (A .17)

If the geometry had been more complicated, we could have applied the theory of isopara-
metrical elements.  See Chapter 6 of (2) for more information.  The strain–displacement
matrix B is now found to be given by:



B �

��������
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1
a
�
��

N0

1
rm� a�

N0

0

1
b
�
��N0

0

0

1
b
�
��N0

1
a
�
��

N0

��������

�

�[4�8]

. (A .18)

Here rm is the distance between the symmetry axis and the origin of the local coordinate
system of the element.  The final expression for B is now easily found from the definitions
given  in Equations (A .9)–(A .12), and is therefore not reproduced here.

We now consider the strain energy (first integral of Equation (A .7)).   Using Equation
(A .16), the strain energy from an element filling a volume Ve, can then be expressed as:

1
2
�
Ve

�
TE�dV � 1

2
vT��
�

	
�
Ve

BTEBdV��



�
v � 1

2
vTkv. (A .19)

The new matrix k is called the element stiffness matrix and has dimension 8� 8, i.e. it
has equally many rows and colums as the element has degrees of freedom.

The work which is done by the traction on the element (second integral in Equation
(A .7)), can be expressed as:

�
Se

uT
�dS� vT�

Se

NT
�dS� vTr e, (A .20)

where r e is called the element load vector and Seis the element surface.

We have now found an expression for the potensial energy for each element.  The total
strain energy is found by summing the contributions of all elements.  This is called as-
sembling:

� � 1
2
�

n

[v]T
n[k]n[v]n � [v]T

n[r e]n (A .21)

The index n is called the element number, and the summation runs over all the elements of
the problem.  We are now able to collect all the degrees of freedom of the problem in a
vector D, all the element stiffness matrices in a structural stiffness matrix K , and the ele-
ment load vectors in a structural load vector R.  It is beyond the scope of this report to
describe how this is done in practice, so we just refer the interested reader to Chapter 2 of
(2) for a more thorough treatment of the assembly technique.

Anyway, Equation (A .21) can eventually be written on the following form:



� � 1
2

DTKD � DTR. (A .22)

We now return to our initial problem of  finding the displacements which make the poten-
sial energy stationary.  In our new notation this comes down to finding the components Dj

of the column vector D that obey

��
�Dj

� 0. (A .23)

On differentiating Equation (A .22), we then obtain the following matrix equation:

KD � R. (A .24)

Finally, this equation is solved for D.

It is now clear why K  is called the stiffness matrix.  Larger values in K  implies that larger
loads (the elements of R) must be applied to obtain a given displacement (the elements of
D).

We have skipped a couple of points in this simplified derivation.  First, at least one point of
the cylinder has to be restrained from moving in the axial direction.  This is because all so-
lutions with constant displacement in the axial direction will satisfy Equation (A .24), and
these solutions are of no interest to us.   We can achieve this in several ways, and for the
toolbox the method of socalled Lagrange multiplicatiors has been chosen.  See Chapter 9.2
of (2) for more information.

Another important point is how to calculate the element stiffness matrix k.  Since our pro-
blem is quite simple, we are able to find an explicit expression for k, since only integrals
of polynoms are involved.  It is, however, easier to calculate k numericalled by using a
2� 2 Gaussian quadrature, and it can be shown that for our problem this is sufficient to
calculate k exactly.  See Chapter 6 of (2) for a thorough introduction to the theory of choo-
sing quadrature for numerical calculations of the stiffness matrix.
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