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English summary

Mobile Ad-hoc Network (MANET) technology have proved to be a very useful tool for meeting
the tactical battlefield communication requirements and is crucial in the future soldier networking
environment. Automatic discovery of services and resources is an important feature to achieve the
expected user-friendliness in such networks. Due to limited computing power, scarce bandwidth,
high mobility and the lack of a central coordinating entity, service discovery in these networks is a
challenging task.

In this report, a service discovery protocol (Mercury) is developed utilizing a combination of dif-
ferent optimization techniques: The performance is increased using cross-layer interaction between
the application layer and the routing layer. The service information is described using Bloom filters
and distributed using Optimized Link State Routing (OLSR). A caching scheme is implemented to
obtain further reductions of both overhead and latency.

The analysis and simulation results show that the service discovery proposal induces very low ove-
rhead to OLSR and is superior to application-layer solutions. The proposal is implemented as a
plugin to the OLSR implementation olsrd for real-world MANETs and soldier system deployments.
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Sammendrag

Mobile ad-hoc nettverk (MANETs) er et meget viktig verktøy for å løse flere utfordringer i taktiske
millitære nettverk og er er en nødvendig del av fremtidens soldat-nettverk. Å automatisk kunne
oppdage tjenester og ressurser i slike nettverk er viktig for å kunne gi god brukervennlighet. Men
grunnet begrenset datakraft, lav båndbredde, høy grad av mobilitet og mangelen på en sentral koor-
dinerende entitet, er ”service discovery” i slike nettverk komplisert.

Denne rapporten beskriver blir en ”‘service discovery” protokoll for MANETs generelt og soldat-
systemer spesielt. Protokollen er utviklet ved hjelp av en rekke optimaliseringsteknikker: Ytelsen
er forbedret ved hjelp av å utnytte interaksjon mellom applikasjonslaget og nettverkslaget. Dernest
er tjenesteinformasjon beskrevet ved hjelp av ”Bloom filtre” og distribuert med rutingprotokollen
Optimized Link State Routing (OLSR). Ved hjelp av lokal lagring av tjenesteinformasjonen oppnås
ytterligere reduskjon av kontrolltraffikk og tjenseste-oppdagelses-tid.

Analyse og simuleringsresultater viser at den foreslåtte protokollen medfører meget liten økning i
OLSR kontrolltrafikk, og er ytelsesmessig overlegen tradisjonelle applikasjonslags-løsninger. Pro-
tokollen er implementert som en plug-in til OLSR implementasjonen olsrd.
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Preface

This report is largely based on the Master Thesis “Service Discovery in Mobile Ad-hoc Networks”,
written as a part of Joakim Flathagens master degree in Computer Science at the University of Oslo.
The content in this report is therefore—with small additions and changes—similar to the thesis.
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1 Introduction

This chapter gives an overview of the motivation behind the report and introduces the latest advances
in technology that takes part in the research area. The detailed technical background is given in the
subsequent two chapters.

1.1 Motivation

The research in this report is motivated both by previous research done on mobile computing by the
Information and Communication group at the University Graduate Center at Kjeller, Norway (UniK)
and by the work done at the Norwegian Defence Research Establishment (FFI). While UniK has
been doing research on the latest advances in mobile computing, FFI has been working on providing
wearable computing for soldiers. The benefits by equipping every soldier in the battlefield with
mobile computers, sensors, navigation equipment and radios are indisputable to increase situational
awareness and to reduce fratricide. FFI has recommended the NORMANS1 concept to provide these
capabilities [59].

However, without a proper design, all the technology could end up being a major logistics– and
network administrative challenge and a huge frustration for the individual soldier. It should therefore
be of paramount interest to every engineer, researcher and network designer to seek to create systems
that prevents errors through an intuitive and user-friendly design.

Soldiers are not the only group that demands portable, robust and networked control systems. The
disaster of 9/11, the Hurricane Katrina, and the Asian Tsunami in 2004 have highlighted the need
for first responders from different departments and agencies to have common interoperable commu-
nication links [67]. Researchers are therefore developing solutions to achieve network connectivity
between mobile nodes both in the tactical domain [85], and in the civilian domain [54]. Both areas
share the same challenges: High degree of mobility, unpredictable environments and wide range of
users—operating in stressed situations.

In such demanding environments, failures are prone to arise. Errors in the original design often
leads to human errors—which in turn leads to technical errors and communication failures [68].
One should strive to create a design that hides complexity from the user and therefore reduces the
number of failures [72]. A better design also facilitates training [104].

From the network perspective, the term better design means robust protocols that performs back-
ground processing to automate trivial tasks in order to let the user concentrate on his/her main
objective.

1Norwegian Modular Advanced Network Soldier
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To create a well-designed network for demanding customers—such as firefighters, policemen and
soldiers—I envision an element of auto-configuration to be inevitable. User-friendliness through
auto-configuration is in fact the main motivation behind the work in this report. A toolbox of stan-
dards, products and ideas has recently emerged to facilitate this task. The rest of this chapter intro-
duces some of them and presents the subject of the report.

1.2 Overview

1.2.1 Mobile devices

During the last few years, the world of personal computing has seen a paradigm shift. Technology
that was until recently available only by the military or in research labs is now a common part of
our everyday life. Mobile devices are gaining popularity both in business and for leisure and users
can access a myriad of information on demand. A tourist visiting a foreign city can easily check
the email, perform a video conference, download electronic maps and browse for the closest sushi
restaurant using a mere handheld device. The change-over is happening thanks to all the research
done in the terms of microelectronics, wireless devices and software technology during the last
decades.

However, not only humans connect. The trend is towards increasingly interconnected networks
where electric radiators, vehicles, traffic lights, burglar alarms, biometric monitors, vending ma-
chines and lots of other small devices in the environment communicate in pervasive computing.

While we are moving towards a world where more and more devices and people are interconnected,
we observe that in the same time—as more people embrace the technology—the average user tend
to be less sophisticated. More important, the user is less concerned about the inner functions of the
network technology and more interested in using the system as a tool [72]. Again—the need for
auto-configurable systems and protocols seem inevitable.

1.2.2 Mobile networks

One step in the process to achieve auto-configurable systems is to make the devices able to dyna-
mically form networks—without the use of any preexisting infrastructure such as fixed antennas,
access points and repeaters.

Mobile Ad-hoc Network (MANET) technology is a useful tool both to establish the networks–
without any infrastructure or system administrator—and to enable communication between any pair
of nodes in those networks. In order to facilitate those two functions, a special routing protocol is
employed. The purpose of the routing protocol is to discover rapid changes of the topology in such
a way that intermediate nodes can act as routers to forward packets on behalf of the communicating
pair.

12 FFI-rapport 2008/02090
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Figure 1.1: Service discovery let the devices find applications and services in the network
automatically—without and user-intervention.

Early ad-hoc research was mainly aimed at military networks. But, now this technology is attractive
to a wide area of applications: Search and rescue operations, vehicle to vehicle networks, tactical
networks, virtual classrooms, entertainment and sensor networks are all areas where great benefit
can be achieved using the flexibility, ease of maintenance, auto-configuration, and the cost advan-
tages of MANETs.

1.2.3 Services

A mobile network normally consists of users with different roles, various types of equipment, dif-
ferent applications, a handful of sensors, and some shared resources. A way to hide the apparent
complexity from the user is to describe all these elements as services which can be shared and
accessed automatically regardless of their location and ownership.

A service discovery architecture let the devices both discover and take use of services in the network,
as well as advertise their own capabilities (Figure 1.1). This happens without forcing the user to enter
IP-addresses, passwords, user names or other attribute values.

The automatic discovery of services and resources is therefore a crucial feature to achieve the ex-
pected user-friendliness of mobile ad-hoc networks.

1.3 Problem statement

Both Ad-hoc Networks and the task to discover services in various networks have been subject to
much research. Both areas are associated with several challenges, and the subject to create service
discovey in the soldier networking environment is far from a trivial task.

FFI has in previous research evaluated different service discovery tecniques for the network based
defence in [47]. The idea to provide service discovery on the soldier level was initiated in [75] and
an introduction to the research area was given in [27].

FFI-rapport 2008/02090 13



1.4 Report layout

The report is organized as follows:

Chapter 2 gives some background information about mobile ad-hoc networks and general service
discovery solutions. The chapter also introduces the taxonomy used to classify the different
service discovery architectures.

Chapter 3 gives an introduction about some proposed service discovery techniques for mobile ad-
hoc networks.

Chapter 4 introduces Mercury—the service discovery protocol proposed and developed in this
report.

Chapter 5 addresses different evaluation methods used in ad-hoc network analysis.

Chapter 6 describes the implementation of Mercury for the network simulator ns-2.

Chapter 7 describes the implementation of Mercury for real-world usage.

Chapter 8 describes my choice of simulation and validation methods and evaluates a scenario ba-
sed on real-world traces.

Chapter 9 tests the most prominent features of Mercury by simulation.

Chapter 10 concludes the report and suggests future work.

2 Background

The contribution of the research described in this report is to combine two technologies: Ad-hoc
networks and service discovery. This chapter first presents routing protocols for mobile ad-hoc Net-
works. Then, different generic service discovery protocols are presented.

2.1 Mobile Ad-hoc Networks

A Mobile Ad-hoc Network (MANET) is a collection of mobile nodes connected by wireless links
able to dynamically form an autonomous multi-hop radio network—without the use of any pre-
existing infrastructure. Intermediate nodes in a MANET can act as routers to forward packets on
behalf of other nodes. With their self-forming nature and their ability to cope with rapid changes of
the topology, ad-hoc networks are attractive to a variety of applications.

However, it is worth noting that ad-hoc networking introduces a great many challenges and impe-
ratives, and also adopts the side effects of wireless computing [17]. Wireless links are significantly

14 FFI-rapport 2008/02090



less reliable than wired media, they have unpredictable signal quality and transmission range, the
channel can be time-varying and possible asymmetric, and the wireless link suffer from security pro-
blems not found in wired networks. Further, the multhop nature in MANETs introduces challenges
due to the topology dynamics, heterogeneity, variations of node availability and power constrains.

This puts tough requirements to the chosen MANET routing protocol. Traditional routing protocols
designed for fixed networks such as RIP [39] and OSPF [70] are in general not suited for the ad-hoc
environment. The dynamic topology, limited bandwidth and power constraints in MANETs require
tailor made solutions. Mainly two different routing approaches are considered in mobile ad-hoc
networks: Reactive routing and proactive routing.

2.1.1 Reactive routing

Protocols in this category are reactive in the sense that they only attempt to discover routes between
nodes on-demand. Using such an approach, one can lower the total overhead using the protocol in
cost of the initial delay finding the optimal route. Reactive protocols are also named source initiated
or on-demand routing protocols. Some examples of such protocols are AODV [80], DSR [48],
TORA [78] and DYMO [13]. AODV will be described as an example of one of the most prominent
protocols in the category.

AODV

The Ad-hoc On-demand Distance Vector protocol (AODV) aims to obtain routes on-demand, i.e
when an upper layer communication packet is destinated to a node not known in the routing table.
AODV uses three control messages to obtain and maintain routes:

Route Request (RREQ) A source broadcasts RREQ messages to the MANET if the routing en-
try is empty for the given destination. AODV can utilize an expanding ring technique with
gradually increasing Time To Live (TTL) for each request to avoid broadcast storm in the
MANET.

Route Reply (RREP) A node replies to a request by sending RREP message either if: (i) it is the
destination; or (ii) if it is an intermediate node and has a fresh route to the destination. If the
destination is not known, the intermediate node will rebroadcast the RREQ. When a node re-
broadcasts a Route Request, it sets up a reverse path pointing toward the source. This reverse
path is used to forward Route Reply (RREP) unicast back to the source.

Route Error (RERR) If a node is unable to forward packet, it generates a RERR message. When
the originator node receives the RERR, it initiates a new route discovery for the given route.

In addition, AODV performs route maintenance on active routes. If one node in an active path
discovers a link breakage, a route error message will be transmitted upstream. The source node will
then initiate a new route request.

FFI-rapport 2008/02090 15



(a) Normal flooding (b) MPR flooding

Figure 2.1: Flooding in a multihop network. Flooding through multipoint relays (MPRs) reduce the
number of duplicate transmissions.

2.1.2 Proactive routing

In contrast to reactive routing protocols, proactive routing protocols seek to maintain routes to all
nodes regardless of upper layer communication demands. By exchanging control messages periodi-
cally, the routing table can be kept updated and fresh routes can be provided immediately. Compared
to reactive routing protocols, this approach yields more control message overhead, but no initial de-
lay to set up a route prior to communication.

Examples of proactive (or table-driven) routing protocols are FSR [32], OLSR [20], TBRPF [74]
and WOSPF [3]. OLSR will be described as an example.

OLSR

The Optimized Link State Routing Protocol (OLSR) for MANET is a proactive, link-state routing
protocol where each node maintains topology information by periodically exchanging link-state
messages. The novelty of OLSR is to employ multipoint relays (MPRs) to minimize the number
of control messages flooding in the network. Each node chooses a subset of its one-hop neighbors
(MPRs) in such a way that these MPRs will cover all two-hop away neighbors. Hence, messages
are only flooded through MPRs, and not to all nodes (Figure 2.1).

Core functioning of OLSR is: Packet format and forwarding; link sensing with hello messages;
neighbor detection; MPR selection and MPR signaling; topology control message diffusion; route
table computation; node configuration. Three control messages are defined to provide this functio-
nality.

HELLO HELLO messages are exchanged between neighbors only, and diffuse information about
the one-hop neighbors of a node. Upon reception of HELLO messages, the two hop neighbo-
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rhood can be discovered, and further, the MPRs of the given node can be chosen. The MPRs
chosen by a node is further marked in the following HELLO messages broadcasted by that
node.

TC - Topology Control In OLSR, all nodes chosen as MPR will transmit TC messages. The TC
messages contain the address of the node generating the message, as well as the list of nodes
that has chosen the given node as MPR (MPR selectors). TC messages are further flooded
using the MPRs, disseminating network topology information to all the nodes in the OLSR
network.

MID - Multiple Interface Declaration The MID message is broadcasted by nodes running OLSR
on more than one network interface.

In addition, a fourth message type, Host and Network Association (HNA) message disseminates
information about OLSR nodes that act as gateways (etiher to the Internet or to a separate Ethernet).

Using a common format for all messages the OLSR standard provides extensibility of the protocol
without breaking backwards compatibility. This feature gives a unique possibility to disseminate
additional information through intermediate nodes even if the nodes do not support the specific
extension.

2.2 Service discovery

When the ad-hoc network is established and working, users will obviously want to run different
applications. Those application will usually provide or request (or both) services in the ad-hoc net-
work.

In these terms, service discovery (or resource discovery) is an important area. Service discovery
provides functionality to automatically discover capabilities and to advertise own capabilities to the
network. Using service discovery, users can search for services by name, type or class and utilize
those services without any further knowledge about the underlying network architecture.

The different service discovery protocols and proposals differ in architecture design, discovery mode
and definition of service descriptors.

2.2.1 Architectures

Regarding the dissemination of service information, there are three different architectures available
when creating a service discovery protocol.

Directory-based

FFI-rapport 2008/02090 17
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Figure 2.2: Three different service discovery architectures. Clients (c) either connect directly or via
a directory (d).

A directory-based service discovery infrastructure consists of one or several service directories.
These directories are the only binding between service providers and service clients. Service provi-
ders register their services in the directory and clients search for services in this directory (Figure
2.2(a)).

In fixed Ethernet networks, usually one node takes the role of the directory. In mobile ad-hoc net-
works, however, this architecture is not preferable as the directory node will represent a single point
of failure and may be out of reach due to mobility. Even within reach, the link to the directory node
can be considered unpredictable. Hence, distributed directories are preferred. This solution will on
the other hand introduce other challenges such as synchronization (between directories, service pro-
viders and service clients) and must provide an algorithm to automatically elect new directory nodes
if one node fails.

Directory-less

A directory-less architecture omits the use of directories, and use a distributed approach only in-
volving clients (Figure 2.2(b)). Hence, there is no need to select directory nodes or to perform
synchronization between directories. However, without directories, service requests and advertise-
ments must be disseminated between nodes using either by broadcasting or multicasting. This may
induce considerable bandwidth and can be costly in terms of resources on the individual nodes.

Hybrid

Hybrid architectures seek to combine the benefits from the two approaches. Service information is
primarily stored on each service provider, but a set of service directories are chosen to be the main
binding between services and service requests (Figure 2.2(c)). If a client is aware of an available
directory, this directory is preferred. Otherwise, requests are flooded in the network.

Evaluation of architectures

A lot of aspects determine the choice of architecture. The size of the network, the number and
type of services, service availability demands and the underlying network protocols are all factors
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Figure 2.3: Service information can be gathered in different ways.

influencing the choice. There is no common consensus on which architecture is the better one. In
[86], the hybrid approach is preferred. In contrast, the work in [25] shows that a directory-less
architecture performs better than both directory-based and hybrid architectures, partly because the
fact that false positive service replies from the service coordinators increase with increasing network
dynamics in MANETs.

The hybrid architecture puts an extra load to reactively routed networks, as it triggers additional
route requests- and replies compared to the directory-less architecture. This performance issue is
obviously not the case in proactively routed networks, where route requests are not on-demand per
nature. It should be noted that both directory-based and hybrid architectures introduce complicated
mechanisms for electing service coordinators, and put extra load to the infrastructure.

2.2.2 Discovery Mode

Independent of the chosen service discovery architecture, service information can be gathered either
in a reactive, proactive or hybrid way.

Reactive

Using a reactive mode, a service requester node creates a query on-demand whenever a certain ser-
vice is desired (Figure 2.3(b)). The query is then sent to the network either using unicast, broadcast
or multicast depending on the service discovery architecture.

Proactive

A proactive mode implies that service providers proactively distributes their available services (Fi-
gure 2.3(a)). The distribution is performed either directly to potential service clients or to service
directories. Obviously, this approach yields more traffic than the reactive mode. On the other hand,
the initial service discovery delay is reduced.

Hybrid

A hybrid discovery mode supports both reactive requests and proactive service advertisements (Fi-
gure 2.3(c)). This approach must then support that the service information may be distributed in
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several ways depending on topology. Some nodes may know all service information, while some
nodes have no information at all and must rely on creating service requests.

2.2.3 Descriptor options

There are different approaches to describe the service information in requests and advertisements.
Many service discovery protocols use XML to describe the service information. Such a method is
adopted in [40]. An other approach is to create service descriptors from ontologies designed for
the semantic web services by the use of the Web Ontology Language (OWL) as proposed in [54].
Using such an approach, the ontology must be distributed among the nodes prior to communication.
However, both XML and OWL descriptions require considerable bandwidth, which is sparse in ad
hoc networks. Some sort of compression could be used to address this deficiency [88] if rich and
flexible service descriptors are necessary.

Some proposals seek to reduce bandwidth consumption, and do not see the benefits of using XML
or OWL as necessary. By mapping a predefined set of service descriptors, to integers as in [46]
or Unique Universal Identifiers (UUIDs) as in [73] the description can be reduced to a few bytes.
Such solutions save bandwidth compared to transmitting XML files. However, such solutions are
not very flexible nor scalable, as maintenance on every node in the network is required when new
service categories are added.

In between those two schools, we find Bloom filters [8]. Using Bloom filters, any textual service
descriptor can be hashed to a size-defined array without requiring a predefined static set of keywords.
In [86], Bloom filters are used to summarize the content of a service directory by hashing the set of
WSDL-based service descriptions to a short array.

The different alternatives to service descriptors are compared based on their flexibility (in terms of
range of target applications) and their size in Figure 2.4.
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2.2.4 Service discovery standards and proposals

The overall Internet community has not yet reached a consensus on one particular service discovery
protocol. Several consortiums, companies and organizations have simultaneously been doing re-
search and created their own service discovery protocols. Although most of the proposed protocols
do not fit in the ad-hoc environment, a short introduction of the most popular solutions for service
discovery will be given. It should be noted that all service discovery proposals made for MANETs—
as described in the next chapter—are to a certain extent inspired by the following solutions.

Anycast

A simple way to provide service discovery is to take use of IP-anycast [79]. Using anycast, a client
transmits a datagram to a well-known anycast IP address. The routing protocol is then responsible
for transmitting this datagram to at least one of the servers that accept datagrams with this address.
Using standard routing, the closest server will always be chosen. This functionality simplifies the
task of finding a certain server when the user does not particularly care which server is used—like
mirrored ftp-servers or DNS-servers.

Although anycast is usable to discover service directories as described in [102], anycast has got
several limitations making it difficult to provide a complete service discovery system: First, it is
impossible to browse for all nodes in a network providing a certain service class, since the routing
protocol will only provide an entry to the closest server matching the anycast address.

Anycast is also limited by the fact that there must be provided one anycast address for each service
class in the network. Further, in fine-grained service environments anycast is not the preferred so-
lution, as the protocol does not allow a search for special services. Finally, if a new node enters the
network without knowing the anycast address of a service class, no services will be discovered.

Service Location Protocol (SLP)

Service Location Protocol [36] is developed by IETF as a vendor independent standard. The SLP
architecture is based on three components: (i) User agents (UA) - which are the software entities
that perform the service discovery; (ii) Service agents (SA) - which advertise the location of ser-
vices; (iii) Directory agents (DA) - which act as central repositories and collects service information
from service agents and responds to service requests from user agents. Services and their location
are represented as service URLs. UAs and SAs discover the presence of a DA by sending service
requests for the DA at startup. The DA also periodically advertises its presence using multicast.

The Service Location Protocol is not widely supported, mainly because dominant companies such
as Apple and Microsoft are developing and supporting other service discovery protocols.

Simple Service Discovery Protocol (SSDP)
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Simple Service Discovery Protocol (SSDP) [33] is a part of UPnP. UPnP also takes advantage of
automatic link-local address choosing [14] to give a auto-configured IP solution. UPnP is included
in Windows XP, Vista and several brands of network equipment.

The protocol is based on the following three components: (i) SSDP service—which represents the
service agent; (ii) SSDP client—which is the user agent utilizing the services; (iii) SSDP proxy—
which is the directory agent representing the binding between the SSDP service and SSPD client.
SSDP utilizes unicast HTTP to communicate wit the SSDP proxy. However, the SSDP proxy is not
a mandatory part of SSDP, meaning that service information can disseminate in the network without
this central entity using HTTP multicast.

Due to the use of HTTP, SSDP is unsuitable for most bandwidth constrained environments.

DNS Service Discovery (DNS-SD)

DNS Service Discovery (DNS-SD) [15] is a way of using the existing DNS records to locate ser-
vices. DNS-SD was originally proposed by Apple as a part of Bonjour (formerly Rendevouz) and
also consists of link-local address choosing [14] and Multicast DNS (mDNS). Bonjour can be consi-
dered as Apples counterpart to UPnP that is provided by Microsoft.

Bonjour is included in MAC OS X and is used by Apple software such as iPhoto, iChat and iTunes
and also supported by the KDE and Gnome desktop environments found on Linux and BSD plat-
forms. Since Apple first launched Bonjour in 2002, every major maker of network printers has
adopted Bonjour and uses DNS-SD to advertise the printer service to the local area network [16].

DNS Service Discovery itself is a way of using the existing DNS records to locate services. The
protocol can be used to obtain names, service types, port numbers and other attribute information.
Since a Bonjour implementation most likely will have a multicast DNS responder for the name-to-
address translation, service discovery can be implemented in quite a lightweight manner using the
multicast DNS responder to disseminate service information. Even if DNS-SD is considered simpler
than SSDP—because it uses DNS rather than HTTP—it is not suitable for low bandwidth ad-hoc
networks.

Jini

Jini [92] is a product from Sun Microsystems and is heavily based on Java and Java RMI. In addi-
tion to service discovery, Jini provides service invocation, transactions and event notification. Jini
allows clients to join a Jini lookup service (JLS), which correspond to the directory agent in the SLP
protocol. Using the JLS, the clients can request information about services as well as publish their
own services. Publishing a service is performed by uploading a service object to the JLS. This object
contains the Java programming interface for the service including necessary methods and applica-
tions. The lookup service hence stores Java code necessary for the clients to access the particular
service. Discovery is conducted by multicasting a request for a lookup service in the local network.
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The bandwidth consumption generated by the discovery process and the fact that Jini is tied to Java
and requires a Java Virtual Machine, makes it unsuitable for most low powered embedded systems,
including MANETs.

Bluetooth Service Discovery Protocol (SDP)

The bluetooth communication stack contains the Bluetooth Service Discovery Protocol (SDP). The
protocol addresses service discovery especially for bluetooth networks.

When searching for services, an SDP client creates a service request PDU containing a search pat-
tern. The search pattern supports searching for services by name, searching by attributes, and brow-
sing the network for any service. A SDP server will respond with a service PDU containing service
records for the matching services. The respond can contain additional information as attributes, or
the SDP client may request these attributes using a separate request PDU.

2.2.5 Evaluation

Even if the service discovery protocols described in this chapter share much resemblance, they also
have different salient features. It should be noted that the protocols are aimed for fixed local area net-
works or short range wireless networks and are not directly applicable for mobile ad-hoc networks.
However, they have served as an inspirational base for developing improvements or completely new
protocols tailor made for MANET.

Anycast is a very simple approach and can hardly be called a service discovery protocol. Never-
theless, it is a technique suitable for some applications e.g. when searching for a specific server.
Developing an anycast routing protocol for ad-hoc networks has proven to be difficult [99]. Howe-
ver, research is on-going to solve this issue in OLSR-based MANETs [23].

Service Location Protocol is although relatively simple, not suitable for MANETs due to its exten-
sive use of directory servers. SLPManet [2] is proposed as an optimization of SLP for MANETs.
SLPManet works without directory servers, and also introduces caching in order to reduce the ove-
rhead induced in the discovery process. This protocol is further described in the next chapter.

DNS-SD and SSDP share much resemblance. Both protocols require an underlying multicast routing
protocol—which is not yet standardized for mobile ad-hoc networks. A proposal to optimize SSDP
to better suit MANET without using multicast is described in [87]. However, the proposal is prone
to generate broadcast storms in the network and is not optimal in terms of bandwidth consumption.
Neither DNS-SD is considered usable for MANET without severe optimizations [41].

Jini is tied to the Java programming language, which may not be adaptable for all mobile devices. In
networks with no fixed infrastructure—such as mobile ad hoc networks, a reliable connection to the
lookup service can not be ensured, making the Jini architecture unsuitable for those networks accor-
ding to [35]. In [7] Jini is used in an ad-hoc network by taking advantage of a series of adjustments
to the protocol.
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(b) Cross-layer service discovery

Figure 3.1: Service discovery protocols for MANETs work either at the application layer or are
considered as cross-layer protocols.

SDP is a scaled down solution and is only supported on Bluetooth devices, and can therefore not be
used in mobile ad-hoc networks. However, as the ideas are simplistic they are applicable for other
service discovery solutions tailor made for MANET.

The next chapter covers service discovery protocols aimed for pure mobile ad-hoc environments.

3 Related research

The previous chapter introduced general service discovery protocols aimed for local area networks
and short-range wireless networks. This chapter describes some of the most prominent service dis-
covery proposals for mobile ad-hoc networks.

3.1 Introduction

Most of the existing service discovery protocols are primarily designed for fixed networks and are
not directly applicable for MANETs without adaptations. Tailor-made solutions specific for MA-
NETs are therefore chosen in favor of more generic solutions. However, since different MANETs
vary in size, equipment, applications and objectives, a variety of proposed service discovery ar-
chitectures for MANET exist to solve specific purposes. Some of the solutions focus mainly at
scalability in order to support hundreds or even thousands of nodes. Some solutions seek to mini-
mize latency in the discovery process, while others are focused on reducing the control message
overhead to support bandwidth-constrained environments.

Irrespective of the service discovery architecture (directory-based, directory-less or hybrid), or the
discovery mode (reactive, proactive or hybrid) there are two possible approaches when designing a
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MANET service discovery protocol:

Application-layer service discovery Refers to protocols independent of the underlying routing
protocol

Cross-Layer service discovery Refers to protocols integrated with the routing protocol, be it either
reactive or proactive.

Most MANET service discovery proposals belong to the first category, and place service discovery
at a layer above routing (Figure 3.1(a)). Such mechanisms create an overlay on top of the network
layer to disseminate service advertisements, requests and replies in the network. There are several
advantages using this method: (i) as no assumption is made about the underlying network, it is
possible to create pervasive service discovery architecture across different networks domains. (ii)
The architecture can be based on existing standards, since the size of the service descriptors is
not limited by the routing protocol. (iii) A modular and layered approach is maintained making it
possible to replace protocols at any layer.

Cross-layer service discovery is motivated by the need to optimize control overhead and reduce
service-acquisition latency. As both the service process and the routing process must coexist in an
ad-hoc network—both processes generate and receive messages. It is therefore possible to exploit
the routing layer for efficient dissemination of service control messages (Figure 3.1(b)).

Different service discovery proposals from both categories will now be described.

3.2 Application-layer service discovery

Most application-layer service discovery protocols are ambiguous in the terms that on the one hand
they strongly support the layered approach and claim to be independent of the underlying network
architecture. On the other hand, they rely on network-layer support to multicast or broadcast the
service discovery messages. If the target MANET supports multicast, application-layer service dis-
covery leads to a simple and modular design. Thus, it is possible to disseminate service discovery
through intermediate nodes that does not run any service discovery code (Figure 3.2). However, it
should be noted that multicast in MANETs is still at the research stage (no standard is defined) and
is hence an open issue.

3.2.1 Pervasive Discovery Protocol

The Pervasive Discovery Protocol (PDP) is a directory-less protocol aimed for ad-hoc networks
[12]. Each PDP node has a User Agent (PDP-UA) and a Service Agent (PDP-SA). The PDP-UA-
process search information in the network and the PDP-SA process advertise services offered by the
device. For each advertisement, an availability time is included. Entries are removed from the cache
of each node when the availability timer runs out without being updated.
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Figure 3.2: Using service discovery at the application level, all nodes in the network can forward
service discovery messages.

PDP operates in reactive mode and assumes that the underlying network is either a one-hop network,
a multi-hop ad-hoc network with multicast routing support.

3.2.2 Konark

Konark [40] is a directory-less service discovery architecture based on a peer-to-peer model using
lightweight HTTP servers. The protocol defines its own description language loosely based on
WSDL (Web Services Description Language) [63]. HTTP and SOAP [58] are utilized to handle
service delivery. The Konark architecture maintains a tree-based structure to cope with service clas-
sification. The format support search for either all, generic or specific services in each category and
the requests can be done either using simple keywords or a more fine-grained service description if
a specific service is desired.

Using this classification, a node can search for a general printer, or choose to do a more detailed
search for a color laser printer on the second floor. Konark supports both proactive and reactive
service advertisements, and both servers and clients can actively discover and advertise services on
a need basis. A service request is sent to a fixed multicast group, and all the nodes with a mat-
ching service will respond. A time-to-live field is specified in the service advertisement process and
enables local caching of service descriptors on each node.

3.2.3 SLPManet

SLPManet [2] is an adaptation of Service Location Protocol [36] to make it work in MANET envi-
ronments. The most prominent change from SLP is that Directory Agents (DAs) are omitted from
the protocol, making the architecture directory-less. As a consequence, Service Agents only reply
on requests from User Agents (reactive mode), in contrast to SLP, which supports both proactive
and reactive discovery between Service Agents and Directory Agents. Optional SLP messages such
as Attribute Request and Service Type Request as defined in the RFC are not implemented in the
MANET adaptation.
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The protocol includes a simple caching scheme, where all nodes in the network cache service infor-
mation for a certain time. Caching increases performance but—as anticipated in [2]—cache entries
may be false when the network topology changes. This is a general problem in all application-layer
designs without access to routing information (i.e. non cross-layer designs).

3.2.4 Sailhan

Sailhan et.al has proposed a directory-based service discovery architecture2 aiming at large-scaled
ad hoc networks [86].

Directories in Sailhan are distributed and deployed dynamically. The directories form a virtual back-
bone of nodes exchanging service requests and replies using WSDL service descriptors. The archi-
tecture is by definition independent of the routing protocol, and communication between directories
is done using a special bordercasting technique. The bordercasting is inspired by MPR flooding
used in the OLSR routing protocol [20]. The architecture can also take advantage of the OLSR
MPR election itself instead of creating the bordercast overlay on its own. Hence, even if the ser-
vice information is distributed at the application layer, the protocol can utilize some cross-layer
optimizations.

The dynamically allocated directory agents are deployed so as at least one directory is reachable in
at most a fixed number of hops. Directories then cache the descriptions of services available in their
vicinity and uses Bloom filters [8] to summarize the content of the directory by hashing the set of
WSDL-based service descriptions.

3.3 Cross-Layer service discovery

Cross-layer design refers to protocol design done by actively exploiting the dependence between
protocol layers to obtain performance gains [90]. By doing this, cross-layer solutions may violate
the modular layered approach. A violation of a layered architecture involves giving up the luxury of
designing protocols at different layers independently. Such optimizations should therefore be used
with caution as cross-layer interactions can have undesirable consequences on system performance
[50].

However, in some situations, cross-layer interactions are inevitable to eliminate the redundancies
associated with repeating similar tasks found on adjacent layers [91].

Cross-layering in a service discovery context means all optimizations done by taking advantage
on information found on lower layers—such as examining the routing table or measuring signal
quality. Henceforth, the term cross-layer service discovery refers to service discovery solutions that
utilizes the routing process to disseminate service discovery messages. Routing-layer support was

2In this report, I take the liberty to name the architecture Sailhan.
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Figure 3.3: Some cross-layer service discovery proposals require changes to the routing protocol.
Intermediate nodes without those modifications prevent successful service discovery.

first introduced by Koodli and Perkins [53]. Now, several different proposals exist both for reactively
routed and proactively routed MANETs.

3.3.1 Reactively Routed MANETs

SEDRIAN is a directory-less service discovery architecture relying on AODV as routing protocol
[73]. Service information can be described in two different ways: An optimized description using a
128-bit Universal Unique Identifier (UUID) for generic services, and a more descriptive language
to advertise special services that cannot be described in a simple UUID.

SEDRIAN exploits AODV by encapsulating three new packets in the AODV RREP message:
DREQ (Discovery Request) contains a request for a UUID-based service. DREP (Discovery Re-
ply) contains a reply to a discovery request. The last message is ADVM (Advertisement Message).
It contains the advertisement any special service provided.

It should be noted that since SEDRIAN uses the AODV RREP message to disseminate discovery
requests, replies, and advertisements, the proposal brings severe changes to the original AODV
protocol. The RREP is not originally used as a broadcast message in AODV, and some adjustments
are therefore necessary to avoid packet loops. For this reason, all nodes in the network must support
SEDRIAN in order to make the discovery process work. Any AODV node in the network without
the SEDRIAN extension, will prevent service discovery messages to be disseminated (Figure 3.3).

The proposal by Engelstad et.al [26] bears resemblance to SEDRIAN, but utilizes AODV in a
slightly different manner. In addition, the protocol can be implemented both discovery-less and
as a hybrid architecture.

Using a discovery-less architecture, service discovery requests (SREQ) are piggybacked on AODV
Route Request Packets (RREQ), and service discovery replies (SREP) are piggybacked on AODV
Route Reply packets (RREP). Using the hybrid architecture, the service coordinator announcements
are piggybacked on AODV RREQ packets and service registrations are piggybacked on AODV
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Protocol Service descriptor Dissemination Routing Architecture Mode
PDP Text Multicast Any Directory-less Reactive
Konark WSDL Multicast Any Directory-less Hybrid
SLPManet SLP-url Multicast Any Directory-less Reactive
Sailhan WSDL Multicast Any Directory-based Hybrid
SEDRIAN UUID+ Cross-layer AODV Directory-less Reactive
Engelstad Not defined Cross-layer AODV Hybrid Reactive
Jodra Fixed integer Cross-layer OLSR Directory-less Proactive
LSD Not defined Cross-layer OLSR Hybrid Hybrid

Table 3.1: Comparison of different service discovery proposals

RREQ packets. Using this technique, there is no need to change the original AODV code, except
allowing piggybacking of service discovery messages.

A thorough study of service discovery in reactively routed MANETs can be found in [103].

3.3.2 Proactively Routed MANETs

Jodra et.al [46] present a solution on integrating service discovery with the OLSR routing protocol.
The different OLSR messages [20] share a common message header. Utilizing this header, a new
message called Service Discovery Message (SDM) is introduced. The SDM packet can contain
either a service advertisement or a query.

The proposal also introduces a service cache for each node in the network. The cache stores all
services available, both local and foreign. Whenever a node wants to use a service not stored in its
local cache, it sends a request asking for the service using the SDM query message. SDM messages
are forwarded by the MPRs in the network. Upon receiving a SDM query message, a node checks
whether its local services corresponds to the service asked for in the query SDM. If this is the case, it
will send an advertisement message announcing the requested service. The answer is MPR flooded.

As the complete SDM message is only 8 bytes, and thanks to piggybacking of the SDM to the
OLSR packets, only a small overhead is added to the network. However, it should be noted that this
efficient, albeit limited message format, cannot cope with advanced and detailed service descriptors.
Further, the service descriptors must be a priori known to all the nodes running service discovery.

A similar proposal, which also utilizes OLSR as routing protocol, is Lightweight Service Disco-
very (LSD) [61]. A message similar to the previously mentioned SDM, Service Location Exten-
tion (SLE), is here introduced. LSD supports both directory-less and directory-based architectures.
Using the latter architecture, the discovery mode can be both reactive and proactive. The proposal
bears resemblance both to [46] and to ideas presented in [24].
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Figure 3.4: The OLSR default forwarding algorithm forwards service discovery packets without ha-
ving to change the original OLSR code.

3.4 Summary

This chapter has described a variety of different service discovery proposals for MANETs with
different salient features. The features are summarized in table 3.1.

Most proposed service discovery solutions solves service discovery at the application layer, ar-
guing that cross-layer solutions violates a modular layered approach and hinder easy interchange
of routing protocols. However, a cross-layer integration of the service discovery architecture with
the routing protocol seems to bring considerable optimizations and the benefits are indisputable
both in proactively and reactively routed MANETs. As the focus in this report is on low-bandwidth
environments, I state that cross-layer solutions are inevitable.

It is important to use a service discovery architecture that is transparent to avoid that every node
in the network must run service discovery code. Unaware nodes in the network should be able to
forward requests, replies and advertisements on behalf of other nodes. Using an application-layer
design with multicast dissemination, such a transparent architecture is possible (3.2). But, as shown
in Figure 3.3, not all cross-layer proposals support such a transparent concept and require changes
to the routing protocol to ensure packet forwarding of service discovery messages.

The choice of routing protocol is a matter of operational scenario, traffic patterns, available band-
width, delay requirements as well as a matter of personal taste. Research favoring both reactive, and
proactive protocols can be found. I envision a cross-layer service discovery protocol based on the
following consepts:

• It should use OLSR to aim for transparency.3 The OLSR default forwarding algorithm for-
wards all packets (also new and unknown packet types) using MPR forwarding (Figure 3.4).

• The architecture should be directory-less to eliminate the overhead with selecting and main-
taining directories.

3An OLSR-network such as Freifunk Berlin [31] consists of over 700 nodes. Any pair of nodes in this network can
take immediately use of an OLSR-based service discovery protocol without having to update any code at the other nodes.

30 FFI-rapport 2008/02090



• It should include caching to reduce control traffic and to lower the discovery delay.

• Service descriptors must be defined in an efficient and flexible manner.

• It should be tailor made for low-bandwidth environments and seek to lower the overhead on
the routing protocol.

The rest of this report describes and evaluates a new service discovery protocol that seeks to fulfill
the above requirements.

4 Mercury - A cross-layer service discovery protocol

Considering the requirements drawn in the previous chapter, a new service discovery protocol is
proposed. This chapter provides a design overview of the new protocol.

4.1 The design

As different MANETs vary both in size, equipment, applications and objectives, a variety of dif-
ferent protocols to solve service discovery in these networks are proposed and implemented. Some
of them have been described in the introduction of this report.

The aim in this report is to create and evaluate a new service discovery design for low-bandwidth ad-
hoc networks primarily aimed at tactical and first responder networks. In order to make an efficient
service discovery solution suitable for such environments, I envision several optimization elements
to be included. These elements are:

• Service information (service descriptors) must be defined in an efficient manner and should
be scalable to support several simultaneous requests or advertisements.

• The service discovery process must rely on efficient service descriptor dissemination to save
bandwidth.

• The solution should be fully distributed both to optimize for speed and to obtain redundancy.

In this report I propose a new service discovery protocol— subsequently named Mercury4. The
protocol works in the following manner: The service descriptors are described using Bloom filters.
The service dissemination is done by piggybacking service information on OLSR routing messages,
and the solution is fully distributed and utilizes intelligent local caching with service handover
support.

4In roman mythology, Mercury was the messenger of the gods and the major god of trade, profit and commerce. Light
footed, and with winged sandals, he carried urgent messages for the other gods.

FFI-rapport 2008/02090 31



Application Mercury Ad hoc Network

Advertisements 

& Requests

Replies

Advertisements 

& Requests

Advertisements

Figure 4.1: Mercury connects users and applications to services in the ad-hoc network using service
advertisements and service requests.

The purpose of Mercury is to act as a common framework that connects services distributed in the
ad-hoc network to users and applications (Figure 4.1). I will now describe the different components
of Mercury.

4.2 Service description by Bloom filters

The proposed solution in this report is to distribute a summary of the available services as a vector
(or array) described as a Bloom filter [8]. The technique of Bloom filters was originally used primary
in database applications, but due to the interesting characteristics of Bloom filters, the technique has
received attention in many aspects of computer network research. Both peer-to-peer networks, pa-
cket routing, data measurement, dictionary systems and password checking are applications that can
benefit from Bloom filters [10]. Bloom filters can be considered in any application where implemen-
tation space of a list is important and a small amount of false positives can be accepted.

For our purpose, a Bloom filter is an efficient way to describe services. Using such filters, it is
possible to summarize all available services on one particular node or directory in a small size-
defined array. The approach gives network efficient and timely service dissemination.

In dense networks with a high number of available services, there is a chance for false positive
service replies: A node may falsely respond positive to a query even if the requested service is not
actually offered. The false positive rate can be minimized by analyzing the filter and then setting the
different parameters of the filter to optimal values.

4.2.1 Introduction

In our context, the intention of the Bloom filter is to represent a set S = {x1, x2, . . . , xn} of n

service descriptors in an efficient manner. We start by defining a Bloom filter v implemented as an
array of m bits. All the bits {1, . . . ,m} are initially set to 0. The filter uses k independent hash
functions h1, h2, . . . , hk with range {1, . . . ,m} to hash each service descriptor x to the array v.

For each service descriptor x ∈ S, the hash output hi(x) represents an array position in v, v[hi(x)]
that is set to 1 for all hash functions i = 1, 2, . . . , k. One location in v can be set to 1 multiple times,
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0 1 2 3 4 5 6 m

hash(”Gateway”, k) = {1,4,5}

(a) The first service is added to the Bloom filter

0 1 2 3 4 5 6 m

hash(”Printer”, k) = {2,4,6}

(b) The second service is added to the Bloom filter

0 1 2 3 4 5 6 m

hash(”Map Server”, k) = {0,3,6}

(c) This service is not found in the filter

0 1 2 3 4 5 6 m

hash(”VideoCamera”, k) = {1,5,6}

(d) This query yields a false positive

Figure 4.2: A Bloom filter of m bits is used to store service descriptors. Two services are added to the
filter. A query of the service ”Map server” shows correctly that this service is not part
of the filter. However, the Bloom filter responds positive to the query ”VideoCamera”
even if the service is not actually part of the filter (i.e. false positive).

however it is obvious that only the first change has any effect. Figure 4.2(a) and 4.2(b) illustrates
two different services hashed by three hash functions and then added to the same array (or filter).

In order to check whether any service z is in the Bloom filter, we have to determine whether all
hi(z) are set to 1. If this is the case, we assume that the service z is avaliable. If all hi(z) are not 1,
the service is not part of the filter—as in Figure 4.2(c). The Bloom filter may, however, yield a false
positive if the filter indicates that a service descriptor z ∈ S even though it is not (Figure 4.2(d)).
The chance of getting a false positive lookup can be estimated using calculus of probability.

4.2.2 False positive calculation

Given that m is the length (in bits) of the Bloom filter, n is the number of service descriptors inserted
in the filter, and k is the number of hash functions used, the false positive probability is given by
equation 4.1. Calculations can be found in Appendix A.1.

Pfp =
(
1− e−

kn
m

)k
(4.1)

Notice that the number of services is the only value that can vary while the application is running
It is therefore important to have a thorough understanding of the target application and to set the
parameters k and m carefully to minimize the probability of false positive queries.

There are two ways to reduce the chance of false positives: One approach is to change the number
of hash functions k. The second method is to increase the size of the Bloom filter itself, namely m.

The optimal number of hash functions
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The optimal value of k can be calculated by taking the derivate of the equation 4.1 (See Appendix
A.2 for calculations). We then find that the optimal number of hash functions, kopt, for a filter of
width m and a certain number of service descriptors n is:

k =
m

n
ln 2 ⇒ kopt = bke (4.2)

When designing a service discovery protocol based on Bloom filters, equation 4.2 is important in
order to choose the best number of hash functions. The number is given by the expected number of
services to be stored and the filter width reasonable with respect to the transmission protocol and
radio medium limitations. In Mercury, the default number of hash functions is four.

The size of the filter

In order to minimize the false positive rate, the filter (m) should mathematically be as large as
possible—preferably indefinite. However, computation time, network data rate and memory consump-
tion limits the feasible size of the filter.

Figure A.1 in appendix A.3 shows how the false positive vary by changing the number of hash
functions and the size of the filter. In Mercury, the default filter size is 128 bits.

4.2.3 The Mercury Bloom filter

The heart of the Bloom filter is the hash function. Any hash function can be used as long as it is able
to map an item (e.g. service descriptor) to a pseudo-random number uniform over the range 1 . . . m.
Equally important: the outcome of the k different hash functions must be independent. One way to
implement a hash function is to use a series of modulo functions (such as in SBDM hash). Another
approach is to use a cryptographic hash function such as MD5 [82].

Even if MD5 is considered insecure for most cryptographic purposes today, it has desirable proper-
ties as a basis for a Bloom filter hash function. MD5 is deterministic and uniform, and has excellent
collision resistance for our purpose. MD5 also exist as open source code for many programming
languages, and implementations are relatively fast. Due to its qualities, the false positive probability
can be brought close to the theoretical limit, given by equation 4.1.

It should be noted that most cryptographic hash functions—even MD5—are due to its tampering
resistance, computationally slower than general-purpose hash functions. However, the MD5 process
is run only upon advertising and requesting a service and not when service matching is performed—
as matching is done on the filters itself. Further, as shown subsequently, only one MD5 operation is
required to generate input to all k different hash functions.

The Mercury Service discovery design uses MD5 in the following manner: The k hash functions,
which constitutes the Bloom filter, are constructed from k groups of each r bits out of the 128 bit
hash from the MD5 operation. Any set of sub-bits from an MD5 output can be used as an input to
an independent function. Each of these k functions sets one bit in the filter v.
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In Mercury, the hash functions are implemented as shown in Algorithm 1.

Algorithm 1 Calculate Bloom filter value v for service x

Require: x 6= 0
1: a⇐MD5(x)
2: r ⇐ 128/k

3: for i = 0 to k do
4: f ⇐ subbits(r ∗ i, (r ∗ (i + 1))− 1, a)
5: v[f mod m] = 1
6: end for

A thorough evaluation of MD5 as Bloom filter is described in appendix A.4.

4.2.4 Summary

The benefits of using Bloom filters to describe services can be summarized as follows:

• The filter provides an optimized description in terms of number of bits.

• Several service descriptions can be transmitted simultaneously without increasing the array
size.

• Any textual service descriptor—independent of its size—can be added to the filter. This gives
an enormous flexibility.

• As the services are not distributed in a human-legible manner, only the applications that know
the name of the service can utilize it. Hence, ”hidden” resources and services can be advertised
in the network.

With a thorough understanding of the target application, and by correct parameter settings of the
filter, it is feasible to create a Bloom filter based service discovery protocol that is superior to clear
text service descriptor dissemination. By example: A number of 10 arbitrary service descriptors can
be advertised in a 8 byte filter with less than 5% probability of a false positive. Text or XML-based
services require 10-100 times the space.

4.3 Protocol Format

Bloom filters are used to describe both advertised and requested services. The Mercury service
discovery protocol is used to distribute the filters using a protocol format that extends the OLSR
routing protocol.
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The default control messages employed in OLSR are HELLO and TC and are communicated using a
unified packet format [20]. Each OLSR message transmission can consist of several such messages
piggybacked to the main header (Figure 4.3). OLSR also gives an unique possibility to disseminate
different kinds of information through intermediate nodes even if the nodes do not support the spe-
cific message. Unfamiliar messages will still be forwarded using the default-forwarding algorithm
(Figure 3.4 on page 30).

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|         Packet Length         |    Packet Sequence Number     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Message Type |     Vtime     |         Message Size          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                      Originator Address                       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Time To Live |   Hop Count   |    Message Sequence Number    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

:                            MESSAGE                            :

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Message Type |     Vtime     |         Message Size          |

|+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                      Originator Address                       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Time To Live |   Hop Count   |    Message Sequence Number    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

:                            MESSAGE                            :

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

:                                                               :

Figure 4.3: OLSR packet format, from [20]

Each message in the OLSR transmission has an individual header, which permits special treatment.
The originator can for example limit the flood by a diameter in terms of number of hops or add a
certain validity time for the message.

Mercury service discovery integrates with the extensibility feature of the OLSR standard by intro-
ducing the Mercury service discovery message (MSD) (Figure 4.4). MSD messages are sent as the
data-portion of the general message format with the message type set to MSD MESSAGE. The
Time To Live field is set to 255, but can be used to perform an expanding ring search for services in
a future version.

The Mercury service discovery message consists of four fields (Figure 4.4):

Type This field specifies that the message carries one out of two message types:
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0                   1                   2              3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|     Type      | Filter Length |            Spare         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|       |

: Service Filter       :

|       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.4: Mercury service discovery format

SD REQUEST This indicates that the message is a service discovery request. The service
filter field consists of one or more services ({1 . . . n}) that the sender node is requesting.

SD ADVERTISEMENT This indicates that the message is a service discovery advertise-
ment (or service reply). The service filter field consists of all the services ({0 . . . n})
that the sender node is offering.

Filter Length This field gives the size of the service filter (m), counted in bytes. The filter is limited
upwards to 2040 bits.

Spare This field is not used and should be set to 0 by the originator of the message5.

Service filter This field contains the filter describing the messages to be requested or advertised.
The filter is encoded as a Bloom filter. The size (in bytes) is given by the field ”Filter Length”.

The filter length is limited upwards to 2040 bits, which is sufficient for most practical purposes6. It
is important to limit the total length of the service discovery message in order to prevent interruption
of regular OLSR control message transmission and to facilitate piggybacking of several messages
to one single header. The number of messages that can be simultaneously piggybacked to one com-
mon OLSR message header is limited by the individual size of the messages and the Maximum
Transmission Unit (MTU) of the underlying medium.

4.4 The discovery scheme

Mercury handles requests and advertisements from two entities (Figure 4.1 on page 32): (i) Local
applications on the node, and (ii) foreign nodes through the ad-hoc network. Each node uses a set of
repositories to store the information (Fig. 4.5): Advertised services contains the different services
offered by the node itself. In Foreign services cache, all the services offered by other nodes are

5In the ns-2 extension described in chapter 6, the spare field is used to store a message sequence number for service
requests and service replies in order to facilitate statistics.

6Referring to calculations and discussions in appendix Appendix A.
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Figure 4.5: Each node in the Mobile Ad hoc Network employ two repositories: One repository store
the local services advertised, and one repository—implemented as a attenuated Bloom
filter of depth d—serves as a cache storing advertisements received from foreign nodes.

stored. Each entry in the list consists of the Bloom Filter advertised by the foreign node and its
current IP address.

The last repository contains the Requested services which stores all the services requested—
awaiting an incoming advertisement.

4.4.1 Sending service advertisements

All applications that locally connect to Mercury service discovery advertise their own services.
Textual service descriptors from an application are immediately added to a Bloom filter that contains
all the services offered by the given node. Subsequently, an SD ADVERTISEMENT message is
created containing this summary Bloom filter and flooded through the network using MPR flooding.

4.4.2 Sending service requests

A service request from an upper layer application is immediately queried in the local cache to check
whether any of the foreign nodes has previously advertised the particular service. If no match in
the local cache is found, an SD REQUEST message is created as a Bloom filter containing all the
services the given node is requesting and sent using the MPR flooding technique.

4.4.3 Receiving service advertisements

Each node in the ad-hoc network employs a cache to store incoming service advertisements. The
cache is implemented as an attenuated Bloom filter7. For our purpose, the attenuated Bloom filter,

7Attenuated Bloom filters were introduced in [81] for use in a probabilistic routing algorithm.
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which constitutes the cache is an array of depth d containing d normal Bloom filters. Each filter
contains the services advertised by one single foreign node.

An advertisement received from a network node is immediately added to (or updates an existing
entry in) the local cache. In addition, incoming service descriptors are immediately matched against
the recent service requests in the repository containing the requested services. If a match is found,
the local application is notified about the successful service discovery.

4.4.4 Receiving service requests

A request received from an external node immediately queries the local cache. If a matching service
is found, the node replies with a service advertisement. The service advertisement is created as a
Bloom filter containing all the services the node is currently advertising, and sent using the MPR
flooding technique.

4.5 Additional features

4.5.1 Path-aware caching

The protocol uses local caching of services advertised by foreign nodes in order to save network
bandwidth and reduce the discovery latency. Local caching may, however, lead to false positive
replies to the overlying application if a service exists in cache even if the node that advertised the
service is not available anymore.8 The cache timeout is therefore a trade-off between fast service
queries and the false positive rate.

To solve this issue, Mercury includes a simple addition to the discovery process that consults the
local routing table for the availability of the node offering the service. The technique is outlined in
Algorithm 2. Without this path-aware construction, false positive replies as a side effect of caching
are more likely to happen. Such false positive replies cause unacceptable delays and reduce user
satisfaction since the upper layer application has to time out on the false request.

Algorithm 2 Returns the address of the node offering the service x

1: if LookupLocalCache(x) > 0 then
2: Node← LookupLocalCache(x)
3: if ExistInRoutingTable(Node) then
4: return Node

5: end if
6: end if
7: Node← PerformServiceDiscovery(x)
8: return Node

8Solutions relying on service directories suffer from the same problem.
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Figure 4.6: A service s is advertised by A and used by node B. When A withdraws the service, it
immediately requests the service in order to speed up the discovery process for other
nodes (here: B). Luckily, node C then advertises a similar service s which B can put to
immediate use.

4.5.2 Service handover

In a fully distributed service oriented network, the service availability is a compound of several
factors. A node dependent of a certain service may fail to reach the service due to mobility, network
congestion or user failures. A failure may also arise if the node offering the service shuts down
the application or resource offered while it is being utilized by a foreign node or user. If the latter
incident happens, the service discovery system is responsible for providing a service of the same
service class from another source (if available) to the affected node in a timely manner.

The Mercury service discovery protocol supports such a service handover function initiated when
an application withdraws a service.

When an application shuts down or for some reason cannot provide a particular service (say s)
anymore, it withdraws the service to inform other nodes immediately that the service is about to
become unavailable. The withdrawal process consists of the following stages:

1. When a service s is locally withdrawn from node A, s is immediately removed from the
advertised services repository. A new service advertisement message is then created as a
Bloom filter containing all the remaining services the node is offering. Notice that even if
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this message implicitly contains special information—as the number of advertised services
just decreased (the number may even be zero)—it is a regular service advertisement message.

2. Prior to sending this special case advertisement message, node A does a neat operation: Since
any other node may be dependent on s (like node B on figure 4.6), node A creates a service
request message containing service s—even if service s is not of interest for A per se.

3. Subsequently after creation, the two messages (the service advertisement message and the
service request message) are sent using MPR flooding (step 3 in figure 4.6). The two messages
will be piggybacked9 to the same OLSR message header.

4. Any node providing a service of type s will immediately respond to the service request (step
4 in figure 4.6). This respond will be received by all nodes in the network.

5. Nodes dependent of service s will then contact the new service provider immediately (step
5), and the service is effectively handed over.

If the service is not explicit withdrawn using this technique, the following scenario is likely to
happen (with respect to figure 4.6):

1. An application on node B will fail to reach the service s since it is removed from node A, and
the application will eventually time out the connection after time TAPP .

2. When the time TAPP has elapsed, the application will initiate a new service discovery re-
questing s. If the local cache entry of s (pointing to A) has not yet timed out (as it will
automatically after time TCACHE), the service discovery protocol will reply with a false po-
sitive telling the application that service s still exists on A even if it does not. A false positive
may also occur if the node A itself is not available anymore. On the other hand, if path-aware
caching is implemented (Algorithm 2 on page 39), a new service discovery is initiated, which
will result in a new entry pointing s to C.

Consequently, after withdrawal of s, an application may have to wait as long as TAPP + TCACHE

to regain the service even if a similar service has been available the whole time. This delay may
stop the application from performing its tasks and therefore vastly reduce the user satisfaction. With
the withdrawal scheme outlined above, combined with path aware caching, a seamless handover is
possible.

4.6 Summary

The protocol described in this chapter introduces Bloom filters as an efficient way to describe ar-
bitrary service descriptors. The protocol uses efficient service descriptor dissemination using MPR

9Whether they are piggybacked or send separately is dependent on the OLSR queue status and jitter settings.
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flooding. Further, the protocol employs local caching to lower the discovery latency. Cross-layer
techniques are used to minimize the false positive probability when caching is used. The architec-
ture is fully distributed and supports both proactive and reactive discovery.

The remaining part of this report will describe the implementation and evaluation of the protocol for
two different purposes: First, the protocol is implemented as an extension to a network simulator.
Second, the protocol is implemented as a plugin to OLSR for real-world experiments.

5 Evaluation methods

This chapter addresses the different evaluation techniques used in ad-hoc network analysis. First,
widely used evaluation techniques for contemporary ad-hoc network research are discussed. Then,
the techniques used in this report to evaluate Mercury service discovery are introduced.

5.1 Introduction

When designing protocols and algorithms for mobile ad-hoc networks, a major part of the research
is concentrated on evaluating and analyzing the design in order to prove that the approach is sound
and hopefully outperforms existing comparable solutions.

Four well-known techniques exist to help evaluation and analysis of ad-hoc network protocols and
algorithms:

• Analytical modeling

• Simulation

• Emulation

• Real-world experiments

Each of the techniques above has its own set of advantages and disadvantages which will now be
discussed briefly.

5.1.1 Analytical modeling

Mathematicians often use analytical models to evaluate certain protocol properties. Analytical eva-
luation is inevitable when analyzing the performance of IEEE 802.11 [6], and to examine probabilis-
tic mobility models [11]. Analytical modeling is also a valuable tool when evaluating data structures
such as Bloom filters (analyzed in [8] and in chapter 4 in this report).
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Results from analytical modeling are both precise, resource effective and often portable to adjacent
problems. However, analytical modeling may be hard to understand for fellow researchers without
in-depth knowledge of the field. Therefore, to make analytical models practicable and possible to
interpret and adjust, they are usually limited to one single algorithm or part of a protocol. Hence, it
is rarely feasible to make an analytical model to deal with entire protocol stacks.

5.1.2 Simulation

Simulations is an established and widely used method to conduct performance evaluation of network
components [51]. Simulators such as ns-2 [97], GloMoSim [96] or OMNeT++ [77] come with built-
in support for the most popular network protocols; e.g. IP, TCP, UDP, Ethernet and Wi-Fi. The entire
protocol stack can thus be simulated at once, enabling validation of new protocols or algorithms
implemented as additional code or scripts.

The major benefits by performing simulations are the repeatability (other researchers may verify the
results) and scalability (simulations can cope with hundreds or even thousands of nodes).

Certain approximations and simplifications are, however, often made when simulation models are
used, which can lead to biased conclusions. Simulations of ad-hoc networks have for example been
criticized for not using valid mobility models [101] or by relying on one specific scenario [56]. The
network simulator itself may also include errors or assumptions such as unrealistic wireless medium
characteristics [55, 64].

However, despite the many pitfalls and possible errors when performing simulations, performance
evaluation by simulation is virtually inevitable in order to validate the scaling characteristic of a
protocol design.

5.1.3 Emulation

Using emulation, hardware- and software components originally designed for real-world deploy-
ment are combined with simulation components. The purpose of emulation is often to test protocols
and algorithms on real hardware preparing for real-world experiments. The emulator can work on
the physical layer, the MAC layer, or at combinations of different protocol layers. By changing
various parameters such as antenna attenuation and signal propagation, node movement can be ef-
fectively emulated.

Emulations can be done in special test beds as surveyed in [55]. Different emulation test beds are
used to evaluate distinct features of different ad-hoc network components. Even some network si-
mulators, such as ns-2 [97], can be used as a limited-functionality emulator.

Emulation is a valuable tool that is considered a compromise between simulation and real-world
experiments regarding cost, time and repeatability. If software code can be reused, emulation is a
valuable tool to accelerate the switch to real-world experiments.
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Figure 5.1: The resources, such as time money and human hours, necessary to perform validation
of a protocol or algorithm increases when a high degree of realism is necessary.

5.1.4 Real-world experiments

Real-world experiments have recently gained popularity among researchers to validate simulations
or analytical models [55]. Real implementations of ad-hoc and mesh networks such as [60, 31] are
paramount to prove that algorithms and protocols work as expected when deployed in an operational
network. In a real-world setting, all components and parts of the system are fully functional (albeit
using an experimental environment). A recent survey of real-world implementations [51] concludes
that protocols and algorithms must be evaluated in real-world settings in order to address all aspects
of the design.

The drawback by using real-world experiments is obviously the time, money and human resources
required to perform the experiments. Further, results from experiments are often non-reproducible
and hard to validate. It is also difficult to isolate and test one particular behavior of the investigated
protocol.

5.2 Summary of evaluation methods

Even if the credibility of simulations is a subject of discussion [56], most research in the field of
mobile networking today purely rely on simulations to evaluate the characteristics of a protocol de-
sign. This choice is not unfounded: Time, money and human resources increases when moving from
simulation to emulation, and increases vastly when moving to real-world experiments, as illustrated
by Figure 5.1.

Taking into consideration the different benefits by choosing different evaluation methods, resear-
chers should aim to evaluate new designs by creating a test-bed including several methods. A new
protocol design can for example be evaluated both by a number of initial simulations and then by
implementation and test in a real-world scenario.
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5.3 Evaluation techniques for service discovery

Evaluation of a particular service discovery design can be performed using any of the described
methods—assumed that the researcher takes the different benefits and drawbacks into consideration.
The choice of method also depends on resources, knowledge, hardware availability, the service
discovery architecture (e.g. which protocol layer it belongs to) and personal preference.

Some service discovery proposals are only evaluated analytically or by an architectural description
[73, 102]. Others are purely evaluated by simulations [2, 46, 12, 61, 86] while others are implemen-
ted for small real-world experiments [37, 40, 41].

Different service discovery proposals often take advantage of completely different scenarios in their
simulation and experiments. Hence, studies are difficult to compare. The individual choice of sce-
nario is, however, not unfounded, as different service discovery solutions are targeted to completely
different applications—and one single evaluation approach is most certainly not valid for all solu-
tions.

In order to reflect the variety of configurations found in different MANET implementations, Abou
et al. provide a set of benchmark scenarios to evaluate different service discovery proposals [1].
Although the evaluation scenarios vary to cover a wide range of uses, all the scenarios rely on
simulations as the one and only validation method and do not consider emulation or real-world
testing.

5.4 Evaluation of Mercury

In this report, a combined approach is taken. The Mercury service discovery protocol is implemen-
ted both for the network simulator ns-2 and as a plug-in to OLSR. These two implementations
make both simulations and real-world experiments possible. The next two chapters describe the
implementation details of the two different approaches respectively.

6 Implementation for ns-2

In order to verify and evaluate the Mercury service discovery protocol in a variety of scenarios,
network simulations are inevitable. This chapter describes the implementation of the service disco-
very protocol integrated with the ns-2 network simulator. Notice that chapter 7 covers the Mercury
implementation for real-world usage. These two implementations are, although different, similar in
many respects. Duplicated information is therefore avoided to a certain degree, and both chapters
should be read in order to get a full understanding of the Mercury service discovery protocol.
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6.1 The ns-2 network simulator

6.1.1 Introduction

Many discrete-event network simulators are suitable for MANET research. Among the most popular
simulators we find GloMoSim [96], OMNeT++ [77] and J-Sim [93]. In this report I choose to use
the ns-2 network simulator [97].

The ns-2 simulator can be downloaded from the Internet, free of charge. Hence ns-2 is often prefer-
red rather than expensive commercial alternatives. The simulator also works on different platforms.
Although ns-2 is far from platform independent, all that is needed to make the simulator run is (in
theory) a mere computer equipped with a C++ compiler.

Further, the ns-2 simulator is the most popular network simulator today. According to a survey
performed by Kurkowski et al. [56], ns-2 is by far the most used simulator in MANET research:
43.8% of the papers studied in the survey used ns-2, 10% used GloMoSim, and the rest of the
papers used either a less popular commercial simulator or a self developed simulator.

There are several benefits by using the most popular network simulator: (i) Bugs in the simulator
are more likely to be discovered and corrected. This is extremely important, as it is paramount that
the output from the simulations is valid and can be trusted. (ii) It is more likely to find MANET
researchers familiar with ns-2 than any other network simulator. Most researchers can therefore
verify simulations performed by others. (ii) It is feasible to base a study or part of a study on
research accomplished by other researchers since much work and studies are available.

On the downside, the ns-2 simulator has a steep learning curve and is therefore often considered hard
to use. And due to its command line interface, ns-2 may seem bothersome for researchers familiar
with point-and-click graphical user interfaces.
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6.1.2 Functionality

Simulations in ns-2 are user-defined by tcl-scripts. The simulator interprets the scripts at simulation
startup and performs the simulations via a scheduler. The scheduler uses both built-in and auxiliary
network components. The Mercury code described in this chapter is an example of such an auxiliary
component. The simulations result in one or several text files (Figure 6.1). Those text files can be
interpreted by an external program to collect statistics, or be used as input to an animator program
such as iNSpect [57] 10 in order to visualize the node mobility and the packet flow.

6.2 UM-OLSR

6.2.1 Introduction

The network simulator ns-2 comes with several built-in routing protocols such as AODV, TORA and
DSR. The OLSR routing protocol—which is a fundamental part of the Mercury service discovery
protocol—is, however, not a part of the default ns-2 implementation. A third-party implementation
must therefore be included subsequent to the ns-2 installation. In this report, I choose to take advan-
tage of UM-OLSR [98] from the University of Murcia. The implementation is extended to include
the service discovery messages and algorithms introduced in chapter 4.

In addition to UM-OLSR, there are other available implementations of OLSR such as NRLOLSR
[71] or INRIA [44]. All of them complies with the rfc [20] and support all core functions. I chose
UM-OLSR because the code is freely available and fairly easy both to understand and to extend.
The readability of existing code is important when a new code extension—such as a cross layer
service discovery implementation—have to infiltrate major parts of the existing code.

6.2.2 Functionality

It is not the intention in this report to thoroughly describe every function in UM-OLSR. The reader
is referred to [98, 83] for details about UM-OLSR not given in this chapter. The most prominent
features is, however, explained in order to give an understanding of the tight coupling between the
routing protocol and the service discovery implementation.

As any other protocol extension to ns-2, UM-OLSR acts as an agent listening to all packets of a
certain packet type flowing in the simulator. When a simulated node is about to receive a packet
classified as an OLSR packet11, the packet is handled by UM-OLSR. UM-OLSR then parses the
packet and does appropriate actions as defined in the OLSR standard. UM-OLSR handles its own
timers, enabling the automatic transmission of OLSR control packets.

10The Network Animator (NAM) [97] is the most common visualization tool for ns-2.
11Internally in ns-2, OLSR packets are classified as PT OLSR
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Figure 6.2: The UM-OLSR implementation extends ns-2 with OLSR routing capabilities. Mercury
provides cross-layer service discovery by taking advantage of UM-OLSR.

One important feature of UM-OLSR is that most of the OLSR parameters are configurable from
TCL simulator scripts. I.e., there is no need to recompile the simulator when changing parameters
such as HELLO intervals, TC intervals, willingness etc. This feature is important when comprehen-
sive simulations examining the effect of variable alteration are performed. The Mercury implemen-
tation extends this feature.

6.3 Service Discovery Implementation

Due to space limitations (and obviously with respect to the readability) the source code of the
entire service discovery implementation is not included in the report. Some details about the code
structure plus a small simulation example will be explained in order to give an understanding of the
implementation.

As illustrated by Figure 6.2, the Mercury service discovery implementation acts as a code extension
to UM-OLSR. The extension is made both by altering the original UM-OLSR code and by adding
new source code files to the structure. Using the new code, UM-OLSR is able to handle auxiliary
messages such as service requests and replies as if they were original OLSR messages.

The Mercury service discovery system consist of two main components: (i) A simple protocol for-
mat (including Bloom filters) defines the service requests and service advertisements. (ii) Arrays (or
repositories) to store various service information.

6.3.1 Protocol format

Three building blocks are involved in the transmission of service messages: Original ns-2 code,
UM-OLSR, and the Mercury extension. When ns-2 identifies a general OLSR packet, the internal
scheduler calls the function OLSR::recv in UM-OLSR. If the message is considered valid, the
function OLSR::recv_olsr is immediately called. The latter function processes each of the OLSR
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messages within the packet in turn. Each of these messages might be either one of the defined OLSR
control messages recognized from the RFC [20] (such as HELLO, TC and MID) or the Mercury
service discovery message as outlined below.

The service discovery format is defined in olsr_pkt.h of the UM-OLSR structure along with the
basic OLSR messages:

typedef struct OLSR_sd {

u_int8_t type_;

u_int8_t filter_length_;

u_int16_t spare_;

inline u_int8_t& type() { return type_;}

// The 16 spare bits used as sequence number in ns-2

inline u_int16_t& seqnum() { return spare_;}

// Service Filter

unsigned char bloomFilter[filter_length_];

inline u_int32_t size() { return filter_length +

sizeof(type_) +

sizeof(spare_) ;}

} OLSR_sd;

As illustrated above, the message format description complies with the format defined in chapter 4
with one exception: The 16 spare bits (which are originally unused) are used as a sequence number.
The intention of the sequence number is to be able to trace one particular service message (say
advertisement) while it traverses through simulated nodes inside ns-2.

6.3.2 Repositories

The core of the implementation evolves around the storage of service-data in information reposito-
ries (Figure 6.3). The basic functionality of the repositories is earlier described in 4.4 on page 38.
The first repository handles services advertised by the local node. The second repository stores ser-
vices advertised by foreign nodes, and a third repository stores the service requests awaiting reply.
All repositories are implemented as a series of C++ Standard Template Library (STL) vectors.

Figure 6.3 illustrates the relation between core ns-2 functionality, OLSR, message parsing, message
creation, Bloom filters and repositories. The core of the Mercury service discovery is the service
functions, which act as the glue that connects all the different components.

6.3.3 Service functions

The service functions make it possible for the ns-2 script to invoke service discovery in the simulated
network. If one of the nodes participating in an ns-2 simulation (say node 7) wishes to advertise the
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Figure 6.3: Service discovery functionality is made accessible for ns-2 scripts through the OLSR
extension. All service information used by the simulated network node is stored in the
information repositories.

service ”Map-server” at time 0.0, the following command is entered in the tcl-script:

$ns_ at 0.0 "[7 agent 255] SD_ADD_SERVICE Map-server"

Similarly, if node 6 wishes to request the very same service at time 20.0, the following command is
entered:

$ns_ at 20.0 "[6 agent 255] SD_REQUEST_SERVICE Map-server"

The tcl commands above indicates that implementing a simulation script with Mercury service dis-
covery is rather straightforward. The next section describes a complete (albeit simple) simulation.

6.4 Example simulation

The scenario illustrated by Figure 6.4 on the facing page is used as a basis to demonstrate how a
simple service discovery simulation can be created. It is assumed that the reader possesses base
knowledge about ns-2 and is familiar with tcl-scripting. Nevertheless, any reader familiar with com-
puter programming should be able to follow the example. The entire example is attached in ap-
pendix Appendix B on page 96, and the most prominent parts of the example will be described
subsequently:

6.4.1 Configuring Mercury

Mercury-enabled network nodes can be configured using simple TCL-commands:
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Figure 6.4: A simple OLSR network. Node 0 and 1 offers services, while node 2 requests services.

Agent/OLSR set sd_proactive_ false

Agent/OLSR set sd_ival_ 10

Agent/OLSR set sd_cache_ 300

Agent/OLSR set sd_numhash_ 4

In the first line in the above listing, we define that Mercury will operate reactively. The other ope-
ration mode is proactively behavior. Proactively in this context means that available services will
be advertised within intervals given by sd_ival_. The default (and preferred) operation mode is,
however, the reactive mode. Even if proactive mode may yield lower discovery delays compared to
reactive mode, it will certainly lead to increased data traffic. A sort of hybrid mode is enabled by
setting a high sd_ival_ and enable proactive mode.

The third line defines the cache timeout (in seconds). The fourth and last line define the number of
hash functions to be used by the Bloom filter algorithm (discussed in 4.2.2 on page 33).

6.4.2 Define topology

The network topology is defined by a simple set of commands defining the X , Y and Z coordinates
within the boundaries of the simulated area:

$node_(0) set X_ 100.00

$node_(0) set Y_ 100.00

$node_(0) set Z_ 0.0000

$node_(1) set X_ 180.00

$node_(1) set Y_ 100.00

$node_(1) set Z_ 0.0000

$node_(2) set X_ 260.00

$node_(2) set Y_ 100.00

$node_(2) set Z_ 0.0000

The above excerpt defines the location of the three nodes according to the setup illustrated by Figure
6.4. The transmission range is set to 100m (by setting the RXThresh_, see appendix Appendix B
on page 96 for details). Traffic between node 0 and node 2 is OLSR routed through node 1.
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6.4.3 Define service access

The service advertisements and requests are defined according to the definition in 6.3.3:

$ns_ at 1.0 "[$node_(0) agent 255] SD_ADD_SERVICE temp-sensor"

$ns_ at 2.0 "[$node_(1) agent 255] SD_ADD_SERVICE temp-sensor"

$ns_ at 10.0 "[$node_(1) agent 255] SD_ADD_SERVICE IR-sensor"

$ns_ at 20.0 "[$node_(2) agent 255] SD_REQUEST_SERVICE temp-sensor"

$ns_ at 20.1 "[$node_(2) agent 255] SD_REQUEST_SERVICE IR-sensor"

Using the simple commands above, the service ”temp-sensor” is advertised by both node 0 and 1,
and the service ”IR-sensor” is advertised by node 1 alone. Node 2 requests both services. The first
request occurs at time 20.0 and the second at 20.1.

With most of the simulation script explained, we are now ready to run the simulation.

6.4.4 Running the simulation

Assumed that ns-2 and the UM-OLSR protocol are installed properly (see [97, 98]), and that the
Mercury service discovery extension is a part of the source tree, the simulation is run by typing
ns sd.tcl outputfile.tr. After a successful run, the trace file outputfile.tr can be exa-
mined.

6.4.5 Examining the trace file

Trace files from ns-2 simulations tend to be quite large. Even the small simulation in this example
generates a trace file of 915 lines. Using a simple grep12, we can isolate the entries containing
the interesting service discovery information. Notice that superfluous information irrelevant for our
purpose is excluded from the traces for the sake of readability.

Adding service descriptors

The first service discovery related information in the trace file is the service advertisement done by
node 0 and 1. We can observe that the services are successfully added to the repositories of each of
the nodes.

sd 1.0 0 SD_ADD_SERVICE temp-sensor

sd 2.0 1 SD_ADD_SERVICE temp-sensor

sd 10.0 1 SD_ADD_SERVICE IR-sensor

Requesting the first service

At time 20.0, node 2 requests the first service, namely ”temp-service”:

12Referring to the Unix command grep which finds text within a file.
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sd 20.0 _2_ SD_REQUEST_SERVICE temp-sensor

sd 20.0 _2_ SERVICE_NOTFOUNDINCACHE temp-sensor 0 0 2

Notice that since Mercury is running in pure reactive mode, node 2 can not find the service ”temp-
sensor” in the local cache (foreign service repository on Figure 6.3). Node 2 therefore immediately
sends a service request containing a Bloom filter hash of the service descriptor.

s 20.000000000 _2_ RTR --- 39 OLSR 64 [[SD REQ 0 2 0 12]]

The above trace line tells that a service request (SD REQ) is sent (marked with an ”s”) as part of an
OLSR message. Let us examine what happens next:

r 20.001088267 _1_ RTR --- 39 OLSR 64 [ [SD REQ 0 2 0 12]]

sd 20.0010883 _1_ SERVICEFOUND

Observe that the request is received by node 1 (marked with an ”r”), which immediately searches
through its own advertised services (Own service repository on Figure 6.3), and then prints out that
the service is found. This information is then immediately sent to all network nodes:

s 20.001088267 _1_ RTR --- 40 OLSR 96 [ [SD ADV 0 1 0 15][SD REQ 0 2 1 12]]

Notice that the above message contains two service messages piggybacked into one single OLSR
message: The first part of the message (SD ADV) is the positive respond to the query. The second
part is the original query (SD REQ) from node 1 which is MPR forwarded. Node 0 will then receive
the forwarded message:

r 20.002492533 _0_ RTR --- 40 OLSR 96 [ [SD ADV 0 1 0 15][SD REQ 0 2 1 12]]

sd 20.0024925 _0_ SERVICEFOUND

Node 1 will, similarly as node 0, search through its own advertised services and send a positive
feedback to the request. Shortly thereafter, node 2 receives the positive reply from node 1:

r 20.002492533 _2_ RTR --- 40 OLSR 96 [ [SD ADV 0 1 0 15][SD REQ 0 2 1 12]]

sd 20.0024925 _2_ SERVICETRUEPOSITIVE temp-sensor 0

As we can see from the above two trace lines, the advertisement message from node is now suc-
cessfully received at node 2, and the service discovery process is completed. Notice that the entire
process took place in less than 2.5ms.

Requesting the second service

In the simulation script, we defined that node 2 should initiate a second discovery for the service
”IR-sensor” after 20.1 seconds. The trace file below presents one prominent feature of the Mercury
service discovery, namely the caching:
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sd 20.1 _2_ SD_REQUEST_SERVICE IR-sensor

sd 20.100000000 _2_ SERVICEFOUND_CACHE IR-sensor 1 1 0 1 2

As implied by the trace lines above: The first service discovery process did not only yield a success-
ful discovery of the service ”temp-service”. The reply from node 1 also contained all the services
offered by node 1. Hence, the second service request performed by node 2 at time 20.1 resulted in a
mere cache-lookup yielding a discovery time of 0.0s.

6.5 Summary

In this chapter, the implementation of the Mercury service discovery protocol for the network si-
mulator ns-2 is explained, and a simple simulation is described. This implementation is used for all
subsequent simulations in this report. No solution should, however, exist solely in a simulator, and
the work in the next chapter brings the protocol closer towards real-world deployment.

7 Implementation for olsrd

This chapter describes the implementation of Mercury Service Discovery protocol aimed for real-
life usage. The olsrd routing daemon and its plugin interface is introduced, and the Mercury Service
Discovery plugin to olsrd is presented.

7.1 Overview

The proposed cross-layer design requires a tight coupling between the service discovery protocol
and the OLSR routing protocol. For this reason, there is a need for a complete and well-written
OLSR implementation flexible enough to cope with additional code extensions. Different OLSR
implementations exist and can be used in such a test and development stage. Most of the implemen-
tations are open source and can be downloaded free of charge, such as nrlolsr [71] and OOLSR [44].
The most popular and well documented implementation today is, however, the UniK olsrd project
[76] and the Mercury service discovery implementation will be based on this implementation. I refer
to olsrd as the implementation, and I use the uppercase abbreviation OLSR to specify the protocol.

7.2 The UniK olsrd daemon

The olsrd project was originally based on an open source project from INRIA, but was later heavily
modified as a part of a masters thesis [94] at University Graduate Center at Kjeller (UniK). During
the project development, the source was redesigned to become fully compliant to RFC 3626 [20] and
became available on the Internet [76]. The project is now embraced by the open source community
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Figure 7.1: OLSRd basic functionality, based on a figure in [94]

and thanks to a lot of researchers and engineers, olsrd is among the most popular implementations
of the OLSR routing protocol.

The olsrd developers are very active and are continuously updating olsrd with new improvements
and extensions. The latest version of olsrd now runs on multiple platforms, such as Linux, Windows,
OS X, and iPhone. Both source code and binaries can be found on the web site [76] available for
free download.

Olsrd is now used in several test beds and real networks such as to create Internet access in rural
areas [60] or in cities like Berlin and Rome [31, 100]. Olsrd is also used by Norwegian Defence
Research Establishment (FFI) to provide communication in the digitized battlefield [4].

7.2.1 Core functionality

Even if olsrd is rather complex, the core functionality is kept simple and is easy to understand.
Figure 7.1 outlines the basic parts of olsrd and their relation.

All incoming data to the olsrd daemon is handled by the socket parser. This entity can listen to
multiple network sockets, which can be added in runtime. One socket is maintained per network
interface running olsrd. For each of these sockets, a special parser function is registered. The parser
function is called whenever data is available on the particular socket. Special parser functions for
specific message types can be registered and added dynamically. If no function is registered to
handle a message type, the packet parser forwards the message according to the default forwarding
algorithm in OLSR.

As OLSR is a table driven routing protocol, updated information is kept in tables, or information
repositories. All information about the current state of the network and quality of links are described
in these tables. The different parser functions both update the information in the tables and makes
use of stored information to process messages. To avoid duplicated packets, the forwarding function
relies on the duplicate table, which stores all recently processed packets.

The event scheduler in olsrd runs different registered tasks at given intervals. If a certain packet
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should be transmitted within a defined time interval, a dedicated function can be registered with the
scheduler.

7.2.2 Configuration

Olsrd is fairly easy both to configure and run. The daemon uses a human-legible configuration file,
which is read by the process at startup. The configuration file defines the basic behavior of olsrd
regarding which network interfaces should run OLSR, different message emission intervals to use,
auxiliary plugins to load, and other parameters according to the RFC, such as link hysteresis and
MPR willingness.

Altering the parameters in the configuration may not, however, cover all possible special modes of
operation. The olsrd implementation is based on open source C code, which is relatively easy to
understand, alter and extend for any experienced software developer. The most prominent feature of
the olsrd implementation is, however, the plugin interface. The plugin interface enables extension
of the protocol without altering the core code of olsrd. The plugin interface is a major part of the
implementation, and perhaps one of the primary reasons for the popularity of the olsrd daemon.

7.3 Olsrd plugins

The olsrd implementation supports dynamically loaded libraries for auxiliary functions. These ex-
tensions are enabled using the generic plugin interface [95]. Via the plugin interface, a third-party
programmer can create extensions to adjust, extend, or exploit different functionality in olsrd as
shown in figure 7.2. Such extensions can for example utilize the scheduler inside the daemon to
invoke new functions on timed events, access different variables, or even altering the routing table.
By using special parser functions, the plugin can alter both incoming and outgoing messages. For a
software programmer, the plugin interface gives access to intercept or change current operation of
OLSR using a plugin instead of altering the inner code structure.

Olsrd plugins can be categorized in two groups; (i) plugins that extend or change functionality in
OLSR itself, and (ii) plugins that exploit the MPR flooding function in OLSR to disseminate its own
message types.

The first category of plugins can be used to extend OLSR to provide QoS routing, to enable secure
routing, or to extend the routing daemon to include link layer information. The second category of
plugins can be used by an upper layer application in order to extend OLSR with auxiliary message
types, which can be parsed by the plugin. Auxiliary messages can be used for a variety of purposes:
Provide name service in an ad-hoc network, distribution of encryption keys or dissemination of
service discovery information.

The plugin interface to olsrd gives a MANET developer some major advantages:
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1. The interface provides backward compatibility—there is no need to change code in olsrd itself
when adding auxiliary functions.

2. Since the original olsrd code is not touched, the plugin can be licensed under any term.

3. The plugin can theoretically be implemented in any programming language.

4. The default forwarding algorithm in OLSR will forward unknown packet types according to
the MPR scheme.

A great variety of different plugins exist. Some are created by the olsrd team and are included in
the implementation found on the web site. Other plugins are part of different research projects and
are described in papers, but are not part of the olsrd code. The list presents some of the available
plugins:

• Basic Multicast Forwarding Plugin (BMF). The Basic Multicast Forwarding Plugin floods
IP-multicast and IP-broadcast traffic over an olsrd network. In order to optimize the flooding
of multicast and local broadcast packets to all the hosts in the network, the Multi-Point Relays
(MPRs) as identified by the OLSR protocol are used. A history of packets is maintained in
order to prevent broadcast storms. Only packets that are classified as new to the process are
forwarded. The plugin and its source can be downloaded as a part of the olsrd source [76].
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• HTTP Mini-server Plugin. This plugin implements a small HTTP server that can be accessed
from a browser. The plugin returns a HTML formatted page, which contains detailed process
information from olsrd. The information provided includes detailed link status for all links
and neighbors, all olsrd routes in the kernel, and local configuration. The plugin is included
as a part of the olsrd source [76].

• Power Status Plugin. The Power Status Plugin gathers power information from the battery of
a mobile node, and distributes the information to other olsrd-enabled nodes in the network.
The plugin is described in [95], and although it is not compatible with the latest versions of
olsrd, it still works as a good basis when designing new plugins.

• Nameservice Plugin. This plugin is a simple DNS replacement for OLSR networks and dis-
tributes host name information over OLSR. Every node that runs the plugin can announce
different name-IP couplings via the plugin. These names can be its own host name, names
of other IP addresses associated with HNA, and names resolved from an Internet DNS. The
plugin is included as a part of the olsrd source [76].

• Dynamic Internet Gateway Plugin. This plugin checks dynamically whether the local node
has an Internet connection or not. The plugin updates the local HNA information announced
by the local node, facilitating Internet connectivity for other olsrd nodes in the network. The
plugin is described in [95].

• Encap Plugin. This plugin includes a route management protocol for multi-homed wireless
mobile nodes. The plugin facilitates low handover time when a mobile node switches between
local access point or Internet Gateways by taking use of HNA information announced by the
gateway nodes [22].

The above list effectively illustrates the variety of plugins that can be created to extend core OLSR
functionality. The rest of this chapter will introduce a new member to this list—the Mercury Service
Discovery Plugin.

7.4 Service Discovery as a plugin to olsrd

There are several advantages by implementing service discovery as a plugin to olsrd:

• MPR Flooding. Multicast in MANETs is still at the research stage (no standard is defined) and
is thus an open issue. By using the previously defined cross-layer design and take advantage
of message flooding using the Multi-Point Relays (MPRs), we have an efficient message
dissemination scheme available without the use of IP multicast.

• Piggybacking. The service discovery message is defined as a separate message type, in addi-
tion to the built-in message types such as HELLO, MID, TC and HNA. A service discovery
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request may therefore be transmitted alone, or be piggybacked on one of the built-in mes-
sage types. When piggybacking, bandwidth is saved since several messages are transmitted
encapsulated in one single IP/UDP header.

• Transparency. Using the unified OLSR packet format, the OLSR standard provides extensibi-
lity of the protocol without breaking backwards compatibility. This feature gives a unique pos-
sibility to disseminate service discovery information transparent through intermediate nodes
even if the nodes do not support the service discovery extension.

• Availability to OLSR repositories. As outlined in Figure 7.2, an olsrd-plugin has access to
all variables and repositories inside olsrd. We can take advantage of this feature for several
purposes: Our path-aware algorithm can exploit the local routing table when services are
requested locally to avoid false positive lookups in the cache. Furthermore, the plugin can
utilize the table of symmetric neighbors to make sure that no services are added to the local
cache unless the node providing the service has a link considered stable by OLSR. In addition,
other useful functions such as memory cleanup and socket handling in olsrd are available. The
use of these existing and well proven functions avoids duplication of similar tasks, it reduces
the complexity of the plugin implementation, and enhances both readability and stability.

7.4.1 Implementation overview

Even if the olsrd daemon itself is programmed in C, an auxiliary plugin can be written in any lan-
guage that can be compiled to a dynamic loadable library. The Mercury Service Discovery Plugin is
implemented—as the daemon—in C. There are two reasons for the choice of C as the programming
language: (i) In order to make the interface to olsrd clean and easy to understand, C was chosen
to avoid conversions and type casts between two different languages, and (ii) C has very few de-
pendencies, and should therefore be easy to port to other platforms and operating systems in the
future.

Even if the entire source code for the service discovery plugin is rather compact, and consists of
less than 2000 lines, it is not included in this document but is available at [29]. Essential details
in the code are explained in the subsequent sections. The implementation consist of a /src folder
containing the following files:

mercury_plugin.h

mercury_plugin.c

bloom.c

bloom.h

Makefile

The first two files in the listing contain all service discovery functionality. The next two files contain
the bloom filter algorithms, and can easily be replaced with other data structures if desired. The
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Figure 7.3: The main building blocks of the Mercury Service Discovery Plugin

source should be placed in the /lib folder of the olsrd source. Building and installation is done by
running the Makefile:

:˜/src$ make

:˜/src$ make install

The commands above compiles the Service Discovery code as a shared object:
olsrd_mercury.so.x.y, and places it under /usr/lib. The plugin is loaded by defining the
library in the configuration file /etc/olsrd.conf according to [94].

7.4.2 Plugin architecture

The Mercury Service Discovery Plugin and the peripheral connections are shown in Figure 7.3. The
main building blocks of the plugin are:

• Repositories: The repositories are tables that store both own services that are advertised, re-
quested services, and foreign services advertised by other nodes.

• Packet parser and creator: The message parser function intercepts incoming Service Disco-
very Messages, while a creator function creates and prepares service discovery messages for
transmission.

• Inter-Process Communication: Inter-process Communication (IPC) is a way to provide two-
way communication to an upper-layer application.

• Interface to olsrd: Different interfaces to olsrd provide functionality to load and shut down
the plugin, transmit packages, and deal with sockets.
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1 2 n-1 n

Figure 7.4: A two-way circular linked list. Every entry in the list holds two pointers, and the last
entry in the list points to the base element.

• Service access functions: The service access functions deal with service advertisement and
request. Those functions also perform sub-tasks using either IPC to applications, interfaces in
olsrd or by accessing the local repositories.

7.4.3 Repositories

The repositories are lists that store certain information. Inside the service discovery plugin, there
are three such repositories:

Own services In this list, all the different services offered by the local node are stored. The service
descriptors are stored as plain text. This makes it possible to search or withdraw services by
their service name. One single entry in the list exists per service offered. Upon sending a
service advertisement, all the service descriptors in the list are encoded in one single Bloom
filter. The services in this list persist until an upper-layer application withdraws the service.
When the olsrd daemon is restarted, the list is cleared.

Foreign services In this list, all the services offered by other nodes are stored. Each entry consists
of the Bloom filter advertised by a foreign node and its current IP address.

Requested services This list stores all the services this node is requesting. If a successful service
reply is not received within a predefined time, the request eventually times out and the list
entry will be deleted.

All repositories are implemented as two-way circular linked lists. Every entry in these lists holds
two pointers: a pointer to the previous data element (in this case service descriptor or node), and a
pointer to the next element. The last entry in the list points to the base element, which makes the list
circular (Figure 7.4).

The benefit by this data structure is that the order of the linked elements can be different from
the order that the data elements are stored in memory. This allows the lists to be traversed in any
order, and permits insertion and removal of entries at any point in the list. Another advantage of a
linked list in contrast to a conventional array is that entries can be inserted indefinitely. An array
will eventually either fill up or need to be resized.

The repository containing the list of foreign nodes could be as large as the total number of nodes in
the network. As an effect, a standard linked list may be cumbersome to search due to its length. To
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solve this issue, the list of foreign services is implemented as an array of several two-way circular
linked lists. The root element of each linked list is an element of an array where the index is a hash
value of the IP-address of the service provider (Figure 7.5).

7.4.4 Packet parser

The parser system consists of three components:

• A definition of the Mercury service discovery message.

• A function to create messages.

• A function to parse incoming messages.

The definition of the Mercury service discovery message is illustrated in Figure 4.4 on page 37 and
serves as a base for the implementation. In the plugin, this message is defined as a simple C-struct:

struct mercurymsg

{

olsr_u8_t type;

olsr_u8_t length;

olsr_u16_t spare;

unsigned char filter[FILTER_LENGTH];

};

The special olsr datatypes such as olsr_u8_t and olsr_u16_ct are defined in olsr_types.h

The type of the message can be either MSD_ADVERTISEMENT, which indicates a message containing
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one or more service advertisements, or MSD_REQUEST, which means that the message contains one
or more service requests.

In order to inform olsrd that a new message is defined, a message parsing function is registered with
olsrd when the plugin is initialized:

olsr_parser_add_function(&olsr_parser, MERCURY_PACKET, 1);

When a new service discovery message is received by olsrd, this is identified uniquely by the Mes-
sage Type field set to MERCURY_PACKET. Olsrd then calls the plugin function olsr_parser By
doing this, olsrd hands over the responsibility to parse the message to the plugin.

void

olsr_parser(union olsr_message *m,

struct interface *in_if,

union olsr_ip_addr *ipaddr)

Prior to message parsing, the plugin verifies that the originator of the message is considered a
symmetric neighbor by calling a checkup function in olsrd. The plugin also verifies that this packet
is not previously processed by checking the duplicate table in olsrd:

if(check_neighbor_link(ipaddr) != SYM_LINK) {

return;

}

if(olsr_check_dup_table_proc(&originator, seqno){

process_message(m);

}

When all parsing and handling of the service discovery message is performed, the message is for-
warded using MPR flooding:

olsr_forward_message(m, &originator, seqno, in_if, ipaddr);

If the message is considered valid, the message is processed by one of the service access functions
described subsequently.

7.4.5 Service access functions

The service access functions handles requests and advertisements both from the external network
via olsrd, and from applications running locally on the node—connected via Inter-process com-
munication (described in section 7.4.6). The access functions controls the internal repositories by
updating and deleting entries when needed. As service descriptors may be handled either as clear

FFI-rapport 2008/02090 63



text or as a Bloom filter, the following vocabulary is established as a reference: A service request is
named SR, a service advertisement is named SA. One or more service requests and advertisements
encoded using Bloom filters are named B(SR) and B(SA) respectively.

Incoming service messages are handled by one of two functions based on the type-field of the
message:

• Advertisements: An advertisement B(SA) received from a network node is immediately ad-
ded to or updates an existing entry in the ”Foreign services” repository. If B(SA) matches one
of the entries in the ”Requested services” repository, a message is sent to all IPC connected
applications.

• Requests: A request B(SR) received from an external node immediately query the ”Own
services” repository. If a matching service S is found, the node replies with a service adverti-
sement. A service advertisement B(SA) is created as a Bloom filter containing all the services
in the ”Own services” repository and sent.

Both incoming requests and advertisements are, regardless of their content, forwarded using the
MPR flooding technique. In order to avoid loops, the plugin verifies that this packet is not previously
processed by checking the duplicate table in olsrd.

Requests from local applications are received via Inter-process communication. The plugin supports
three different requests:

• Service Request: A service request SR is immediately hashed as a Bloom filter to B(SR).
Then the filter is queried in the ”Foreign services” repository cache. If no match in this repo-
sitory is found, the service request SR is matched against the ”Requested services” repository
to check wether a request is recently performed regarding the same service descriptor. If this
is not the case, the service descriptor S is added to the ”Requested services” repository. Then,
a new Service Request message B(SR) is created as a Bloom filter containing all the services
in the ”Requested services” repository, and sent.

• Service Advertisement: When an application is advertising a service, the service descriptor S

is added to the ”Own services” repository. Then a service advertisement B(SA) is created as
a Bloom filter containing all the services in the ”Own services” repository, and sent.

• Service Withdrawal: When an application shuts down or for some reason can not provide a
service S anymore, it shall withdraw the service. The service descriptor S is then removed
from the ”Own services” repository. Subsequently, a new service advertisement B(SA) is
created as a Bloom filter containing all the remaining services in the ”Own services” reposi-
tory, and sent using the MPR flooding technique. Notice that the advertisement is sent even
if the ”Own services” repository is empty and the resulting Bloom filter is NULL. To speed
up the service discovery process for nodes dependent of the recently withdrawn service S, a

64 FFI-rapport 2008/02090



Application 1 Application 2 Application n

Inter-process 

Communication

Plugin interface

MPR forwarding

Figure 7.6: A number of applications, n, are connected to the plugin. Requests and advertisements
are disseminated using MPR forwarding in OLSR.

service request message B(SR) containing a Bloom filter of the withdrawn service is created
and immediately sent, piggybacked to B(SA). As a result of this technique, any node provi-
ding a service S will respond to the request B(SR) and nodes dependent of S will contact the
new service provider immediately.

7.4.6 Inter-process communication

To allow communication between the plugin and user applications, an Inter-process communica-
tion function (IPC) is created. The IPC communication is enabled using TCP/IP via the loopback
interface. The plugin allows several simultaneous applications to connect via IPC as illustrated in
Figure 7.6. The number of simultaneous applications that can connect to the plugin is limited by
MAX_IPC_CLIENTS defined in mercury_plugin.c.

A connection to the plugin is established simply by creating a TCP socket to localhost (usually
127.0.0.1) on the port number IPC_PORT defined in mercury_plugin.c. The Inter-process
Communication interface can be tested using a telnet client, provided by most operating systems.
Given that the IPC_PORT is 8888, the connection is done by typing:

telnet localhost 8888
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When an IPC-socket connection is established, the IPC interface provides a few simple text based
commands, which the application can put to use. The default setup of a complete command is:

<Command> <ServiceName> <Attribute>

The different commands facilitate advertisement, withdrawal and request of services:

Advertisement
A service advertisement is performed by giving the command: ADVR <Service>. An example
of usage: If a chat-application with the name ”Chatclient” starts, it advertises itself to the network.
Assuming that the IPC-socket is established, this is done simply by giving the command:

ADVR Chatclient

Withdrawal
When an application either shuts down or for some other reason cannot provide the service anymore,
it withdraws the service. This is done simply by giving the command: WTDR <Service>. In our
chat client example, the command is:

WTDR Chatclient

Request
A service request is performed by giving the command: RQST <Service> [ANY,ALL]. If an
application want to retrieve the IP-addresses of one of the printers in the network, it sends the
following command: RQST Printer ANY. On the other hand, if the application wants to retrieve
all of the chat client in the network, it uses the following command:

RQST Chatclient ALL.

Output
The plugin also has the ability to provide data to the application. The plugin will respond with OK

if one of the commands is understood and action is performed. If a requested service is found in the
network, the plugin will respond with:

SERVICE FOUND: <Service> AT <IP> <Time>.

Say that the application has asked for one of the printers in the network, like the above example, the
reply may look like this:

SERVICE FOUND: Printer AT 192.168.0.4 (0.131s)
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7.4.7 Summary

This chapter has described the implementation of the Mercury Service Discovery protocol aimed
for real-life usage. The implementation is made using the plugin interface of olsrd and is available
at [29]. The Mercury plugin can be used in a wide range of applications. Appendix Appendix C
shows how SIP user agents can be discovered in an ad-hoc network using the Mercury plugin.

8 Simulation methods

This chapter provides background information and addresses some pitfalls and frequent source of
errors when simulating mobile ad-hoc networks. Finally, the chapter explains my choice of simula-
tion and validation models.

8.1 Performing valid measurements

The key questions to answer when evaluating a service discovery protocol (or any ad-hoc network
protocol) are:

• What to measure?

• How to measure?

• How to evaluate the measurements?

The questions above must be addressed prior to any simulation study. Also, in order to measure
the behavior of any protocol by simulation, valid scenarios must be established. Scenarios must be
realistic in order to cover the future use of the protocol, but must be kept simple to be enable to
isolate and test one particular feature at a time.

The features of Mercury that is tested in this report are:

Bloom filter The implementation of the Bloom filter is tested in order to verify that the implemen-
tation behaves according to the mathematic theory.

Caching The effect of caching is examined to measure performance gains and to detect any side
effects.

Delay The delay (the time consumed) to perform service discovery in different networks is evalua-
ted.

Overhead The overhead (the number of bytes) induced by the service discovery process is exami-
ned using different network topologies.
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In order to measure the above parameters one can take advantage of both static and mobile scenarios.
Static scenarios are easy to set up and to repeat and are feasible when distinct features of the protocol
are measured. Scenarios including node mobility are more realistic. As the employed mobility model
greatly affects the performance of the simulated protocol, a realistic model must be used.

8.2 Obtain a realistic dynamic topology

In order to obtain confident results when simulating new protocols and algorithms for ad-hoc net-
works, it is imperative to use a mobility model that is suitable for the target application. Huang et al.
have addressed this point by creating mobility particular to simulate first responders at an incident
scene [43]. Additionally, T. Camp et al. have proved that the performance of an ad-hoc network
protocol can vary significantly with different mobility models [11].

Researchers agree that only by using an appropriate mobility model that closely matches the real
world scenario, one can evaluate and determine the effects of a given protocol. Two main approaches
exist when choosing mobility models for mobile network simulation:

• To use traces or tracks from real-world patterns.

• To take advantage of synthetic models.

Traces can be collected by equipping people and vehicles with GPS-loggers when performing a rea-
listic operation. Even if traces provide more accurate information for a given scenario than synthetic
models, they are seldom used in ad-hoc network research. In [45], real traces are collected and used
to simulate a vehicular ad-hoc network. M. Kim et al. provide a way to collect traces for simulations
by gathering logs from Wi-Fi access points [52].

There are obvious reasons for the lack of published results using real-world tracks: First, traces are
hard and expensive to obtain—especially for a large number of nodes. Second, it may be difficult
to foresee a specific scenario, and thus impossible to collect valid traces. In such cases, synthetic
models are crucial. Several synthetic models exist to simulate ad-hoc networks such as random walk,
random waypoint, random direction and probabilistic random walk [11].

In order to evaluate the Mercury service discovery protocol, I have used both a synthetic model and
real traces. This chapter compares two different routing protocols using Random Waypoint Mobility
Model as an example of the most popular synthetic model, plus tracks collected from a real-world
exercise. The reason for doing this initial comparison is twofold:

• Examine how the chosen mobility model influences the performance of the routing protocol.

• Obtain an understanding of the effects of choosing one routing protocol in favor of another.
Mercury is a cross layer service discovery protocol, and its performance is therefore bound to
follow the performance of the routing protocol.

68 FFI-rapport 2008/02090



Figure 8.1: Traveling pattern of 22 mobile nodes following Random Waypoint Mobility Model.

Figure 8.2: Traveling pattern of 22 mobile nodes following real position tracks.
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The results in this chapter are used as a base to create valid scenarios for following tests of the
Mercury service discovery protocol. The results also provide important knowledge for validating
subsequent simulations.

8.2.1 Comparing synthetic mobility models and real-world traces

I created a simple scenario to compare the synthetic mobility model and real-world traces. The traces
were collected from a tactical exercise with real soldiers (from [30]). The exercise included 22 sol-
diers divided in three teams that first moved independently, and then they collaborated. The exercise
area was 530 x 240 m, and included both forestry and a village area. All subsequent simulations are
performed using the same area size and the same number of nodes.

Notice that two distinct features separate real-world tracks from synthetic tracks: Obstacles and
collaboration. In the real life, users have to deal with obstacles such as buildings, constructions and
vegetation. Users therefore move along paths and roads. Additionally, real users tend to cooperate
and move in groups. Nodes simulated by the Random waypoint model do, however, take neither
obstacles nor collaboration nto consideration.

The effect of this simplification is effectively demonstrated by figure 8.1 and figure 8.2, which show
the movement patterns of Random Waypoint and the real traces respectively. We clearly see that
the nodes are more evenly distributed across the area when the synthetic model is used compared to
using real tracks.

It is expected that the two different mobility patterns will influence the performance of the chosen
routing protocol. The following simulations will test this hypothesis.

8.2.2 Scenario description

The ns-2 network simulator [97] was used to perform the simulations. Two different routing pro-
tocols were included: the built-in AODV implementation and UM-OLSR from the university of
Murcia [98]. Both AODV and OLSR used the default parameter settings as described in their cor-
responding RFCs 3561 [80] and 3626 [20] respectively.

The traffic pattern in the network was constant bit rate (CBR) connections, with fixed packet sizes
of 50 bytes. Each of the 22 nodes transmitted one packet to each of the other nodes every 10s. The
CBR connections were initialized after a warm-up time of 60s. The purpose of the 50-byte package
was to simulate typical location service (GPS) messages, which is an important feature in tactical
networks. For the sake of simplicity, no multicast feature was enabled.

50 different movement patterns were generated for the Random Waypoint model. For each run, the
number of successfully received packets and the number of hops were logged in order to compare
traffic distribution, node distribution, packet loss and delay. The results were averaged and the 95%
confidence interval was estimated and given in the figures. Due to time and resources available, real
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Parameter Value
Simulator NS-2.31
OS MAC OS 10.5.2
Simulation Time 1550s
Simulation Area 530 x 238 m
# Nodes 22
Transmission Range 100m
MAC 802.11
Movement Model Random Waypoint / (real-world)
# Patterns 50 (1)
Node speed 1.0m

s / (real)
Pause Time 0.0s / (real)
Routing Protocol UM-OLSR / NS-2.31 AODV
CBR Sources 22
Data Payload 50 bytes
Packet Rate 0.1 packets / sec
Traffic Pattern peer-to-peer

Table 8.1: Setup of the simulation. Numbers for the real-world trace simulation in parenthesis.

Number of hops (% of traffic) Avg
Protocol Mobility Lost packets 1 2 3 4 5 6 7 8 9
AODV Real 4.5% 51.9 27.0 11.6 3.9 0.9 0.1 0.0 0.0 0.0 1.6
AODV RWPT 29.2% 25.5 18.4 12.4 7.4 4.1 2.0 0.8 0.3 0.1 1.7
OLSR Real 5.6% 60.3 25.9 7.1 1.1 0.1 0.0 0.0 0.0 0.0 1.4
OLSR RWPT 25.0% 30.1 23.2 12.7 5.7 2.3 0.7 0.2 0.0 0.0 1.6

Table 8.2: Amount of lost packets, and distribution of traffic regarding to the number of hops. Both
real tracks (Real) and random waypoint (RWPT) are used.

world tracks from only one (albeit fully realistic) exercise was used. Simulation setup is given in
Table 8.1.

8.2.3 Traffic distribution

I wanted to examine how the CBR traffic was routed in the network using different routing protocols
and mobility models. Figure 8.3 and Table 8.2 illustrate how the different mobility models influence
the number of hops necessary to transmit CBR packets end-to-end in the scenario. Using real tracks,
the number of hops necessary to establish connection between any pair of nodes never exceeds six,
while the Random Waypoint model yields longer paths.

Table 8.2 also reveal that—regardless of the routing protocol—a great number of CBR packets are
lost in the Random Waypoint scenario. Comparing routing protocols and mobility models, we see
that the mobility model has a greater affect on the performance than the choice of routing protocol.
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Figure 8.3: Amount of traffic transmitted with respect to number of hops.

8.2.4 Node distribution

In real-world networks, users are expected to form groups and move united. One way to measure
this effect is to count the number of neighbor nodes (1-hop) and the number of routed nodes. A high
percentage of neighbor nodes implies that the nodes are formed in groups. A high number of routed
nodes implies (obviously that the routing works and) that the groups are not clustered beyond radio
transmission reach.

Figure 8.4 shows the average percentage of neighbor nodes (1-hop) when changing routing protocol
and mobility model. As expected, the number of neighbor nodes is independent of the choice of
routing protocol. Comparing the mobility models isolated, we observe that the real-world track
model leaves more nodes in the one-hop proximity. This is expected, as real-world nodes collaborate
and move together. This effect is not considered in the Random Waypoint model.

By examining all CBR packets transmitted from each node, the number of accessible routed nodes
and the average hop-count can be found (Figure 8.5 on the facing page). The figure reveals two im-
portant findings: (i) when the real nodes are clustered in groups (as seen in the first 400s), coverage
is reduced compared to Random Waypoint. (ii) When real nodes collaborate (as with the last 1100s)
coverage increases compared to Random Waypoint. Hence, Random Waypoint underestimates both
group clustering and node collaboration.
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Figure 8.4: Average number of neighbors during the 1550s run.

Figure 8.5: Average number of all accessible nodes during the 1550s run.
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Figure 8.6: Average delay for one hop using different routing protocols and mobility models.

8.2.5 Delay

The time-delay between transmission and receiving a packet is another interesting feature. Figure
8.6 reveals that the delay for packets traversing between one-hop neighbors is mainly dependent of
the routing protocol and not the mobility model. As AODV is a reactive protocol, it is expected to
yield longer delays than the proactive OLSR counterpart.

Figure 8.7 illustrates the end-to-end delay for all packet transmissions. We clearly see that, since the
average hop count is lower in the real-track model, the delay is reduced compared to the Random
Waypoint model. Thus, as Random Waypoint treats each node independent, the model overestimates
delay.

8.2.6 Conclusions

From the simulations conducted, the following conclusions are established:

• It is crucial to create a realistic scenario when performing performance evaluation. Real traces
from a real exercise or test are preferred.

• OLSR performs better than AODV regarding end-to-end delay in the network for both Ran-
dom Waypoint and when using real tracks. It is not the scope of this report to perform a
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thorough performance comparison of OLSR and AODV. The results, however, correspond
well with previous research [21, 45].

• Random Waypoint treats each node independent and underestimates the relative dependence
of the nodes. Hence, the routing protocol and any other protocol dependent on the routing pro-
tocol (such as cross layer service discovery) will perform different in the simulation compared
to the real life environment.

• Random Waypoint overestimates delay compared to the real world tracks.

• Random Waypoint underestimates the variation in the topology.

As a summary of the above, I state that the mobility pattern will have a greater effect on the results
from an ad-hoc network simulation than the choice of routing protocol.

8.3 Scenarios used in this report

Random Waypoint is the most common mobility model to validate ad-hoc network protocols—
despite of the different weaknesses discovered [101] and the issues explained in this chapter. In this
report, different scenarios and mobility models are used to evaluate the Mercury service discovery
protocol to obtain confidence. All simulations and their results are given in the next chapter.

Figure 8.7: Average end-to-end delay using different routing protocols and mobility models.
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Parameter Value
Simulator NS-2.31
OS MAC OS 10.5.2
Transmission Range 100m
MAC 802.11
Reflection model Two Ray Ground
Movement Model Random Waypoint
Routing Protocol UM-OLSR
OLSR Settings Default [20]

Table 9.1: Default setup for all simulations.

8.3.1 Static scenarios

Static scenarios with no mobility are used to make initial performance evaluation of the protocol.
Distinct features such as the Bloom filter and overhead measurements are more practical to evaluate
by static models. Static models are also used to make comparative simulations with real-world
measurements and to compare Mercury with existing service discovery protocols.

8.3.2 Dynamic scenarios

Dynamic scenarios (with synthetic mobility) are used to evaluate the caching features of Mercury.
A mobile scenario using real tracks is used to make a final and realistic evaluation of the protocol.

9 Simulations

In this chapter, simulations are performed to test the most prominent features of the Mercury ser-
vice discovery protocol. Different static, mobile, and real-life scenario setups—as introduced in the
previous chapter are used to test different features. The simulation setup, results and the conclusions
are listed for each test.

9.1 Introduction

The ns-2 network simulator is used for all simulations. The code extension described in chapter 6
is included and compiled with the ns-2 code. The parameters listed in Table 9.1 are used for all
simulations unless otherwise mentioned.
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Number of available services
k 1 2 4 8 16 32 64 128 256
1 .0072 .0145 .0296 .0625 .1208 .2345 .4342 .7003 .8823
2 .0003 .0016 .0034 .0121 .0408 .1741 .3941 .7664 .9494
3 0 .0003 .0009 .0041 .0242 .1717 .4750 .9304 1.0000
4 0 0 .0002 .0016 .0173 .1632 .5258 1.0000 1.0000
5 0 0 .0001 .0010 .0100 .1585 .6101 .9619 1.0000
6 0 0 .0001 .0011 .0171 .2359 .8244 1.0000 1.0000
7 0 0 0 .0009 .0129 .2178 .8044 1.0000 1.0000
8 0 0 0 .0008 .0091 .2380 .8294 1.0000 1.0000
9 0 0 0 .0003 .0143 .3035 .9322 1.0000 1.0000
10 0 0 0 .0003 .0193 .3447 .9250 1.0000 1.0000

Table 9.2: Measured false positive probability using a 128 bit Bloom filter.

9.2 False positive probability of the Bloom Filter

Bloom filters are a major component of the Mercury service discovery implementation. The false
positive property of such Bloom filters is described and evaluated analytically in 4.2.1. These ana-
lytic results represent the theoretic optimum, given a perfect hash function. No Bloom filter imple-
mentation is, however, expected to achieve the optimum value. It is important to evaluate how the
Mercury implementation corresponds with the analytic results. If a correlation is found, the equa-
tions in chapter 4 can be used (with certainty) to estimate the impact of the false positive probability
when altering one of the Bloom filter parameters (number of hash functions, width of the filter or
number of services).

9.2.1 Description

The false positive rate was estimated for different combinations of k (number of hash functions) and
n (number of services offered). In order to isolate the false positive feature, a static scenario was cho-
sen, consisting of two nodes: A and B. A was offering a set S consisting of n = {1, 2, 4, 8 . . . 256}
services using k = {1..10} hash functions. For each combination of service number and hash func-
tions, node B requested a set of 10000 different services which were intentionally not part of the set
S. The false positive rate was calculated as the amount of service requests out of the 10000 requests
yielding a positive reply. The width of the Bloom filter was kept constant at 128 bits.

9.2.2 Results

Table 9.2 shows the false positive rate measured by the simulations, and Figure 9.1 compares the
simulated result with the expected false positive rate calculated by equation 4.1 on page 33. On
average, the false positive rate of Mercury is 0.5 percentage points above the theoretic optimum.
Increasing the number of service requests can reduce the variance observed in the figure.
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Figure 9.1: False positive probability of a 128-bit Bloom filter. Measurements from simulations
(dots) compared with calculations (solid-drawn line) for each value of k.

9.2.3 Conclusions

The following conclusions are drawn from the results:

• The performance of the MD5 based Bloom filter in Mercury closely matches the theoretic
optimum.

• Given the strong correlation between the theoretic performance and the measurements, future
evaluations of the effect by changing Bloom filter values (hash functions, number of services,
or filter width) can be performed with confidence using the equation 4.1.

9.3 Path-aware algorithm

The Mercury service discovery protocol utilizes caching of the advertised services in order to save
overall network bandwidth. Local caching may however, lead to false positives if the advertised
service exist in cache even if the node that advertised the service is not available anymore. Such false
positive replies cause unacceptable delays and reduce user satisfaction. For this reason, Mercury
includes a Path-aware scheme as described in 4.5.1 on page 39. Simulations were performed in
order to reveal any possible benefits by implementing the proposed caching scheme.
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Figure 9.2: False positive probability caused by caching in a dense network.

9.3.1 Description

Two scenarios were created; one dense and one sparse. The dense scenario consisted of 22 nodes in
a 250m x 550m area. The sparse scenario increased the area to 500m x 1000m. In both cases, the
nodes followed the random waypoint model from [11] with constant speeds (0,1,2,5,10 m/s) and no
pause times. Each of the nodes advertised one service, and these services were randomly requested.
Each service lookup that was found in the local cache of a node when the service provider was
out of reach (not in the routing table), was counted as a false positive. 20 simulations were run for
each combination of node speed and cache time and the 95% confidence interval was estimated and
presented in the figures.

9.3.2 Results

The results show the false probability using caching. We observe from Figure 9.2 that an application
requesting a service has a probability up to 12% of receiving a false positive reply when a cache
timeout of 1000s is used. Even with 100s timeout, the probability is above 10%.

By examining the sparse setup, Figure 9.3, we see that the false positive probability increases consi-
derably. A sparse setup is more likely to form network clusters, which in turn yields erroneous
cache entries. By foreseeing a realistic network with nodes moving at 2-10m/s and a cache timeout
between 50-100s, the figure show that a false probability of more than 50% can be expected.

FFI-rapport 2008/02090 79



Figure 9.3: False positive probability caused by caching in a sparse network.

In both the dense and the sparse scenario, the false positive probability can be effectively reduced
to zero using the path-aware algorithm. The reduction is achieved since the algorithm verifies node
availability using the local routing table and initiate a new discovery in the network if necessary.
Without this cross-layer interaction, false positive replies are inevitable.

An amount (albeit relatively small) of false positive replies may still occur, as the routing table may
contain links to nodes out of reach.

Observation

The astute reader may observe that the false positive rate tend to decrease as the node speed in-
creases. I found that the routing tables contained more nodes as the speed increased. This phenome-
non could be caused by a combination of different independent factors: (i) The random waypoint
model does not distribute the nodes uniformly and they are more likely pass through the center of
the simulated area as the walking distance increases. (ii) The combination of the HELLO interval
and the transmission range give a higher probability to maintain a OLSR link as the speed increases.

This phenomenon is not fully understood and deserves further examination.

9.3.3 Conclusions

The following conclusions are drawn from the results:
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• Caching induce a probability of false positive lookups when service requests are performed.
The probability can be as high as 10-50% depending on the node density, node speed and
cache timeout.

• The Mercury path aware caching effectively reduces the false positive probability.

• Further work is necessary to examine how OLSR routing parameters affect the validity of the
routing table—which in turn affect the performance of the service discovery architecture.

9.4 Comparing Mercury with existing application layer protocols

As described in section 3.1 on page 25, there are two different approaches when designing a service
discovery protocol: Either (i) using application-layer service discovery with service dissemination
utilizing IP-multicast, or (ii) to use the unicast routing protocol in a cross-layer fashion and perform
service dissemination by extending the routing control messages.

As Mercury belongs to the latter category, I wanted to make a qualitative benchmark of the overhead
induced by the service discovery process and the average time consumed when requesting a service
compared with two existing application layer service discovery protocols. PDP [12] and SLPManet
[2] were chosen as two independent counterparts in the comparison. Both PDP and SLPManet come
with ns-2 code and example simulations.

However, both PDP and SLPManet implementations suffered from limitations and errors, which
made it difficult to create a wide range of valid simulation scenarios. SLPManet did not support
simulation of both a service provider and a service requester simultaneously on the same node. PDP
on the other hand did not handle more than two service providers in the same scenario. An additional
problem occurred with the ns-2 scheduler when running the PDP code in certain scenarios. Finally,
PDP did not take the length of the service descriptor into consideration when calculating the packet
size. This deficiency was corrected.

Both PDP and SLPManet rely on an underlying multicast routing protocol. Notice that multicast
in ad-hoc networks is still an open issue (no standard is defined). Simplified Multicast Forwarding
(SMF) [65] is, however, proposed by the IETF and represents one of the most promising proposals
to solve multicast in MANETs.

Simulating SMF is possible using the nrlolsr [71] implementation for ns-2, and was used for the
simulations of PDP and SLPManet. To provide the best working conditions for PDP and SLPManet,
SMF was used in S-MPR mode as this is one of the most effective and robust multicast approaches
[66]. In contrast to UM-OLSR, nrlolsr did not consider the size of the UDP and IP headers when
creating simulation traces. This deficiency was corrected.
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Figure 9.4: Static model used to measure the service discovery overhead.

9.4.1 Measuring overhead

Description

A set of different static topologies were used to measure the overhead. The topologies consisted
of nodes oriented in squares of {4, 9, 16 . . . 64} nodes. Figure 9.4 shows the 16-node setup. All
topologies had two services, located on node 0 and 1. The services were randomly requested by
the other nodes with 5s intervals during the 1500s run. For each static topology, 20 simulations
were run and the 95% confidence interval was estimated and presented in the figures. Mercury was
configured both without caching in order to reveal the exact discovery overhead, and with 300s
caching—a setting more realistic in a final deployment. The service descriptors had a length of
10-15 characters.

Results

Figure 9.5 shows the average network traffic induced by one single service discovery with increa-
sing network size. Compared to its counterparts, the service discovery overhead is reduced by a
factor of 20 when using Mercury. The numbers show that Mercury induces less traffic than the two
counterparts and that the performance gains are considerable. The overhead reduction using Mer-
cury is partly due to the service descriptor compression achieved from the Bloom filters (compared
to transmitting the service descriptors as text), and partly due to the piggybacking of the information
in OLSR packets.

9.4.2 Measuring delay

Description

The number of hops between the service request node and the service provider is the factor that has
the greatest effect on the service discovery delay. To isolate and measure the time delay, a static
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Figure 9.5: Overhead using Mercury compared with SLP and PDP.

Figure 9.6: Static model used to measure the service discovery delay.

network of nodes was chosen. The nodes were connected in chains of 2-16 nodes, yielding 1-15
hops (Figure 9.6). The only service in the network was located on node 0 and was requested by the
node in the opposite end of the chain with 10s intervals. The delay between a service request and the
successful receipt was measured for 100 requests. In the simulation, both Mercury and SLPManet
utilize local caching with 300s timeout. A simulation was also performed with caching switched off
(timeout 0s) on Mercury for comparison.

9.4.3 Results

Figure 9.7 show the delay using Mercury (with and without caching) together with SLPManet and
PDP. As shown, Mercury without caching is considerably slower than the counterparts. This is
caused by OLSR packet forwarding which is slower than IP forwarding. OLSR uses a jitter time in
order to support piggybacking of several OLSR packets to one common header. During this jitter
time, the packets are delayed. However, considering the results in 8.2.5, I state that using an AODV
based service discovery protocol, the service discovery delay would have been increased further.
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Figure 9.7: The service discovery delay using Mercury and no caching compared with SLP and
PDP.

Using a caching timeout of 300s (which is more realistic than 0s in a real-world setting), the result
looks promising for all of the three service discovery alternatives (Figure 9.8). In this test, the
number of nodes was increased to 20. Notice that Mercury performs better than SLPManet. As
both protocols employ caching, they were expected to show equal performance.

Both SLPManet and PDP had delay fluctuations making the estimated the 95% confidence interval
to wide to show in the figure. With PDP I measured discovery delays up to several seconds for some
node configurations. Most probably, those results were caused by errors in the PDP implementation.
Therefore, I chose to omit them from the figures as the paramount intention with this test was to
compare application-layer service discovery with cross-layer service discovery and not to compare
quality of the protocol implementations.

Notice that the time consumed to connect to the actual service is not considered in this test. This
particular time can be many times higher than the discovery delay found in these simulations.

9.4.4 Conclusions

The following conclusions are drawn from the results:
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Figure 9.8: The service discovery delay using Mercury with caching compared with SLP and PDP.

• Thanks to the optimizations included in the Mercury architecture, the service discovery ove-
rhead is reduced by a factor of 20 compared to application layer protocols.

• The delay induced in a discovery process is effectively reduced when caching is enabled.
With caching, the average delay in a realistic scenario is reduced with more than 90%, and
the delay is equal to, or lower than application-layer protocols.

9.5 Comparison of real-world and simulated environment

9.5.1 Description

In order to validate the olsrd-implementation described in chapter 7, a real test was performed with a
limited number of nodes. Four laptops were equipped with WLAN cards and olsrd 0.5.5 configured
according to the RFC [20]. The nodes were aligned according to Figure 9.6.

In order to compare the exact service discovery delay, caching was turned off in the Mercury plugin.
The delay was defined as the time consumed between a service request from an application to a
successful reply was received in the same application. 100 such requests were performed, and the
95% confidence interval was estimated and presented in the figures.
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Figure 9.9: Comparing the delay measured by simulation and measured in a real-world test.

9.5.2 Results

Figure 9.9 shows the delay measured in the real test compared to results from the simulation descri-
bed in 9.4.2 on page 82. As shown, there is a strong correlation between the simulated results and
the real-world measurements.

The variation in the results can be explained by different process priority, other operating system
settings and the effect of real radio propagation in the real experiment compared to the simulated
environment.

9.5.3 Conclusions

The following conclusions are drawn from the results:

• There is a strong correlation between the simulation and the real-world measurements regar-
ding service discovery delay.

• The implementation of olsrd works as expected by the simulations and is valid for future tests
and real-world deployments.

• The service discovery overhead was not measured in the real network. The overhead should
correspond with the simulations, however, this is a task for future tests.
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Figure 9.10: Overhead in the real-track simulation with different cache time.

9.6 Performance using real tracks

9.6.1 Description

I wanted to compare the performance of Mercury using synthetic mobility with real mobility tracks
gathered from a real-world experiment. The scenario introduced in 8.2.2 on page 70 was used to
evaluate Mercury using real tracks. The purpose of the simulation was to give Mercury realistic
working conditions.

Every node in the network advertised one service. Services were randomly requested by a random
node in 10s intervals during the 1550s simulation. The overhead and the delay induced by each
service discovery were then measured with different cache timeouts. The overhead was averaged
and the 95% confidence interval was estimated and presented in the figures.

The confidence interval for the delay measurements was not estimated, due to the variance in
delay—caused by caching and network clustering.

9.6.2 Results

Overhead
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Figure 9.11: Service discovery delay in the real-track simulation with different cache time.

The service discovery overhead decreases with increasing cache time (Figure 9.10). The measured
overhead correspond to the results found in the static network topology in Figure 9.5 on page 83.

Delay

The service discovery delay decreases with increasing cache time (Figure 9.11). Compared to the
delay measured in the static network in Figure 9.8, the delay has increased. This is expected, as the
mobile scenario consist of periods of network clustering. A service request will be delayed during
the period a service provider is out of reach. In the static scenario, all nodes are available at all
time, which explains why the service discovery delay is an order of magnitude larger in the mobile
scenario13.

Observation

It is worth noting that in this particular 1550-second scenario, the nodes first move in three inde-
pendent groups, and then they move together and collaborate. Since the node availability gradually
increase during the simulation (see Figure 8.5 on page 73), false positive cache queries are not very
likely to occur compared to using random movement—simulated in 9.3. In fact, the number of false
positives measured was almost insignificant. A different real-track scenario with more mobility,
sparse node distribution, and a more aggressive service discovery pattern may yield a completely
different result.

13The nature of movement affect the performance, as discussed in 8.2.
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9.6.3 Conclusions

The following conclusions are drawn from the results:

• Caching reduces both the overhead in the discovery process and the average discovery delay.

• Network clustering and mobility increases time consumed in the service discovery process.

• The mobility pattern greatly influences the performance of the service discovery protocol.

10 Conclusion

This chapter summarizes the results in the report. I also consider my results in relation to other
research in the area and presents suggestions for future work.

10.1 Major contributions in the report

The aim of this project was to investigate and create a service discovery protocol for bandwidth-
constrained environments. One important part of the work was to evaluate the proposal in a realistic
setting. The proposal was evaluated by simulation, compared to existing protocols, and implemented
for real-life usage.

The major contributions in this report are summarized as follows:

• Design of a new service discovery protocol (Mercury). The protocol utilizes the OLSR rou-
ting protocol in a cross-layer fashion and piggybacks service advertisements and requests
to ordinary routing traffic. The protocol takes advantage of caching to reduce unnecessary
service requests, and utilizes an optimized way to describe services using Bloom filters.

• Implementation of Mercury for the ns-2 network simulator and as a plugin to olsrd. The first
implementation makes comprehensive simulations possible. The latter implementation is for
real-life usage, and makes it possible to use service discovery in any distributed application
using a simple interface. An example is demonstrated in appendix Appendix C where a SIP
user agent has been extended to utilize service discovery.

• Evaluation of different scenarios and mobility models for ad-hoc network research. A frame-
work for testing service discovery by static models, synthetic mobility and mobility by using
real-tracks is provided.

The protocol and simulation results was presented at the 4th OLSR Interop / Workshop, Canada
2008 [28]. The published paper is attached in appendix Appendix D.
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10.2 Summary of results

I compared two routing protocols (AODV and OLSR) using two different mobility models: random
waypoint and tracks from a real exercise. The results clearly showed that the mobility model had
a greater influence on the overall performance in the network than the choice of routing protocol.
This served the basis for the different scenarios used in the subsequent simulations.

The Mercury service discovery protocol consists of several components to facilitate service disco-
very in bandwidth-constrained environments. The false positive probability of the Bloom filter was
evaluated by simulation concluding that the chosen algorithm performed close to the theoretical
limit.

The Mercury protocol was compared to two application-layer service discovery protocols (SLPMa-
net and PDP). The simulation results showed that Mercury is superior to both proposals regarding
overhead and that caching is the most important feature to consider when optimizing for band-
width. Service descriptor compression achieved from the Bloom filters (compared to transmitting
the service descriptors as text), and piggybacking of the information in OLSR packets reduces the
overhead further. To the best of my knowledge, no other cross-layer service discovery proposals
describe service descriptors as Bloom filters. It is therefore expected that Mercury outperforms
cross-layer service discovery proposals such as [46, 61].

The experiments also revealed that caching is fundamental to reduce the average service discovery
delay. Mercury performed better than, or equal, than its counterparts regarding service discovery
delay.

I carried out some experiments to discover any disadvantages by caching. The experiments showed
that using random waypoint mobility model, the nodes were prone to create clusters and hence, the
entries in the cache were bound to be false with a certain probability. False positive cache queries
are inappropriate both from the application and user perspective. An extension to the cache was
therefore introduced to verify node availability by checking the routing table prior to the application
feedback. An amount of false positive replies may still occur, as network mobility and routing
protocol settings may lead to false entries in the routing table.

It should be noted that when a mobility model with gradually increasing connectivity (using real
tracks) was used, the chance of getting a false positive cache entry was almost zero. This proves that
the choice of mobility model is extremely important when evaluating any component or algorithm
in ad-hoc network research.

10.3 Future work

The implementation of the Mercury service discovery protocol is now fully working. During the
work of the report new ideas to improvements have come to mind: Additional functionality, ideas to
new simulations, and other interesting subjects for future research:
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10.3.1 Simulations and tests

I consider the protocol to be thoroughly tested and evaluated. I believe that it is particularly im-
portant to use real-tracks in simulation studies to evaluate the protocols in a realistic scenario. The
gathering, examination and conversion of real-tracks are, however, time consuming. For this reason,
only one single 30-minute track was used in the real-track simulations. Using additional simula-
tions would have been beneficial. Nevertheless, when comparing to random waypoint, the results
are conclusive: it is paramount to obtain a valid mobility model. For future research of service dis-
covery (or any ad-hoc network protocol), I encourage to take advantage of a huge set of realistic
real-track scenarios when performing simulations.

The real-world tests performed in the report was limited. The results was, however, concurrent with
simulations. A natural step forward is to include Mercury on OLSR enabled low-bandwidth UHF
radios [4] for further real-world tests.

10.3.2 Implementation

The following elements in the implementation deserve future work:

• Currently Mercury has no IPv6 support. To add IPv6 support is rather straightforward, as
olsrd supports both versions.

• The protocol should be extended to include OLSRv2 support. This can be done by creating
the Mercury Service Discovery Message as a Type-Length-Value structure (TLV), a part of
the generalized MANET Packet/Message Format [19].

• In chapter 4, MD5 was proposed as a hash function. The Mercury-plugin, however, uses a
slightly faster hash function that can be easily be replaced with MD5 in the future if desirable.

• The service withdrawal scheme forces each application to withdraw services prior to shut-
down. In a future version, the Mercury plugin could handle this per IPC socket basis, and
perform withdrawal automatically when an application disconnects.

• IP-autoconfiguration is an additional method to provide auto-configurated MANETs and is
not considered in this report. Solutions such as [18] could easily be combined with Mercury
to provide fully auto-configured MANETs.

10.3.3 Performance optimization

If desirable, the performance of the protocol could be further optimized by employing the following
proposals:
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• As the mobility model has paramount effect on the performance of the routing protocol, the
OLSR parameters should be tuned to fit the target scenario as emphasized in [42, 34].

• A way to reduce the OLSR overhead is to include kernel support of OLSR in order to omit
UDP as transmission protocol.

• The use of IP header compression is a possible step to obtain further performance gains, either
by using ROHC [9] or MANET tailor made solutions [49].

10.3.4 Interoperability

Interoperability between different service discovery architectures needs to be addressed. The survey
[47] addresses service discovery protocols for different military operational levels and discusses
how to obtain interoperability between those levels. With Mercury it is possible to summarize an
entire service directory (e.g. of XML services) into one single message. However, it is difficult to
convert from Mercury Bloom filters to any other non-Bloom filter based service discovery protocol.

One could consider to create a compatibility level between Mercury and other service discovery
protocols such as DNS-SD [15] or SSDP [33]. This will allow existing unmodified applications to
utilize Mercury in the ad-hoc network.

10.4 Conclusion

Service discovery is one of the most important techniques to lower the user interaction to a minimum
and to assist software developers creating user-friendly and well-designed applications for mobile
ad-hoc networks.

The successful implementation of Mercury shows that service discovery in mobile ad-hoc networks
is feasible. I state that a combination of optimization techniques as presented by Mercury is inevi-
table in order to support efficient service discovery in bandwidth-constrained environments.

10.4.1 Final remarks

In 2003 Chlamtac et al. stated that no MANET killer application had yet emerged [17]. While this
statement may still hold for commercial networks, there are two areas where MANETs are now
considered inevitable: First-responder networks (emergency responce) and tactical networks. There
has been a major focus during the recent years—both within academia and by the industry—to solve
issues to provide reliable ad-hoc network capabilities in those two areas.

Ad hoc technology has now proved to be a very useful tool for meeting the tactical battlefield
communication requirements [85]. The industry is now embracing this technology, and in the recent
years, several vendors have provided handheld radios with MANET capability.
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Mobile ad-hoc networks will continue to evolve and new target applications will probably emerge.
I expect that service discovery will play an important role in fulfilling the expectations of the future
mobile ad-hoc networks. In the soldier networking environment, service discovery and ad-hoc net-
working is crucial to automatically provide communication links without relying on user-interaction
from the individual soldier.
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Appendix A Bloom Filters

A.1 False positive calculation

Given that m is the length in bits of the Bloom filter, n is the number of service descriptors inserted in
the filter, and k is the number of hash functions used, the false positive probability can be calculated
as shown in this section.

Presumed that the hash function calculates array positions as a uniform distribution, the probability
that a given bit in the filter is not set to 1 is:

1− 1
m

Hence, the probability that none of the hash functions h1, h2, . . . hk has set the given bit in the filter
to 1 is: (

1− 1
m

)k

If we continue by inserting n service descriptors, the probability that a given bit in the filter m is
not set is given by : (

1− 1
m

)kn

The probability for a certain bit in m is set to 1 is:

1−
(

1− 1
m

)kn

Each of the k array positions computed by the hash functions is 1 with the above probability. The
probability that the algorithm erroneously claims that a service descriptor is in the set is equal to the
probability that all of the bits set by the k hash functions is 1:

Pfp =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn
m

)k
(A.1)

A.2 The optimal number of hash functions

For a given m and n, the optimal number of hash functions k can be calculated by taking the derivate
of the equation A.1. If we let f = (1 − e−

kn
m )k, we find that minimizing the false positive rate is

equivalent to minimize df with respect to k:
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Figure A.1: The false positive probability varies as a the number of hash functions (k) changes, and
decreases as the filter size increases

df

dk
=
(
1− e−

kn
m

)k


k n

m

e−
kn
m(

1− e−
kn
m

) + ln
(
1− e−

kn
m

)

 (A.2)

Solving equation A.2 with respect to k, we find that the derivate is 0 when k = m
n ln 2. Hence

the optimal number of hash functions, kopt, for a filter of width m and a certain number of service
descriptors n is then:

k =
m

n
ln 2 ⇒ kopt = bke (A.3)

A.3 Finding the optimal parameters

By using equation A.1 on the facing page, the effect by changing the number of hash functions
k and by changing the filter size m can be effectively demonstrated (Figure A.1). In the Figure,
m = {64, 128, 256, 512} respectively, and k = {2, 4, 6} for all variations of m. Not surprisingly,
increasing the size of the filter decreases the false positive probability.

When an appropriate m is chosen that best suits the target application, the optimal value of k can
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be chosen by estimate the maximum number of services to be held in the Bloom filter, and then use
the equation A.3.

In Mercury the default values are m = 128 and k = 4.

A.4 MD5 in Bloom filters

The actual number of bits that can be set by MD5 is bound by min(m, 2b
128
k
c). It is therefore

meaningless to increase the size of m above 2b
128
k
c.

Solving the equation A.1 with respect to n, the maximum number of services that can be stored
without increasing the false probability above p can be found as:

n ≤ ln(1− p
1
k )

k ln(1− 1
m)

(A.4)

Thus, the maximum number of services that can be stored in a MD5 based Bloom filter using the
maximum size 2

128
k is:

nmax ≤
ln(1− p

1
k )

k ln(1− 2b
−128

k
c)

(A.5)

In our context—distributed service discovery in ad-hoc networks—the number of services adverti-
sed by each node is certainly not indefinite, and the theoretical upper limit using MD5 is likely never
to be reached. Even if we define a service to be a fine-grained definition of a utility, application or
resource, the total number of services is probably fewer than 20-30 for each node. In this report, I
therefore claim that in distributed service discovery, a filter size of 2

128
k is sufficient and that 128-bit

MD5 is a perfect match to create Bloom filter hash functions.

Appendix B Simple simulation example

# A simple example for service discovery simulation using Mercury

# Arguments : inputmobilityfile outputtracefile

set val(chan) Channel/WirelessChannel

set val(prop) Propagation/TwoRayGround

set val(netif) Phy/WirelessPhy

set val(mac) Mac/802_11

set val(ifq) Queue/DropTail/PriQueue

set val(ll) LL

set val(ant) Antenna/OmniAntenna
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set val(x) 540 ;# X dimension of the topography

set val(y) 250 ;# Y dimension of the topography

set val(ifqlen) 50 ;# max packet in ifq

set val(seed) 0.0

set val(adhocRouting) OLSR

set val(nn) 3 ;# how many nodes are simulated

set val(cp) "cbr-3-test"

set val(sc) "scenario"

Agent/OLSR set sd_proactive_ false

Agent/OLSR set sd_ival_ 10

Agent/OLSR set sd_cache_ 300

Agent/OLSR set sd_numhash_ 4

# Arguments from command line

# Trace file

set trace [lindex $argv 0]

set val(stop) 200.0 ;# simulation time

Antenna/OmniAntenna set X_ 0

Antenna/OmniAntenna set Y_ 0

Antenna/OmniAntenna set Z_ 1.5

Antenna/OmniAntenna set Gt_ 1.0

Antenna/OmniAntenna set Gr_ 1.0

Phy/WirelessPhy set CPThresh_ 10.0

Phy/WirelessPhy set CSThresh_ 1.559e-11

Phy/WirelessPhy set RXThresh_ 1.42681e-08 ; #100m

Phy/WirelessPhy set Pt_ 0.28183815

Phy/WirelessPhy set freq_ 914e+6

Phy/WirelessPhy set L_ 1.0

Mac/802_11 set dataRate_ 1e6

Mac/802_11 set basicRate_ 1e6

# =====================================================================

# Main Program

# ======================================================================

set ns_ [new Simulator]

set topo [new Topography]

set tracefd [open $trace w]

$ns_ trace-all $tracefd

$topo load_flatgrid $val(x) $val(y)

set god_ [create-god $val(nn)]

#global node setting

$ns_ node-config -adhocRouting $val(adhocRouting) \
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-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channelType $val(chan) \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace OFF

#

# Create the specified number of nodes [$val(nn)] and "attach" them

# to the channel.

for {set i 0} {$i < $val(nn) } {incr i} {

set node_($i) [$ns_ node]

$node_($i) random-motion 0

}

$node_(0) set X_ 100.00

$node_(0) set Y_ 100.00

$node_(0) set Z_ 0.0000

$node_(1) set X_ 180.00

$node_(1) set Y_ 100.00

$node_(1) set Z_ 0.0000

$node_(2) set X_ 260.00

$node_(2) set Y_ 100.00

$node_(2) set Z_ 0.0000

# Service access

$ns_ at 1.0 "[$node_(0) agent 255] SD_ADD_SERVICE temp-sensor"

$ns_ at 2.0 "[$node_(1) agent 255] SD_ADD_SERVICE temp-sensor"

$ns_ at 10.0 "[$node_(1) agent 255] SD_ADD_SERVICE IR-sensor"

$ns_ at 20.0 "[$node_(2) agent 255] SD_REQUEST_SERVICE temp-sensor"

$ns_ at 20.1 "[$node_(2) agent 255] SD_REQUEST_SERVICE IR-sensor"

# Prints service access in trace file

$ns_ at 1.0 "puts $tracefd \"sd 1.0 0 SD_ADD_SERVICE temp-sensor\""

$ns_ at 2.0 "puts $tracefd \"sd 2.0 1 SD_ADD_SERVICE temp-sensor\""

$ns_ at 10.0 "puts $tracefd \"sd 10.0 1 SD_ADD_SERVICE IR-sensor\""

$ns_ at 20.0 "puts $tracefd \"sd 20.0 _2_ SD_REQUEST_SERVICE temp-sensor\""

$ns_ at 20.1 "puts $tracefd \"sd 20.1 _2_ SD_REQUEST_SERVICE IR-sensor\""

for {set i 0} {$i < $val(nn) } {incr i} {
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$ns_ at $val(stop).0 "$node_($i) reset";

}

for {set i 1} {$i < $val(stop) } {set i [expr {$i + 10}]} {

set percent [expr {$i * 100 / $val(stop)}]

set percent [expr {ceil($percent)}]

$ns_ at $i.0 "puts \"$percent % done\"" ;

}

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

puts "Starting Simulation..."

$ns_ run

Appendix C A real-world test: Discovery of SIP User Agents

In chapter 7, the Mercury service discovery plugin for olsrd was described. In this appendix, I will
demonstrate by example how to extend an existing application to utilize service discovery.

C.1 SIP

C.1.1 Introduction

Session Initiation Protocol (SIP) [84] is designed to provide signaling support for multimedia appli-
cation sessions such as IP telephony, video conferencing and instant messaging. SIP itself is used
primarily to set up and tear down multimedia sessions, while the multimedia communication itself
is usually done over separate protocols such as RTP [89]. In order to negotiate which IP ports to
setup and which codes to use, a third protocol—Session Description Protocol (SDP) [38]—is used.
These three protocols are usually combined in a SIP enabled multimedia application.

SIP defines several network elements: The end user element is called a SIP User Agent (UA) which
may in turn connect to a server element (proxy, registrar or redirect server) or directly to an other
UA.

C.1.2 SIP in MANETs

In fixed networks, centralized Domain Name Service (DNS) servers can be used to locate SIP ser-
vers. Such DNS servers do not, however, exist in most MANETs, and further, the binding to a
centralized SIP server may represent a single point of failure due to mobility and unstable links. The
recommended approach for MANETs is therefore a server-less SIP infrastructure, as illustrated by
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Figure C.1: It is a key issue to determine the location of the SIP User Agents in a Mobile Ad Hoc
Network

figure C.1. In order to create such a server less infrastructure, the SIP UAs must connect directly to
each other without any server element in between.

Previous studies have shown that the challenging problem of finding the location of UAs can be
addressed using Service Discovery. Banerjee et al. [5] compare a SIP discovery process independent
from the routing procedure with a discovery process integrated with the routing. The latter approach
turns out to outperform the independent approach when it comes to both control overhead and
latency in the SIP session setup. Li et al. [62] propose to integrate the SIP discovery process with
the OLSR routing protocol, and demonstrate promising results by simulation.

The next section will show a similar approach, where an open source SIP UA is extended to take
advantage of Mercury service discovery.

C.2 Code extension

Peers [69] is a minimal SIP user agent written in Java. It enables Voice over IP services by allowing
a user to call another user on a Local Area Network or a MANET using SIP/SDP/RTP. Using the
default Peers installation, the caller is required to enter the IP address belonging to the node that it
wants to call.

In this section I will demonstrate how the Peers user agent can be extended to utilize Mercury
service discovery. Using only a few modifications, the application can utilize the service discovery
layer to detect the IP address of other SIP enabled nodes: i.e. there is no need to enter the IP address
manually.

Using the Inter Process Communication Interface as specified in 7.4.6 on page 65, only a few code
lines are necessary in order to extend the existing Java code:
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Figure C.2: Mercury has discovered an other SIP User Agent at the address 192.168.0.3. The search
is done automatically at startup, but can be initiated manually by pressing the new
button ”Search”.

C.2.1 Connect to the plugin

At application startup, the Mercury plugin is connected:

mercurySocket = new Socket("localhost",8888);

out = new PrintWriter(mercurySocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(mercurySocket.getInputStream()));

We see that the socket to the Mercury plugin is first established. Then, two objects are created in
order read from and write to the socket.

C.2.2 Advertise the SIP service

After the successful initialization, the service ”SIP” is advertised to inform other SIP-clients in the
ad hoc network about the existence of the UA:

out.println("ADVR SIP");

C.2.3 Request SIP services

The application requests for other SIP UAs using a simple command:

out.println("RQST SIP ALL");

In this setup, the application asks for all services of the type ”SIP” using the attribute ALL. This
attribute tells Mercury to retrieve every one of the SIP-services in the network. In contrast, the
attribute ANY asks for the first service—no matter which one. The latter variant may be useful for
other purposes.
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C.2.4 Parse the plugin output

When the plugin is connected, and the service ”SIP” is requested, the client will start to receive IP
addresses of the other entire SIP enabled clients (immediately as they connect) via the IPC Interface.
A string tokenizer parses the incoming string, adds the chosen SIP port (6060 in the example) and
hands the address to the graphical user interface. The look of the interface after the successful
discovery of an other UA is illustrated by Figure C.2.

String inLine = in.readLine();

if(inLine.startsWith("SERVICE FOUND")){

StringTokenizer tok = new StringTokenizer(inLine);

String s1 = tok.nextToken(); // SERVICE

String s2 = tok.nextToken(); // FOUND

String s3 = tok.nextToken(); // SIP

String s4 = tok.nextToken(); // AT

String s5 = tok.nextToken(); // IP-address

if(s3.equals("SIP")){

String SIPuri = "sip:" + s5 + ":6060";

myGui.updateUri(SIPuri);

}

}

C.3 Summary

This chapter has demonstrated an example of one relevant target application for Mercury service
discovery. By using only a few dozen code-lines, the Peers SIP software is changed to automatically
detect another SIP UA in the ad-hoc network. Other existing distributed applications such as file
sharing, instant messaging, whiteboard sharing, can use the same technique.

Appendix D Service Discovery using OLSR and Bloom Filters

Paper presented at the 4th OLSR Interop / Workshop, Ottawa, CA, October 14-16 2008
J. Flathagen and K. Øvsthus.

Attached on the next page.
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Abstract—Automatic discovery of services and resources is
a crucial feature to achieve the expected user-friendliness in
Mobile Ad-hoc Networks. Due to limited computing power, scarce
bandwidth, high mobility and the lack of a central coordinating
entity, service discovery in these networks is a challenging task.

In this paper, we develop a service discovery protocol (Mer-
cury) utilizing a combination of different optimization tech-
niques: The performance is increased using cross-layer inter-
action between the application layer and the routing layer.
The service information is described using Bloom filters and
distributed using Optimized Link State Routing (OLSR). A
caching regime is implemented to obtain further reductions of
both overhead and latency.

The analysis and simulation results show that our service
discovery proposal induces very low overhead to OLSR and
is superior to application layer solutions. The proposal is im-
plemented as a plugin to the OLSR implementation olsrd for
real-world deployments.

Index Terms—MANET, OLSR, Service discovery

I. INTRODUCTION

A Mobile Ad-hoc NETwork (MANET) is a collection of
mobile nodes connected by wireless links able to dynamically
form an arbitrary multihop network—without the use of any
pre-existing infrastructure. In order to enable communication
between any two nodes in such a network, a special routing
protocol is employed. The IETF MANET working group
mainly considers two routing approaches: Reactive routing
such as AODV [18] and Proactive routing such as OLSR [5].

However, there is a need for a service discovery protocol to
discover applications, services and resources in the network.
There has been much research activity in the field of service
discovery by several consortiums, companies and organiza-
tions. This research has produced service discovery mainly for
fixed local area networks. Examples include Service Location
Protocol (SLP) [9], Simple Service Discovery Protocol (SSDP)
[8], Jini [20] and DNS Service Discovery (DNS-SD) [4].
However, the overall Internet community has not yet reached a
consensus on one particular service discovery protocol. More-
over, none of the above solutions are applicable to MANETs
without adaptations as these networks have less computing
resources, lower network bandwidth, higher mobility and more
heterogeneity.

Service discovery (SD) mechanisms for MANETs are di-
vided in two groups: (1) mechanisms independent of the
underlying routing protocol, and (2) mechanisms integrated
with the routing protocol, be it either reactive or proactive.

Most of the MANET SD proposals belong to the first
category and solves the SD at a layer above routing—referred
to as application layer service discovery. Examples include
SLPManet [1], PDP [3] and Konark [10], which all rely on
multicast support on the network layer. The performance of
such SD protocols is therefore bound to the chosen multicast
protocol. Further, multicast in MANETs is still at the research
stage (no standard is defined) and is hence an open issue.

A better and more optimized approach is therefore to im-
plement the SD protocol in a cross-layer fashion, and exploit
the routing layer for efficient dissemination of service control
messages. SEDRIAN [16] and the work by Engelstad et al. [6]
propose cross-layer service discovery utilizing AODV. Jodra
et al. [11] and Lightweight Service Discovery (LSD) [12] are
examples of cross-layer service discovery using OLSR.

Differing from previous work on cross layer service discov-
ery based on OLSR, this paper focus to support low-bandwidth
environments and investigates an efficient way to describe
services using Bloom filters combined with service caching.
The analysis and simulation results show that our optimized
SD proposal named Mercury, induces very low overhead to
OLSR and outperforms application layer SD solutions. The
proposal is implemented for real-world deployments [7].

The remainder of this paper is organized as follows: Sec-
tion II presents Mercury service discovery protocol in detail.
Section III describes the real-world implementation. Section
IV and V presents and discusses the simulations. Finally, the
paper is concluded by section VI.

II. OUR SERVICE DISCOVERY DESIGN

A. Overview

To successfully create service discovery for bandwidth-
constrained environments, we envision several combined op-
timizations. For this purpose, we propose a new SD solution,
Mercury. Mercury describes the service descriptors efficiently
as Bloom filters, performs service dissemination by piggy-
backing service information on OLSR routing messages and
utilizes caching of service advertisements.

Mercury handles requests and advertisements from two
entities: (1) Local applications on the node and (2) foreign
nodes through the ad hoc network (Fig. 1). Each node uses a
set of repositories to store the information (Fig. 3): Advertised
services contains the different services offered by the node
itself. The services persist in this list until an upper layer
application withdraws the service. Advertisements are sent
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Fig. 1. Mercury connects users and applications to services in the Ad hoc
network using service advertisements and service requests.

both when a service is first registered and upon an external
request. All the service descriptors in this list are included in
advertisemens encoded as one single Bloom Filter. In Foreign
services cache, all the services offered by other nodes are
stored. Each entry in the list consists of the Bloom Filter ad-
vertised by the foreign node and its current IP address. The last
repository contains the Requested services which stores all
the services requested—awaiting an incoming advertisement.

All incoming advertisements are immediately stored in the
cache. Upon a request from an upper layer application, the
cache is first requested. If an entry is found, the application is
immediately notified. Otherwise, a service request is sent.

B. Protocol format

OLSR communicates using a unified packet format for
all data [5]. Using this format the OLSR standard provides
extensibility of the protocol without breaking backwards com-
patibility. This feature gives a unique possibility to disseminate
different kinds of information through intermediate nodes even
if the nodes do not support the specific extension.

We take advantage of the extensibility feature of the OLSR
format, and introduce a new message, namely the Mercury
service discovery message (MSD). MSD messages are sent
as the data-portion of the general message format with the
message type set to MSD MESSAGE. The MSD message has
the format specified in Fig. 2 when piggybacked to an OLSR
header. The Mercury part consists of four fields including a
Spare field for future use. The Type field indicates whether the
message is a service request or a service reply. The Service
Filter field contains the filter describing the services to be
requested or advertised encoded as a Bloom filter (described
subsequently). The Filter Length gives the size of the filter.

C. Distributing service descriptors

Many service discovery protocols use XML to describe the
service information, such as in [10]. However, XML requires
considerable bandwidth, which is sparse in ad hoc networks.
An alternative is to map a predefined set of keywords, or
service descriptors, to integers to save bandwidth as proposed
in [11]. This solution indeed saves bandwidth. However, it is
not very flexible nor is it scalable, as it requires maintenance
on every node in the network when new service categories are
added.

The proposed solution in this paper is therefore to distribute
a summary of the available services as a vector described as a
Bloom filter [2]. A Bloom filter is a data structure that allows
data representation in a simple and space-efficient manner.

0                   1                   2                   3 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|         Packet Length         |    Packet Sequence Number   | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  MSD_MESSAGE  |     Vtime     |         Message Size        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                      Originator Address                     | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Time To Live |   Hop Count   |    Message Sequence Number  | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|     Type      | Filter Length |            Spare            | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                                                             | 

:                       Service Filter                        : 

|                                                             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 2. Mercury service discovery format as an extension to the OLSR
message format [5]

The filter is created by hashing service descriptors to a size-
defined bit array. The size limitation may cause the filter to
indicate that a service descriptor is in the filter even though
it is not—referred to as a false positive. The implementation
of the Bloom filter is hence a trade off between the size of
the filter and the probability of a false positive request to the
filter. Our Bloom filter is implemented using k independent
hash functions to hash each service descriptor to the array.
Given the number of service descriptors n and the filter width
m, the probability of a false positive lookup can be given as:

Pn =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn
m

)k

(1)

In order to minimize the false positive rate, the filter width
should mathematically be as large as possible. However, the
feasible size is limited by computation time, OLSR packet
size and memory consumption. The optimal value of k can be
calculated by taking the derivate of equation 1. We then find
that the derivate is 0 when k = m

n ln 2, hence yielding the
optimal number of hash functions for a given filter width. By
having a thorough understanding of the target application the
parameters k and m can be set to minimize the probability
of false positive. In Mercury, the parameters are adjustable,
however the default values are k = 4 and m = 128.

In Mercury the filter is created using the message digest
function MD5 [19]. MD5 is a cryptographic hash function
that hashes arbitrary length strings to 128 bits. The k hash
functions can then be constructed from k groups of r bits
each out of the 128 bit hash. The Bloom filter in Mercury is
implemented as shown in algorithm 1.

Algorithm 1 is used both when services are advertised
and requested. An example usage of Bloom filter based SD
is shown in Fig. 3. Each node advertises two services and
employs three hash functions to describe the services. After
performing service requests, the descriptors are stored in the
local cache of the other nodes. The cache consists of one
Bloom filter for each of the cached nodes (i.e. attenuated
Bloom filter).
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Fig. 3. A Mobile Ad hoc Network consisting of three nodes. Each node use three hash functions to create the Bloom filter and employs two repositories:
One repository store the local services advertised, and one repository—implemented as an attenuated Bloom filter of depth d—serves as a cache storing
advertisements received from foreign nodes.

Algorithm 1 Calculate the Bloom filter v for service x

Require: x 6= 0
1: a⇐MD5(x)
2: r ⇐ 128/k
3: for i = 0 to k do
4: f ⇐ subbits(r ∗ i, (r ∗ (i + 1))− 1, a)
5: v[f mod m] = 1
6: end for

D. Caching

Caching is employed to save network bandwidth. Caching
may however, lead to false positive replies to the overlying
application (Fig. 1) if the advertised service exists in cache
even if the node with the advertised service is—due to network
clustering—not available anymore. The cache cleanup timeout
is therefore a trade-off between fast service queries and the
false positive rate. To reduce the amount of false replies to the
application, we propose a path-aware approach that consults
the local routing table for the availability of the nodes in the
cache. If a service exists is in the cache even if the node is
not available, Mercury removes the cache entry and performs
a new service discovery in order to find relevant nodes offering
a similar service.

III. IMPLEMENTATION AND USE

The Mercury SD proposal is implemented as an extension to
the UniK OLSR implementation (olsrd) [17]. Olsrd supports
the loading of dynamically loaded libraries for auxiliary func-
tions using a generic plugin interface [21]. Here, the Mercury
plugin is briefly described and example usage is given. The
code is available at [7] for further reference.

In order to allow communication between the plugin and
user applications, a simple Inter-process communication (IPC)
function is enabled via TCP/IP. Using IPC, services are
requested, advertised, and withdrawn using a set of simple
commands. By using Mercury and by adding only a few code

lines, any distributed application can be extended to facilitate
SD—regardless of programming language.

Peers [14] is a minimal SIP user agent (UA) written in Java.
It enables Voice over IP services by allowing a user to call
another user in the MANET using SIP. Using standard Peers,
the caller is required to enter the IP address belonging to the
node which it wants to call. By adding a few code lines, the
application can utilize Mercury service discovery to detect the
IP address of other SIP UAs automatically.

As shown, first the IPC socket is initialized. Then, two
objects are created to communicate with the socket:

mySD = new Socket("localhost",port);
out = new PrintWriter(mySD.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

mySD.getInputStream()));

After initialization, the service ”SIP” is advertised to inform
other SIP-clients in the ad-hoc network about the existence of
the UA by advertising itself (ADVR):

out.println("ADVR SIP");

The application then immediately requests for all other SIP
UAs using the code word RQST:

out.println("RQST SIP ALL");

The application will now receive the IP addresses of all
the other SIP enabled clients—immediately as they connect—
via the IPC Interface (in). The successful discovery of other
clients can then be parsed using a simple string tokenizer.
By using only a few code lines, the Peers SIP software is
changed to automatically detect other SIP UA in the Ad hoc
network. Other existing distributed applications such as file
sharing, instant messaging, whiteboard sharing, may use the
same technique.
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Fig. 4. Overhead using Mercury compared with SLPManet and PDP.

IV. PERFORMANCE EVALUATION

A. Simulation setup

The proposed service discovery mechanism is implemented
in ns-2.31 [22] as an extension to UM-OLSR [23]. The trans-
mission range is set to 100m and default OLSR parameters
according to [5] are used. For Mercury, the Bloom filter size
is set to 128 bits. All measurements are done after topology
convergence.

To make a qualitative benchmark of the overhead induced by
the service discovery process and the average time consumed
when requesting a service, the Mercury protocol is compared
with two widespread service discovery protocols, PDP [3]
and SLPManet [1]. As both PDP and SLPManet require an
underlying multicast routing protocol, our simulation of PDP
and SLPManet used nrlolsr [15] for ns2 with the extension
Simplified Multicast Forwarding (SMF) [13] used in S-MPR
mode. Mercury used OLSR MPR message forwarding.

B. Overhead

To measure the overhead, we used static square topologies
consisting of 4 to 64 nodes. The network had two services, lo-
cated on node 0 and 1. The services were randomly requested
by the other nodes with 5s intervals during the 1500s run. For
each static topology, 20 simulations were run and the 95%
confidence interval was estimated and presented in the figures.

Fig. 4 shows average network traffic induced by one single
service discovery with increasing network size. Compared to
its counterparts, the service discovery overhead is reduced by
a factor of 20 when using Mercury.

C. Delay

To measure the time delay when requesting a service, a
static network of nodes was chosen, and the nodes were
connected in chains of 2 to 20 nodes. The only service in
the network was located on node 0 and was requested by
the node on the edge of the chain with 10s intervals. The
delay between a service request and the successful receipt was
measured. Both Mercury and SLPManet utilize local caching
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Fig. 6. False positive probability caused by caching in a dense network.

with 300s timeout, which reduces the average time delay. The
average delay results from all topologies are given in Fig. 5.
For all topologies, Mercury performs better or equal than its
counterparts.

D. Path-aware algorithm

False positive replies as a side effect of caching cause
unacceptable delays and reduces user satisfaction. The benefit
using our path-aware caching algorithm is clearly showed by
the simulations. We created two scenarios, one dense and one
sparse. The dense scenario consisted of 22 nodes in a 250m x
550m area. The sparse scenario increased the area to 500m x
1000m. In both cases, the nodes followed the random waypoint
model with constant speed. The nodes advertised one service
each, which was randomly requested. 20 simulations were run
for each combination of node speed and cache time and 95%
confidence interval was estimated.

The results show the expected false probability using
caching. We observe that an application requesting a service
has a probability up to 12% of receiving a false positive
reply when a cache timeout of 1000s is used (Fig. 6). The
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astute reader may also observe that the false positive rate in
some cases tend to decrease as the node speed increases. This
phenomenon is caused by general increased node availability
(more entries in the routing table) as node availability increase
with increasing speed due to the nature of the random way-
point mobility model.

By examining the sparse setup (Fig. 7), we see that the false
positive probability increases considerably. The false positive
rate is effectively reduced using our algorithm since it verifies
node availability by examining the routing table.

V. DISCUSSION

The performance results reveal that Mercury is superior to
SLPManet and PDP regarding overhead. The major overhead
reduction is caused by caching. Service descriptor compression
achieved from the Bloom filters (compared to transmitting
the service descriptors as text), and piggybacking of the
information in OLSR packets further reduce the overhead. Due
to these optimizations, it is expected that Mercury outperforms
other cross-layer SD proposals [11] and [12].

The time consumed to connect to the actual service is
expected to be many times higher than the discovery delay
found in the simulations. We therefore state that the service
discovery delay is promising for all service discovery alterna-
tives. However, caching is a way to achieve further reduction
of the delay.

The proposed path-aware caching architecture, reduces the
number of false positives and hence, increases application per-
formance and user-friendliness. An amount (albeit relatively
small) of false positive replies may still occur, as network
mobility and routing protocol settings may lead to erroneous
entries in the routing table.

We state that a combination of optimization techniques as
presented by Mercury is inevitable in order to support service
discovery in bandwidth-constrained environments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method of service
discovery using a combination of Bloom filters, the extensi-

bility feature of the OLSR, and a path-aware caching regime.
The false positive property of Bloom filters is evaluated
and discussed. By simulation, we have demonstrated the
performance gain by our cross-layer protocol compared to
application layer service discovery alternatives. We also have
provided an implementation for real-world usage available for
download. Future work includes further optimizations and tests
in real deployed networks focusing on bandwidth-constrained
environments.
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