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Abstract 
 

The concepts dark matter and dark energy are commonly used to explain the universe. 
The dark energy can be conceived as a property of vacuum or the ether. However, a 
quite different but also common approach is to modify the equations of gravity. Besides 
the cosmological constant, modifying the Einstein equations is mathematically 
challenging within the traditional framework of metric theories of gravity. Such an 
approach is mathematically much easier within the Newtonian framework such as for 
example utilized for MOND; i.e. a specific modification of the Newtonian dynamics 
whenever the gravitational acceleration falls below a critical value. In this article we 
apply that the vacuum energy (LIVE) in addition to applying a negative pressure of the 
universe also modifies gravity. We modify gravity from the well known concept of 
Newtonian cosmology of an isotropic and homogeneous expanding universe. We 
modify gravity by applying an S^3 space instead of E^3 as background geometry in 
accordance with some newly published quasi metric theories. 
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1 Introduction 
The inflation theory says that the present universe should be extreme flat (that means 
Euclidean). Indeed, observations of the temperature variations in the cosmic 
background radiation indicate that space is extreme flat. However, an estimate based on 
the number of galaxies and their average mass only takes a value of about 4% of the 
mass necessary to achieve this flatness. The observational evidence for the existence of 
dark matter (DM) is based on the interpretations of astronomical data coming from 
rotational galaxies, galactic hopes and gravitational lensing to account for 26% of the 
missing mass (Jullo et al. 2010). The concept of dark energy (DE) is a more recent well 
known approach for explaining the universe on a cosmological scale. DE is considered 
to constitute the missing 70% (100-4-26) of the energy or mass (energy = m c^2) in the 
universe. Recent experimental evidence from supernovas of type 1a indicates that the 
universe indeed expands faster and faster (http:// www-supernova.1bl.gov/). DE will 
explain this also.  

Although the concept of DM is an acknowledged part of the modern science world 
view, some particular galactic phenomenology, including spiral galaxy rotation curves 
seems to challenge the DM hypothesis. DE provides negative pressure (stretch) in the 
universe. This motivates our approach trying to modify the equations of gravity due to 
vacuum energy. However, beside the cosmological constant, modifying the Einstein 
equations is hard to do within the traditional framework of metric theories of gravity 
(Aguirre et al. 2001, Østvang 2007). Such an approach is mathematically much easier 
within the Newtonian approach such as for example utilized for MOND; i.e. a specific 
modification of the Newtonian dynamics whenever the gravitational acceleration falls 
below a critical value. 

In a homogeneous and isotropic universe local knowledge is global knowledge. Our 
approach in this article is to modify gravity from the well known and so called 
Newtonian cosmology. This cosmology is conceptually based on the Robertson–Walker 
expanding universe for an isotropic and homogeneous universe (Bondi 1961). This 
could indeed be a fruitful exercise since Narlicar (1994) showed that the equivalence of 
the cosmological and gravitational spectral shift with the pure Newtonian Doppler 
interpretation can be established provided one parallel transfers the source four vector 
velocity along the null geodesic to the observer. Obviously so far the concept 
Newtonian cosmology is applicable, and the red shift of the expanding universe can be 
considered as Doppler. However, Bunn and Hogg (2009) argued that even in the 
context of the relativistic theory, a free falling co-moving observer corresponds to the 
case where the cosmological expansion can be considered as Doppler. 
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As pointed out by Ehrenfest (1917) neither classical nor planetary orbits can be 

stable in space with dimensions larger than three, and traditional quantum atoms can not 
be stable either (Tangherlini 1963). Many superstring theories have several stable states 
that constitute different effective low-energy theories with different space-time 
dimensionalities (Albrecht 1994). 

There are inflationary models predicting a universe consisting of parts of 
exponentially large size having different dimensionality (Linde and Zelnikov 1988). In 
response to the persistent problem of why the Planck scale is 16 orders of magnitude 
higher than the electroweak scale, the existence of extra dimensions has been suggested. 
These new dimensions are suggested to be as large as millimeters if one supposes that 
the field of matter lives in a 3 (space) +1 (time) dimensional hyper surface of the 3-
brane and that only gravity can befit from new dimensions. The possibility of extra 
dimensions would be beneficial for the production of black holes since the Planck scale 
is reduced to accessible values and the Schwarzschild radius is significantly increased 
(Arkani-Hamed et al. 1998, Barrau et al. 2004). However, it has been argued that all but 
3 (space) +1 (time) dimensional space times might correspond to “dead worlds” devoid 
of observers (Tegmark 1997) due to stability and predictability. 

Recently a non metric space time theory has been presented (Østvang 2002, 2005, 
2006, 2007). The theory is based on an 3R S× background rather than a Minkowski 
background ( 3R E× ) as the geometry of the universe without matter. In the quasi metric 
theory the mathematical modeling of the Hubble expansion is indeed different from 
those in metric theories. Within the quasi metric theory the canonical description of 
space time is taken. Some field equations were postulated, but they follow naturally 
from the conception of the Newton-Cartan theory. Somewhat similar to the Newtonian 
theory the field equations were only partially coupled to the space time geometry. In 
this paper we follow a quasi metric approach. We build the theory on the concept of 
Newtonian (-Cartan) cosmology. Analogous to Østvang we use the 3R S× instead of 

3R E×  as a background geometry for gravitation. 
In section 2 we as an introduction recapture some facts related to the cosmological 

constant and the Friedman models. In section 3 we present the concept of the 
Newtonian cosmology. In section 4 we expand the Newtonian cosmology to account for 

3R S×  instead for 3R E× . Section 5 concludes. 
 
2 The Einstein Equations and the Friedman cosmological models 
 
The Einstein equation is obtained from the principle of least action applied on the 
Hilbert action. The matter action mS  is given by 
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1/ 21def

mS g d
c

= Λ Ω∫                                                                                                                                 (2.1) 

where “def” means definition. The integration is over all time and space. c is the speed 
of light. Λ  is the Lagrangian density. ijg  is the metric tensor. g is the determinant of 

the metric tensor. It follows that  

( ) ( ) ( )
( ) ( )
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∫ ∫
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          (2.2) 

where ijT  is the energy-momentum tensor.  

For macroscopic bodies we have 

( )
mod

ij i j ijT e p u u p g= + −                                                                                                                         (2.3) 

where ”mod” means model assumption. iu  is the unit four vector, e is the energy 
density and p is the pressure. Pure Lorentz invariant vacuum energy (LIVE) is defined 
by ij ijT p g= − . This gives from equation (2.3) that e p= −  and then it follows that 

ij ijT e g= .  

For the gravitational field the action is given by  
3

1/ 2( )
16

def

g
cS R g d

Gπ
= − − Ω∫  (2.4) 

G  is the gravitational constant and R is the scalar curvature of space-time. The 
variation gives that (Landau and Lifshitz 1980) 

( )
3

1/ 21
16 2

ij
g ij ij

cS R g R g g d
G

δ δ
π

⎛ ⎞= − − − Ω⎜ ⎟
⎝ ⎠∫                                                                            (2.5) 

Then from 0
mod

g mS Sδ δ+ =  the Einstein equation follows as  

4
1 8
2ij ij ij

GR g R T
c
π

− =                                                                                                                              (2.6) 

The Einstein equation is equivalent to a coupled system of non-linear second order 
partial differential equations for the space-time metric components. One must solve 
simultaneously for the space-time metric and the matter distribution. 

In order to handle problems in cosmology there have been many attempts to modify 
the Einstein equation. The most popular version is to add a cosmological constant term 
in the  
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action integral for the field equation. This was initially suggested by Einstein to save 
Mach’s principle (or more precisely to “save” Mach’s principle as he interpreted it). 
Following Mach’s lead Einstein expected that the mass distribution should set inertial 
frames. However, the Minkowski static space-time solution on the Einstein equations 
without matter and cosmological constant was indeed the most clearly anti-Machian 
space-time possible1. However, then de Sitter (1917) showed that in fact a static 
solution could be found without matter even with a cosmological constant (de Sitters 
universe). 

The gravitation action with the cosmological constant is  

( )
3

1/ 22 ( )
16g

cS R g d
G

λ
π

= − + − Ω∫                                                                                                  (2.7) 

This gives the Einstein equation with the cosmological constant, to read  

4
1 8
2ij ij ij ij

GR g R T g
c
π λ− = +                                                                                                                 (2.8) 

If one ascribes a small value to the cosmological constant, the presence of this term will 
not significantly affect gravitation over too large distances of space time, but will lead 
to the appearance of new types of cosmological solutions which could describe the 
universe as a whole.  

Friedman (1924) found a class of cosmological models. The models are simple 
because they assume at the outset that the universe is isotropic and spatially 
homogenous. The line element can be written as  

( )
2

2 2 2 2 2 2 2 2
2( )

1
drds c dt a t r Sin d d

kr
θ ϕ θ

⎛ ⎞
= − + +⎜ ⎟⎜ ⎟−⎝ ⎠

                                                                  (2.9) 

where k=1 for a closed spherical model. For the open model k=-1 and for the flat model 
k=0. 
The universe expands or contracts as the curvature radius a(t) increases or decreases. A 
change in a(t) leads to a change in all distances between bodies in space. Thus as a(t) 
increases, the bodies in such a space move away from each other. From the point of 
view of an observer located on one of the bodies, it will appear as if this moving away 
at a given time is proportional to the separation of the bodies. This is in agreement with 
Hubble’s law. 

Inserting the metric in equation (2.9) into equation (2.8) one readily finds that 
(Landau and Lifshitz 1980) 
                                                           
1 Einstein in a letter to de Sitter of March 24, 1917: In my opinion it would be dissatisfying, it there were 
a conceivable world without matter. The ijg  field should rather be determined by the matter, and not 

able to exist without matter. This is the heart of what I understand by the demand for the relativity of 
inertia. One could just as well speak of the “material conditionedness of geometry”. As long as this 
demand was not fulfilled, for me the goal of general relativity was not yet completely achieved. This was 
first achieved through the introduction of the λ  term. (See Barbour and Pfister (1995) for more details.) 
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+
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&
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                                                                   (2.10) 

One can consider different types of models (or combinations of models) for the 
universe, to read 

) : 0
1) :
3

) :

) ( ) :

mod

mod

mod

mod

a Dust p

b Relativistic gas p e

c Higgs energy p we

d Dark energy LIVE p e

=

=

=

= −

                                                                                                     (2.11) 

Inserting into equation (2.10b) gives that  
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+
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                  (2.12) 

Thus for LIVE 0ij ijT e g= . This has the same effect as adding a term 0 28
3
Ge
c

π  to the 

Einstein equation to achieve an effective cosmological constant; i.e. 04
8def

eff
G e

c
πλ λ= +  

as seen in equation (2.8) or (2.10). Equivalently one could say that the Einstein 

cosmological constant contributes a term 
4

0 8
ce
G

λ
π

=  to the vacuum energy (Weinberg 

1989). 

The Hubble constant is defined by ( ) / ( )
def

H a t a t= & . Inserting into equation (2.10a) 
gives  

2 2 2 2 2
2 2

2 2 2 2 2
( ) 8 8( ) ( )

3 3( ) ( ) 3 ( ) 3
a t k c G c k c G cH e t e t H
a t a t c a t c

π λ π λ
= = − + + ⇒ = + −
&

                         (2.13) 
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We observe that the curvature of space is negative or positive according to the term 

2
2

2
8 ( )

33
G ce t H

c
π λ

+ − . The difference comes to zero when 
2

2
2

8 ( ) 0
33

G ce t H
c
π λ

+ − = . 

This gives the critical energy ke  as  
2 4

23
8 8

def

k
c ce H
G G

λ
π π

= −                                                                                                                         (2.14) 

The experimental value of the Hubble constant H is hampered by the uncertainty in 
establishing a scale of cosmic distances suitable for distant galaxies. The latest value is 

H= 0.25 10^(-17)/s. This gives a critical energy of 2 23 31.010 /kc e kg m−= . However, an 
estimate based on the number of galaxies and their average mass only takes a value of 
about 4% of this value. The observational evidence for DM is based on the 
interpretations of astronomical data coming from rotational galaxies, galactic hopes and 
gravitational lensing to account for 26% of the missing energy (Jullo et al. 2010). 
The Friedman models possess some problems. First t=0 could be a singular point of the 
energy density2. Another problem is the so called horizon problem: The horizon radius 
was much less than the radius of the universe when photons of the background radiation 
became free. Thus the current observed homogeneity and isotropy of the cosmic 
background radiation has no natural explanation. A final problem is the flatness 
problem. From the Friedman solutions it follows that (e – ek) / ek ~ 1. Observations 
today give that (e – ek) / ek ~ 1. The age of the universe is around 10^60 Planck lengths 

( 2 1/ 2(8 / 3 )Pt Ge cπ −= ). The model does not explain why the density initially was so 
incredibly near the critical one.  

The inflation theory can solve these problems. The inflation theory assumes that for 
the early phase of the universe e is constant. This gives an exponential expansion rate of 
the universe. The energy density is not singular initially. However, the initial value of 
the expansion rate for a=0 is problematic unless k=0 or k=-1. Any exponential 
expansion leads to a rapid increase in the cosmological horizon over which causal 
signals can propagate. Thus the present isotropy and homogeneity of the universe could 
be explained since the distance which causality can propagate has been exponentially 
increased at an early moment. Finally any period of exponential expansion during for 
example 100 Planck times with constant e will result in the curvature term k c^2/2 
becoming negligible with respect to the second term of the left side of equation (2.10a). 
This gives an explanation for the flatness of the universe. 

The inflation theory a concrete prediction: that the present universe should be  

                                                           
2 This can be “solved” by assuming that for times less than the Planck time quantum effects must be 
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extreme flat (Euclidean). Observations of the temperature variations in the cosmic 
background radiation indicate that space is extreme flat. However, the estimate based on 
the number of galaxies and their average mass only takes a value of about 4% of the 
mass necessary to achieve this flatness. The observational evidence for the existence of 
DM is based on the interpretations of astronomical data coming from rotational 
galaxies, galactic hopes and gravitational lensing to account for 26% of the missing 
energy (Jullo et al. 2010). DE is hypothesized to constitute the missing 70% (100-4-26) 
of the gravitational energy (energy = m c^2) in the universe. Recently experimental 
evidence from supernovas of type 1a indicates that the universe expands faster and 
faster (http://www-supernova.1bl.gov/). To account for this it is assumed that the 
cosmological constant is representative for DE of the type LIVE. It was fond by 
gravitational lensing that 1.04 0.88w− ≤ ≤ − . This suggests that DE of the type LIVE is 
indeed possible. 
 
3 Newtonian cosmology on 3R E×  
 
Narlicar (1994) showed that the equivalence of the cosmological and gravitational 
spectral shift and the classical Doppler interpretation can be established provided one 
parallel transfers the source four vector velocity along the null geodesic to the observer. 
Bunn and Hogg (2009) argued that the commonly chosen free falling co-moving 
observers in cosmology correspond to the case where the cosmological expansion can 
be considered as Doppler. Equation (2.10) can also be given a pure non relativistic 
classical interpretation picture. 

It is convenient to define 3 2( ) (4 / 3) ( ) ( ) /
def

M t a t e t cπ= . Equation (2.10a) can be 
written as  

2 2
2 21 ( )( ) ( )

2 ( ) 2 6
GM t k c ca t a t

a t
λ

− = − +&                                                                                               (3.1) 

Equation (2.10) or (3.10) can be given a classical interpretation within the Newtonian 
cosmology: kinetic + gravitational (potential) energy in the universe per unit mass is 

equal to 
2 2

2( )
2 6

kc c a tλ
− + . When λ =0 and with dust (M is constant) the kinetic + 

potential energy would be constant. When λ =0 we see that the kinetic + potential 
energy is negative when k is positive. That means a closed solution of the universe and 
also a finite expansion of the universe. Notice that (3.1) per se fails to explain whether 
the universe is open or closed. When k is negative the universe is open and will expand 
for all times. Newtonian cosmology fails to provide an explanation for why the term on  
                                                                                                                                                                          
taken into account. 



 

On the Big Bang cosmology as a kinematic event                                                      637 
 
the right side in equation (3.1) must be like this. For dust we see that the kinetic energy 

term 21 ( )
2

a t&  approaches infinity when ( )a t&  approaches zero. For the inflation theory 

when e is constant we find  
2 2 2

2 2 2 2
2

1 4 1( ) ( ) ( ) , ( ) 0 ( )
2 3 2 6 2 2

G k c c k ca t a t e a t a t a t
c

λπ− = − + → ⇒ →−& &                          (3.2) 

This gives and expansion rate of c if k =-1. 
Equation (2.10b) can also be given a classical interpretation. It simply expresses that 

the universe expands isentropically. Let dU be the change in energy of a system. V is 
the volume. S is the entropy and T is the temperature of the universe. We have that  

, /
def

dU pdV TdS e U V= − + =                                                                                             (3.3) 
For isentropic expansion we have that dS =0. Then from equation (3.3) 

( )2 2/ / / / /de dU V U V dV pdV V U V dV p e dV V= − = − − = − +                                           (3.4) 

The volume of a space of negative or zero curvature is infinite. However we apply in 
general that  

/ 3 /
mod

dV V da a=                                                                                                                                      (3.5) 
Thus 

( )
( ) ( ) ( )

/ 3 / 3 /

/ 3 / 3 /

dV V da a de p e da a

de p e dV V p e da a e p e a a

= ⇒ = − +

= − + = − + ⇒ = − +& &
                                                    (3.6) 

The isentropic expansion equation can indeed be developed directly from the Einstein 
equation by applying that 0; 0i

jT = . 

 
4 Newtonian cosmology expanded to 3R S×  
 
Recently a non metric space time framework has been presented (Østvang 2002, 2005, 
2006, 2007). The theory is based on a 3R S×  background rather than a Minkowski 
background as the geometry of the universe without matter. We follow the concept of a 
quasi metric theory. We build our theory on the concept of Newtonian cosmology. In 

particular we use the 3S  instead of 3E  to construct gravitational energy. Equation 
(2.10a) can be written as  

2 2
2 3 2

2
1 4 ( )( ) ( ) ( )
2 3 ( ) 2 6
Kinetic Volume Gravitational
energy energy per
per mass volume per mass

G e t k c ca t a t a t
a tc

λπ− = − +&
123 14243 14243

                                                                  (4.1) 

The gravitational energy shows the 1/a dependency and the term with the cosmological  
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constant shows a^2 dependency. We can form the following familiar differential 
equation for the gravitational potential, to read 

2
2

2
2 1( ) ( )r r
r r rr

ϕ ϕϕ δ ϕ ϕ∂ ∂
∇ = + = − ⇒ = =

∂∂
                                                                                   (4.2) 

where ( )rδ  is the Dirac delta function such that 24 ( ) 1r r drπ δ =∫ . We now write  

( )

( )

2 2
2 3 2

2
1 4( ) ( ) ( ) ( ), ( ) ( ) , ( )
2 3 2 6

3 ( ) ( ) ( )
( ) , ( )

( )

G k c ca t a t e t e t a t a t a
c

e t p t a t
e t b

a t

λπ ϕ− = − +

+
= −

&

&
&

                                            (4.3) 

We seek an equation for ( )ϕ  which would close the equation set if an equation of state 

( ),p p e a= is given. The concept of LIVE means to apply that 0p e= − . This gives the 

cosmological constant   04
8 G e

c
πλ =  in equation (4.1). However we apply that LIVE 

also modifies equation (4.2). 
We formulate the Newtonian cosmology on 3R S×  instead of the traditional 3R E× .  

We solve the Poisson equation on 3S of radius 1/ξ , to read instead of equation (4.2) 

( )
2

2 2 2 2 2
2

2(1 ) 1 ( ), 1
mod

r r r r r
r rr

ϕ ϕξ ξ ξ δ ξ∂ ∂ ⎛ ⎞− + − + − = − <⎜ ⎟∂∂ ⎝ ⎠
                                                  (4.4) 

1/ξ  is the radius of an 3S  sphere. When 0ξ →  (i.e. without LIVE) we achieve 
equation (4.2). The solution of equation (4.4) is readily verified to be 

( )1/ 22 21( ) 1r r
r

ϕ ξ= − . The gravitation 1/r potential is thus weakened by the term 

( )1/ 22 21 rξ− . This term applies as long as 2 2rξ  < 1. Thus we write  

( )
( )1/ 22 21 ( )

( ) , ( ) 1
( )

a t
a t a t

a t

ξ
ϕ ξ

−
= <                                                                                              (4.5) 

We observe that when the cosmological radius ( )a t  is comparable to 1/ξ  this would 
modify the 1/a(t) relationship. We can write that  

( )

( )

1/ 22 2 2 2
2 3 2

2

1 ( )1 4( ) ( ) ( ) ( ) , ( ) 1
2 3 ( ) 2 6

3 ( ) ( ) ( )
( )

( )

a tG k c ca t a t e t a t a t
a tc

e t p t a t
e t

a t

ξ λπ ξ
−

− = − + <

+
= −

&

&
&

                            (4.6) 

This gives a critical energy density as  
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( )
2 4

2
1/ 22 2

3'
88 1

k
c ce H

GG a

λ
ππ ξ

= −
−

                                                                                                 (4.7) 

The concept of LIVE is based on an attempt to fit the critical energy density to empirics 
by applying the cosmological constant. However, by applying the parameter ξ  we have 
an additional constant to fit. This will allow more flexibility. 

 

For 2 2aξ  << 1, we could write that ( )1/ 22 2 2 21 1 1/ 2a aξ ξ− ≈ − . Thus 

 
2 2

2 2 2

22
2 2

2

1 ( ) ( )( ) ( ) ( )
2 ( ) 2 6 2

3 ( )( ) , 1
2 6 ( )

defeff
eff

GM t k c c GM ta t a t a t
a t

ck c GM ta t
c a t

λ ξ

λ
λ λ ξ

− ≈ − + −

⎛ ⎞
= − + = −⎜ ⎟⎜ ⎟

⎝ ⎠

&

                                                               (4.8) 

 
This gives a cosmological constant that decreases with time for an increasing size of the 
universe.  

The quasi metric approach cuts the link between the gravitational field and the metric 
of space time. Thus a space time universe with density above the critical density for 
small times or little expansion could adjust to under the critical density for larger times 
or expansions even for a constant energy of the universe 3. We could also use ξ  to fine 
tune the effective cosmological constant (Weinberg 1989).  
 
 

5 Conclusion 
 
Besides the cosmological constant, modifying the Einstein equations is hard to do 
within the traditional framework of metric theories of gravity. Such an approach is 
mathematically much easier within the Newtonian approach such as for example 
utilized for MOND; i.e. a specific modification of the Newtonian dynamics whenever 
the gravitational acceleration falls below a critical value. In a homogeneous and 
isotropic universe local knowledge is global knowledge and Newtonian cosmology can 
fruitfully be used. Analogously to the recently published quasi metric theory, we modify 
gravity due to LIVE by applying 3R S×  instead of 3R E× as the basic geometric 
structure. However, we build our theory on the concept of Newtonian cosmology. We 
find that a space time universe with density above the critical density for small times  

                                                           
3 A possible interpretation could also be that that a space time universe which is closed would open up as 
it enlarges even for a constant energy of the space time universe. 
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could adjust to under the critical density for larger times even for a constant energy of 
the universe. We could also use the extra flexibility of 3S  as an effective cosmological 
constant. Effectively we thus can perceive a cosmological constant that decreases with 
time. 
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