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POLARIMETRIC SCATTERING CALCULATION BASED ON MAXWELL’S 
EQUATIONS FOR VERY HIGH RESOLUTION SAR 

1 INTRODUCTION 

One of the objectives in HIGHSAT 839 was to build up competence in polarimetric SAR in 
the Norwegian defence. Initially, the intention was to start with analysis of polarimetric data 
from RADARSAT-2. The postponement of the launch of RADARSAT-2 data made it possible 
to do a study of fundamentals in polarimetric SAR. In defence a very important problem is to 
develop techniques for detection and identification of  hard targets in SAR images. Hard 
targets may be man-made objects such as ships, vehicles, buildings and other infrastructure on 
land. It is assumed that a deeper understanding of the hard target properties will be achieved by 
using sound physical modelling of the scattering than using analysis of the polarimetric data 
alone. Signatures based  on  polarimetric data and electromagnetic scattering modeling must be 
compared in order to gain best possible insight in the reflection mechanisms from the targets 
which may have different kind of backgrounds. Background regions are mostly dominated by 
clutter in SAR images. Another aspect in the modeling of signatures in SAR images is the 
SAR imaging mechanism. To do complete modeling, the generation of SAR raw data must be 
done by an inverse SAR processing algorithm.     
 
In the near future, space borne SAR with resolution better than 1 m will be available. This is a 
challenge for scattering modelling as well as SAR processing of the raw data. Azimuth and 
range signals with extremely high bandwidths have to be handled carefully. In scattering 
theory, time harmonic signals are usually assumed. For very high resolution systems, however, 
the chirp bandwidth compared to the carrier frequency is considerable. The large bandwidth of 
the range signal makes it necessary to modify existing expressions in scattering theory. This 
modification of the scattering theory in this report is new. The approximation of the azimuth 
signal in the SAR processor is also a critical point, especially with some squint. 
 
In Chapter 2 we review Maxwell’s equations and consider plane chirp fields. The usual 
treatment of Maxwell’s equations in the literature considers harmonic fields. In Section 2.1 we 
review the Helmholz equation and in Section 2.2 we show that a chirp field satisfies this 
equation. In Section 2.3 we consider Maxwell’s equation and a chirp field and show that a set 
of harmonic fields has to be used for scattering calculations. In Chapter 3 we analyse 
properties of uniform plane chirps. The linear and circular polarized chirp fields are discussed 
in Section 3.1 and the elliptical  polarized field in Section 3.2. In Chapters  4 and 5 the Green’s 
function and Huygens’ principle are reviewed and extended for chirp fields using a set of 
harmonic fields. In Section 7 the Kirchhoff’s approximation is used to express the scattered 
field in the single scattering case. The expression for the local reflected field in the specular 
direction is modification compared to the literature. The scattering elements are calculated for 
simple geometry in Section 7. Finally, in Section 8 we show how the reflectivity matrix can be 
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input in the Inverse-EETF4 algorithm to generate raw data. The reflectivity matrix can be 
calculated from the expression for the scattered field.  

2 DIFFERENT FORMS OF MAXWELL’S EQUATIONS  

If we assume that the net free charge is zero, the Maxwell’s equations in point form can be 
written (Paul and Nasar (1987)) 
 

( ) ( ),
,

H r t
E r t

t
µ
∂

∇× = −
∂

 (2.1) 

 

 ( ) ( ) ( ),
, ,

E r t
H r t E r t

t
σ ε

∂
∇× = +

∂
 (2.2) 

 
( ), 0H r t∇ ⋅ =  (2.3) 

 
( ), 0E r t∇ ⋅ =  (2.4) 

 
where Eq.  (2.1) is the Faraday law and Eq. (2.2) is the Ampere law. ε  and µ are the 
permittivity and permeability. For free space the conductivity 0σ = . ( , )E r t  is the space and 
time dependent electric field and is the magnetic field. ( , )H r t

2.1 The Helmholz equation 

The calculations in this section follow Paul and Nasar (1987), p. 278. Taking the curl of Eq. 
(2.1) we obtain  

 ( ) ( ) ( )( ),
, ,

H r t
E r t H r t

t t
µ µ
⎛ ⎞∂ ∂

∇×∇× = − ∇× = − ∇× =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 

 

 ( ) ( ),
,

E r t
E r t

t t
µ σ ε

⎛ ⎞∂∂
− +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 

 
which can be rewritten as 
 

( ) ( ) ( )2

2

, ,
,

E r t E r t
E r t

t t
µσ µε

∂ ∂
∇×∇× = − −

∂ ∂
 (2.5) 

 
 
In the same way we take the curl of  Eq. (2.2) and we find 
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( ) ( ) ( )2

2

, ,
,

H r t H r t
H r t

t t
µσ µε

∂ ∂
∇×∇× = − −

∂ ∂
 (2.6) 

 
We now use a well known vector identity 
 

( ) 2A A∇×∇× = ∇ ∇ ⋅ −∇ A  (2.7) 
 
and  Eqs. (2.3) and (2.4). Using Eq. (2.5) we get 

( ) ( )( ) ( ) ( ) ( ) ( )2
2 2

2

, ,
, , , ,

E r t E r t
E r t E r t E r t E r t

t t
µσ µε

∂ ∂
∇×∇× = ∇ ∇ ⋅ −∇ = −∇ = − −

∂ ∂
  

from which we see that  
 

( ) ( ) ( )2
2

2

, ,
,

E r t E r t
E r t

t t
µσ µε

∂ ∂
∇ = +

∂ ∂
 (2.8) 

 
 

( ) ( ) ( )2
2

2

, ,
,

H r t H r t
H r t

t t
µσ µε

∂ ∂
∇ = +

∂ ∂
 (2.9) 

 
which are called the Helmholz equations.  These two vector equations consist of 6 scalar 
equations. Taking the x-component of the first one as an example, 
 

( ) ( ) ( )2
2

2

, ,
, x x

x

E r t E r t
E r t

t t
µσ µε

∂ ∂
∇ = +

∂ ∂
 (2.10) 

 
where 

( ) ( ) ( ) ( )2 2 2
2

2 2

, , ,
, x x x

x

E r t E r t E r t
E r t

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂ 2   

2.2 Propagation of a chirp field  

It is known that harmonic fields satisfy Maxwell equations, which is shown for a harmonic 
wave in Example 5.4 p. 236 in Paul and Nasar (1987). In SAR systems the radar waves are not 
harmonic waves, however, they are chirps. Here we show that a chirp field satisfies Maxwell’s 
equations by using the Helmholz equation. For simplicity we assume that a plane chirp field 
has only an x-component which propagates in the z direction. Let the x-component of the chirp 
field be  
 

2

0
1( , ) sin
2x

z zE z t E t K t
c c

ω
⎡ ⎤⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (2.11) 
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where ω  is the angular carrier frequency and is the chirp rate. Since we assume that the y 
and z components of the field,  and , are zero and we assume free space, 

K
( , )yE z t ( , )zE z t

0σ = , the Helmholz equation in Eq.(2.10) becomes 
 

( ) ( )2 2

0 02 2

, ,x xE z t E z t
z t

µ ε
∂ ∂

=
∂ ∂

 (2.12) 

 
Calculation of the left side of Eq. (2.12) yields 
 

222

02

2 2

1 2 cos 2

2 sin

xE K z z zE t K t K t
c c c c cz

z z zK t t K t
c c c

ω ω

ω ω

⎧⎡ ⎤⎡ ⎤∂ ⎡ ⎤⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − − +⎢ ⎥⎢ ⎥⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎢ ⎥⎪ ⎣ ⎦⎣ ⎦⎩
⎫⎡ ⎤⎡ ⎤ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − + −⎢ ⎥⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎪⎣ ⎦⎭

 (2.13) 

 
Calculation of  the right side is similar as for Eq. (2.13)  and it can be seen that  
 

( ) ( )2 2

2 2 2

, ,1x xE z t E z t
z c t

∂ ∂
=

∂ ∂
 (2.14) 

 
We compare Eqs.(2.12) and (2.14) and see  that they are identical if the speed of light is equal 
to the inverse square of the product of the free space permittivity and permeability 

0 01/c µ ε= . In particular Eq. (2.14) is satisfied for 0K = , which is a harmonic wave.    

2.3 Maxwell’s equations and a chirp field 

For a harmonic field the time dependent parts can be totally separated from the space 
dependent parts. If the bandwidth of a chirp field is sufficiently small we can also make that 
assumption in an approximate manner. For a harmonic field we have the electric field 
 
( ) ( ) (, , , , , expE x y z t E x y z j t )ω= ⋅  (2.15) 

 
and the magnetic field 
 

( ) ( ) (, , , , , expH x y z t H x y z j t )ω= ⋅  (2.16) 
 
If we put Eq. (2.15) into the Faraday law in Eq. (2.1) we get  
 

( ) ( ), , , ,E x y z j H x y zωµ∇× = −  (2.17) 
 
Eq. (2.17) can be found in Paul and Nasar (1987) or in Kong (1986). We see from Eq.  (2.11) 
that a harmonic field ( ) can be separated in a time dependent part and a space dependent 
part. This is not the case for the chirp field (

0K =
0K ≠ ) due to the cross coupling of space and time 
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variables. Now, if for sufficiently small chirp bandwidth we assume for a chirp field that the 
time dependency is approximately separated from the the space dependency the electric field 
can be written 
 

( ) ( ) 21, , , , , exp
2

E x y z t E x y z j t Ktω⎡ ⎤⎛ ⎞≈ ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (2.18) 

 
and the magnetic field 
 

( ) ( ) 21, , , , , exp
2

H x y z t H x y z j t Ktω⎡ ⎤⎛ ⎞≈ ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (2.19) 

 
 Taking the time derivative of Eq. (2.19) we get 

( ) ( ) ( ) 2, , , 1, , exp
2

H x y z t
H x y z j Kt j t Kt

t
ω ω

∂ ⎡ ⎤⎛ ⎞≈ + +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
 

 
The Faraday law can then be approximated for a chirp field    
 

( ) ( ) (, , , ,E x y z j Kt H x y zω µ∇× ≈ − + )  (2.20) 
 
which shows that we cannot get an equation that is only space dependent as in the harmonic 
case. If we consider a chirp field with a set of harmonic fields where the frequency of 
harmonic field number  is n
 

n nKtω ω= +  (2.21) 
 
we have a set of Faraday equations, one equation for each of the harmonic fields   
 

( ) (, , , ,n n nE x y z j H x y zω µ∇× = − )  (2.22) 
 
In the same way we find that the Ampere law can be written in an approximate form for a 
chirp field 
 

( ) ( ) ( ) 2, , , 1, , exp
2

E x y z t
E x y z j Kt j t Kt

t
ω ω

∂ ⎡ ⎤⎛ ⎞≈ + +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
 

 
Then the Ampere law can be approximated for a chirp field 
 

( ) ( ) ( ) ( ), , , , , ,H x y z J x y x j Kt E x y zω ε∇× ≈ + +  (2.23) 
 
where the current density is defined as J Eσ=  in Paul and Nasar (1987), p. 234. For each of 
the short harmonic fields we get 
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( ) ( ) ( ), , , , , ,n n n nH x y z J x y x j E x y zω ε∇× = +  (2.24) 
 
We underline that treatment of the chirp field as a set of harmonic fields is an approximation. 
The number of harmonic fields must be chosen as a function of the chirp bandwidth. 

3 POLARIZATION OF UNIFORM PLANE CHIRPS 

3.1 Linear and circular polarized chirp field 

We have shown that a chirp field satisfies Maxwell’s equations. Here we consider different 
states of polarimetric fields as in Section 6.5 in Paul and Nasar (1987), however, we use an 
electric chirp field vector instead of a harmonic field vector. This introduces new properties of 
the fields. Here we define an electric chirp field vector with horizontal polarization as 
 

2

0
1( , , , ) sin
2 x

z zE x y z t E t K t a
c c

ω
⎡ ⎤⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⋅  (3.1) 

 
which propagates in the z direction and the electric field vector points in the x direction in a 
Cartesian coordinate system. can for example be the horizontal polarization direction of a 
wave and can be the the vertical polarization direction. The magnetic chirp field vector is 

defined  

xa

ya

 
2

0 1( , , , ) sin
2 y

E z zH x y z t t K t a
c c

ω
η

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⋅  (3.2) 

 
which is perpendicular to the electric field and /η µ ε=  is the intrinsic impedance. If we 
now consider the sum of  a horizontal polarized wave with amplitude and a vertical 
polarized wave with amplitude  and an additional phase 

1mE

2mE θ we get   
 

2

1

2

2

1( , , , ) sin
2

1sin
2

m x

m y

z zE x y z t E t K t a
c c

z zE t K t a
c c

ω

ω θ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − + ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⋅ +

 (3.3) 

which propagates in the z direction. We consider some polarization states of this chirp field. 
 
CASE 1: Linear polarization 
If we choose 
 

1 2 , 0m mE E θ= =  (3.4) 

   



 13  
 

 

 
and  we get 0z =
 

( )2
10

1sin
2m xz

E E t Kt a aω
=

⎡ ⎤= + ⋅⎢ ⎥⎣ ⎦
y+  (3.5) 

 
This is an electric field vector with direction 45º relative to the x-axis and changes it’s length 
with rate Ktω + . In the harmonic case the rate is ω  and constant as function of the time.  
 
CASE 2: Linear polarization 
If we let the amplitudes of the horizontal and vertical polarization be different and the phase 
angle zero we have 

1 2 , 0m mE E θ≠ =  (3.6) 
 
and 
 

2 2
10

1

1cos
2

m
m xz

m

E
E E t Kt a a

E
ω

=

⎛ ⎞⎡ ⎤= + ⋅ +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
y  (3.7) 

 
In this case the electric field vector oscillates in a direction ( )1

2 1tan /m mE E−  relative to the x-

axis and changes it’s length with rate Ktω + . In the harmonic case the length of the electric 
field vector length changes with a constant rate ω . 
 
CASE 3: Circular polarization 
If we let the amplitudes of the horizontal and vertical polarization be equal and the phase angle 
between the two states is we have 90−

1 2 , 9m mE E θ= = − 0  (3.8) 
 

2 2
10

2 2
1

1 1cos cos 90
2 2

1 1cos sin
2 2

m xz

m x y

E E t Kt a t Kt a

E t Kt a t Kt a

ω ω

ω ω

°

=

⎧ ⎫⎡ ⎤ ⎡ ⎤= + ⋅ + + − ⋅⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤ ⎡ ⎤+ ⋅ + + ⋅⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

y =

 (3.9) 

 
The length of this field vector is  at all times. For harmonic waves, when  the 
electric field vector rotates with constant angular speed 

1mE 0K =

ω , and for a chirp when , the 
electric field vector rotates with the tip along a circle with angular speed 

0K ≠
Ktω + , which means 

that the vector has a rotational acceleration.  
The analysis of the magnetic field vector is the same as for the electric field and is omitted 
here. 
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x

3.2 Elliptical polarized chirp field 

This section reviews Section 1.4 in Kong (1986) in the case of a harmonic field, however, we 
extend the analysis with a chirp field. We now forget the spatial variation as above ( ) of 
the chirp and let the horizontal polarization unit vector be 

0z =
ˆhe a= and the vertical polarization 

unit vector be . These two components are perpendicular to the direction of 

propagation, , which can be chosen  along the z-axis. Then the electric field vector can be 
written as in Kong (1986) 

ˆve a= y

k̂

 
ˆ ˆ( ) h h v vE t E e E e= +  (3.10) 

 
We have a horizontal and vertical chirp component with phases vψ and hψ  
 

21cos
2h h hE e t Ktω ψ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
 (3.11) 

 
21cos

2v v vE e t Ktω ψ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (3.12) 

 

Then we multiply Eq. (3.11) by 
sin v

he
ψ

and Eq. (3.12) by
sin h

ve
ψ

 and subtract 

 
2 2

2

1 1sin sin cos sin cos sin
2 2

1cos sin
2

h v
v h h v v

h v

E E
t Kt t Kt

e e

t Kt

ψ ψ ω ψ ψ ω ψ

ω ψ

⎛ ⎞ ⎛ ⎞− = + − ⋅ − + − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞+ ⋅⎜ ⎟
⎝ ⎠

hψ =
 (3.13) 

 
where 
 

v hψ ψ ψ= −  (3.14) 
 
In the same manner we get 
 

21cos cos sin sin
2

h v
v h

h v

E E
t Kt

e e
ψ ψ ω⎛ ⎞− = − + ⋅⎜ ⎟

⎝ ⎠
ψ  (3.15) 

 
We now use the fact that 
 

2 2 2 21 1cos sin 1
2 2

t Kt t Ktω ω⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=  (3.16) 

 
Together with Eqs. 3.13 and 3.14. Then we get the equation for the polarization ellipse 

   



 15  
 

 

 
2 2

22 cos sinh v h v

h v h v

E E E E
e e e e

ψ ψ
⎛ ⎞ ⎛ ⎞

+ − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.17) 

 
The polarization ellipse is plotted in  Figure 3.1 and is rotated an angleα with the  axis hE
 

 
Figure 3.1 Polarization ellipse (Kong (1986) p. 20) 

 
 
This means that the tip of the vector in Eq. 3.10 traces out an ellipse with an angular speed 
which is different for a harmonic and a chirp field. In the special case of a circle the angular 
speed is ω  for harmonic field and tω  for a chirp as for Eq. 3.9. Now the electric field  
components can be expressed in terms of the horizontal and vertical components  
 

1

2

cos sin
sin cos

h

v

EE
EE

α α
α α

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.18) 

 
If we use Eq. (3.18) , Eqs. 3.11 and 3.12 we get 
 

2 2
1 0

2

1 1cos cos cos
2 2
1cos sin
2

h h

v v

e t Kt e t Kt

e t Kt

ω ψ ω ψ

ω ψ α

⎛ ⎞ ⎛ ⎞+ − = + − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞+ − ⋅⎜ ⎟
⎝ ⎠

α +
 (3.19) 
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2 2
2 0

2

1 1cos cos sin
2 2
1cos cos
2

h h

v v

e t Kt e t Kt

e t Kt

ω ψ ω ψ

ω ψ α

⎛ ⎞ ⎛ ⎞+ − = − + − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞+ − ⋅⎜ ⎟
⎝ ⎠

α +
 (3.20) 

 
From Eq. 3.19 we get 
 

2 2
1 0

2 2

2 2

1 1cos cos sin sin
2 2

1 1cos cos sin sin cos
2 2

1 1cos cos sin sin sin
2 2

h h

v v

e t Kt t Kt

e t Kt t Kt

e t Kt t Kt

ω ψ ω ψ 0

h

v

ω ψ ω ψ α

ω ψ ω ψ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ + + ⋅ =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ + + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ + + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

α

 (3.21) 

 
and from 3.20 we get 
 

2 2
2 0

2 2

2 2

1 1cos cos sin sin
2 2

1 1cos cos sin sin sin
2 2

1 1cos cos sin sin cos
2 2

h h

v v

e t Kt t Kt

e t Kt t Kt

e t Kt t Kt

ω ψ ω ψ 0

h

v

ω ψ ω ψ α

ω ψ ω ψ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ + + ⋅ =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ + + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ + + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

α

 (3.22) 

 
We see now from Eqs. (3.21) and (3.22)that we can eliminate the time dependency both for a 
harmonic field ( ) and a chirp field (0K = 0K ≠ ) using Eq. 3.21 which yields two equations 
 

1 0cos cos cos cos sinh h v ve e eψ ψ α ψ= + α  (3.23) 
 

1 0sin sin cos sin sinh h v ve e eψ ψ α ψ= + α  (3.24) 
 
In the same way we get from Eq. 3.22 
 

1 0tan cos sin sin cos cosh h v ve e eβ ψ ψ α ψ= − + α  (3.25) 
 

1 0tan sin cos sin cos cosh h v ve e eβ ψ ψ α ψ= − − α  (3.26) 
 
where 
 

2

1

tan
e
e

β = ±  (3.27) 
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Then we eliminate 0ψ by taking the squared sums of Eqs. 3.23 and 3.24  
 

2 2 2 2 2
1 1 1
2 2 2 2

cos sin

cos sin sin 2 cosh v h v

e e e

e e e e

α α

α α α

+ = =

+ + ψ
 (3.28) 

 
Similarly we take the squared sums of Eqs 3.25 and 3.26 and get 
 

2 2 2 2 2
1 1 2
2 2 2 2

tan sin

sin cos sin 2 cosh v h v

e e e

e e e e

β α

α α α

+ = =

+ − ψ

2

 (3.29) 

 
We see that the sum of Eqs. 3.28 and 3.29 yields 
 

2 2 2
1 2 h ve e e e+ = +  (3.30) 

 
Multiplication of  Eq. 3.23 by 3.25 and subtract from 3.24 multiplied by 3.26 yields 
 

2
1 tan sinh ve e eβ ψ=  (3.31) 

 
If we multiply 3.23 by 3.26 and subtract from 3.24 multiplied by 3.25 we get 
 

( )2 22 cos tan 2h v h ve e e eψ α= −  (3.32) 

 
We now define the four Stokes parameters 
 

( )2 21
h vI e e

η
= +  (3.33) 

 

( )2 21
h vQ e e

η
= −  (3.34) 

 
2 cosh vU e e ψ
η

=  (3.35) 

 
2 sinh vV e e ψ
η

=  (3.36) 

 
Then we add Eqs. 3.28 and 3.29 and get 
 

2 2 2 2
1 1 tan h ve e e eβ+ = 2+  (3.37) 
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If we use Eq. 3.33 in Eq. 3.37 we get 
 

2 2
1 cose Iη β=  (3.38) 

 
If we subtract Eq. 3.29 from Eq. 3.28 and use Eqs. 3.32 and 3.38 we get 
 

( ) ( )( )2 2 2 2cos 1 tan cos 2 tan 2 sin 2h vI e eη β β α α− = − + α  (3.39) 

 
From Eq. 3.39 and 3.34 we find 
 

2 2

cos 2 cos 2h ve e
Q I β α

η
−

= =  (3.40) 

 
From Eqs. 3.35, 3.32 and 3.40 we find 
 

sin 2 cos 2U I α β=  (3.41) 
 
And finally from Eqs. 3.36, 3.31 and 3.38 we find 
 

sin 2V I β=  (3.42) 
 
We also notice that 
 

2 2 2 2I Q U V= + +  (3.43) 
 

 
Figure 3.2 The Poincare sphere (Kong (1986) p. 22) 

 
Eqs. 3.40, 3.41 and 3.42 define the Poincaré sphere shown in Figure 3.2, which can be used to 
describe the polarization state of an electromagnetic wave. We see from Eqs. 3.40, 3.41 and 
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3.42 that the Poincaré sphere representation of the polarization states does not show any time 
dependency as does the polarization ellipse in Figure 3.1. This means that the Poincaré sphere 
does not distinguish between a harmonic wave and a chirp. It was shown in Touzi and Raney 
(2004) that the precision of Poincaré angle determination for ship targets is dependent on the 
Doppler parameter accuracies in the SAR processor. This means that characterization of 
moving targets (e.g. ships) will deteriorate if they are not re-focused.  

4 GREEN’S FUNCTION 

This chapter is a summary of Section 4.2 in Kong (1986) extended with the index  for 
harmonic field number. If we take the curl of Eq. (2.22) and use Eq. (2.24) we get 

n

 
( ) ( ) ( )2

n n n n nE r k E r j J rω µ∇×∇× − =  (4.1) 
 
where the wave number is given by 
 

2 2
n nk ω µε=  (4.2) 

 
Let  be the dyadic Green’s function for harmonic field number which is the 
response of a point source, then the electromagnetic field can be written 

( , ')nG r r n

 
( ) ( ) ( ), ' ' 'n n nn

E r j G r r J r dVω= ⋅∫∫∫  (4.3) 

 
Let I  be the dyadic unit matrix, then the current field can be written 
 

( ) ( ) ( )' ' '  n nJ r r r I J r dVδ= − ⋅ ⋅∫∫∫ (4.4) 

  
Substitution of Eq. (4.3) and (4.2) into Eq. (4.1)we get 
 

( ) ( ) ( )2, ' , ' 'n nnG r r k G r r I r rδ∇×∇× − = −  (4.5) 
 
The dyadic Green’s function can be expressed with the scalar Green’s function 
                   

( ) ( )2

1, ' , 'n n
n

G r r I g r r
k

⎡ ⎤
= + ∇∇⎢ ⎥
⎣ ⎦

 (4.6) 

 
where the scalar function is 
 

( ) exp '
, '

4 '
n

n

jk r r
g r r

r rπ
−

=
−

 (4.7) 
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If we insert Eq. (4.6) into Eq. (4.3) and sum over N harmonic fields we get an approximation  
for a scattered chirp 

( ) ( )2
1

exp '1 ' '
4 '

N
n

n n
n n

jk r r
E r j I J r dV

r rk
ω µ

π=

⎧ ⎫−⎡ ⎤⎪ ⎪= + ∇∇⎨ ⎬⎢ ⎥ −⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∫∫∫  (4.8) 

5 HUYGENS’ PRINCIPLE 

  
We review Section 5.3 in Kong (1985) extended for a chirp field with N harmonic fields. 
Huygens’ principle states that the field solution in a region  is completely determined by the 
tangential fields specified over the surface  enclosing as shown in Figure 5.1. 
Mathematically,  Huygens’ principle expresses fields at an observation point in terms of 
fields at the boundary surface. 

'V
'S 'V

r

 
Figure 5.1 Volume 'V radiates electromagnetic waves which are observed at a point (Fig. 
5.3.1 in Kong (1986)). 

r

To express Huygens’ principle mathematically we will need the well known vector identity 
 

( ) ( ) ( )A B C B C A B A C⋅ × = ⋅ × = − ⋅ ×  (5.1) 

 
If we use Eq. (5.1) we can write 
 

( ) ( )
( )( ) ( ) ( )
( ) ( ) ( )

E G a E G

E G a E G a

E G a E G a

⎡ ⎤ ⎡ ⎤⋅ ∇×∇× ⋅ − ∇×∇× ⋅ ⋅ =⎣ ⎦⎢ ⎥⎣ ⎦

−∇ ⋅ ×∇× ⋅ −∇ ⋅ ∇× ⋅ ⋅ =

⎡ ⎤−∇ ⋅ ×∇× ⋅ + ∇× × ⋅⎢ ⎥⎣ ⎦

a

 (5.2) 

 

   



 21  
 

 
   

where  is an arbitrary constant vector. We also remember Gauss’ theorem a
 

( ) ( )' 'F dV F n dS∇ ⋅ = ⋅∫∫∫ ∫∫  (5.3) 

where is the surface normal. Now, taking a look at Eq. (5.2) we can define n
 

( ) ( ) ( )F E G a E G a= ×∇× ⋅ + ∇× × ⋅  (5.4) 

 
and let 
 

( ) ( ) ( )F E G a E G a∇ ⋅ = ⋅ ∇×∇× ⋅ − ∇×∇× ⋅ ⋅  (5.5) 

 
Using Eqs. (5.2), (5.3), (5.4) and (5.5) and insert the index n  we find  
 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

' , ' ' , '

' , ' ` ' , ' '

n nn n

nn n n

E r G r r a E r G r r a dV

n E r G r r a n E r G r r a dS

⎡ ⎤⋅∇×∇× ⋅ − ∇×∇× ⋅ ⋅ =⎢ ⎥⎣ ⎦
⎡ ⎤⋅ ∇× × ⋅ + ⋅ ×∇× ⋅⎢ ⎥⎣ ⎦

∫∫∫

∫∫

'
 (5.6) 

 
Now, we remember Eqs. (4.1) and (4.5). If we insert these equations into Eq. (5.6) and assume 
no charges in region V’, , the left side of Eq. (5.6) becomes ( ') 0J r =
 

( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

2 2' , ' ' ' , '

' ' '

n nn n n n

n n

E r k G r r I r r k E r G r r a dV

E r I r r a dV E r a

δ

δ

⎡ ⎤⋅ + − − ⋅⎢ ⎥⎣ ⎦

⋅ − ⋅ =

∫∫∫

∫∫∫

' =
 (5.7) 

 
If we have in mind Eq. (2.17), then the right side of  Eq. (5.7) and the right side of Eq. (5.6) 
become  
 

( ) ( ) ( )( ) ( ) ( )( ), ' ' , ' ' 'n nn n n nE r j G r r s H r G r r s E r dSω µ⎡ ⎤= − ⋅ × + ∇× ⋅ ×⎢ ⎥⎣ ⎦∫∫  (5.8) 

 
We now use the expression for the dyadic Green’s function in Eqs. (4.6) and (4.7) and assume 
that we have an observation point  far away from the scattering region, that is we use the far 
field approximation 
 

,
ˆ' 'n n n s n nk r r k r k k r k r k r− ≈ − ⋅ = − ⋅ 's  (5.9) 

 
where is the scattered wave vector with wave number  and ,n sk nk ˆ

sk is the unit direction vector 

of the scattered field 
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22 2
, 0n n s nk k 0ω µ ε= =  (5.10) 

 
Then the approximated Green’s function for a harmonic field with wave number  can be 
written  

nk

 

( ) ( ) ( ),2

exp1, ' exp '
4

n
n n s

n

jk r
G r r I jk r

rk π
⎡ ⎤

≈ + ∇∇ − ⋅⎢ ⎥
⎣ ⎦

 (5.11) 

 
Calculation of Eq. (5.11) yields another expression for the Green’s function in the far field 
 

( ) ( ) ( ),

expˆ ˆ, ' exp '
4

n
n s s n s

jk r
G r r I k k jk r

rπ
⎡ ⎤≈ − − ⋅⎢ ⎥⎣ ⎦

 (5.12) 

 
Inserting Eq. (5.12) into Eq. (5.8) yields 
 

( ) ( ) ( )
( ) ( ){ } ( )

1

,

exp ˆ ˆ
4

ˆ ˆ ˆ' ' exp

N
n n

s s s
n

s n n n s

jk jk r
E r I k k

r

k n E r n H r jk r dS

π

η
=

= −

⎡ ⎤ ⎡ ⎤× × + × − ⋅⎣ ⎦ ⎣ ⎦

∑

∫∫ ' '
 (5.13) 

 
where  is the electric harmonic field and ( )'nE r ( )'nH r  is the corresponding magnetic 

harmonic field with wave number  
 

0 0n nk ω µ ε=  (5.14) 
 
Eq. (5.13) is a sum over the reflected fields from each of the N harmonic fields  which 
approximate a chirp. Eq. (5.13) is the basis equation for the final calculation in the next chapter 
where Kirchhoff’s approximation is used.  

6 KIRCHHOFF’S APPROXIMATION 

In this chapter we proceed along the lines in Section 6.6 p. 530-532 in Kong (1986), however, 
we do a modification which will be clear below. In the Kirchhoff approximation, the fields at 
any point on the surface are approximated by fields that would be present on the tangent plane 
at that point (Kong (1986), p. 528). We form an orthonormal system 
 

ˆ ˆ
ˆ

ˆ ˆ
i

i

i

k n
q

k n

×
=

×
 (6.1) 

which is the local perpendicular polarization vector and  is the direction of propagation. The 
local parallel polarization vector is defined by 

îk

 
ˆˆ ˆi i ip q k= ×  (6.2) 
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The incident electric field is given by  
 

0 ,ˆ expi i n iE e E jk r= ⋅  (6.3) 
 

 
 

Figure 6.1   Scattering by a random rough surface. Definition of perpendicular ( ) and 

parallel (

ˆiq

ˆ ip ) polarization of incident field.     

where is the unit polarization vector. The perpendicular (also called the TE (transverse 
electric)) component of the incident field is 

îe

 
( ) ( )0 ,ˆ ˆ ˆ exp 'i i i n ie q q E jk r⋅ ⋅  (6.4) 

 
The local reflected TE component is 
 

( ) ( ), 0 ,ˆ ˆ ˆ exp 'n i i i n rR e q q E jk r⊥ ⋅ ⋅  (6.5) 

where the local reflected direction (specular reflection) is related to the incident direction by 
 

( ), , ,
ˆ ˆ ˆˆ ˆ2n r n i n ik k n n k= − ⋅  (6.6) 

 
and the Fresnel coefficient for the TE component is 
 

( )
( )

2 2 2
,1

, 2 2 2
,1

cos sin

cos sin
n i n n

n

n i n n

k k k
R

k k k
i

i

θ θ

θ θ
⊥

− −
=

+ −
 (6.7) 

 
where 
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0 0n nk ω µ ε=  (6.8) 
 
and 
 

,1 1 1n nk ω µ ε=  (6.9) 
 

0µ and 0ε are the permeability and permittivity in region 0 and 1µ and 1ε are the permeability 
and permittivity in region 1. The total electric field of the TE (perpendicular) component on 
the boundary is the sum of Eqs. (6.4) and (6.5).  The tangential field is the cross product of the 
surface normal vector, , and the total TE electric field, n̂ ,nE ⊥  

 

( ) ( )( ) ( ) ( ), 0 , ,ˆ ˆ ˆ ˆ exp ' exp 'n i i i n i n n rn E n q e q E jk r R jk r⊥
⎡ ⎤× = × ⋅ ⋅ + ⋅⎣ ⎦,⊥  (6.10) 

 
The magnetic field associated with the incident electric field in Eq. (6.4) is 
 

( )( ) ( )0
0 ,

ˆˆ ˆ ˆ exp 'i i i i n i
E

e q k q E jk r
η

⋅ × ⋅  (6.11) 

 
The magnetic field associated with the reflected field in Eq. (6.5) is 
 

( )( ) ( ), 0
0 ,

ˆˆ ˆ ˆ exp 'n
i i r i n r

R E
e q k q E jk r

η
⊥ ⋅ × ⋅  (6.12) 

 
Then the total TE (perpendicular) component of the magnetic field is 
 

( ) ( ) ( ) ( ) ( ) (0
, ,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆexp ' exp 'n i i i i n i r i n n r
E

n H e q n k q jk r n k q R jk r
η⊥ ⊥

⎡ ⎤× = ⋅ × × ⋅ + × × ⋅⎣ ⎦), ,  (6.13) 

 
Since we have the following relations 
 

( ) ( ) ( )
( )( )( ) ( )

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2

r i r i i r

i i i i

n k q k n q q n k

q n k n k n n k q

× × = ⋅ − ⋅ =

− ⋅ ⋅ − ⋅ ⋅ = ⋅ i

 (6.14) 

where we have used the rule 
 

( ) ( ) ( )a b c b a c c a b× × = ⋅ − ⋅  (6.15) 

and the fact that 
 
ˆ ˆ 0in q⋅ =  (6.16) 

 
we get from Eq. (5.13) the total tangential TE component of the magnetic field 
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( ) ( )

( ) ( ) ( ) ( )

0
,

, ,

ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆexp ' exp '

n i i

i n i i i n n r

E
n H e q

n p jk r n k q R jk r

η⊥

⊥

× = ⋅

⎡ ⎤− × ⋅ + ⋅ ⋅⎣ ⎦,

 (6.17) 

 
The TM (parallel) component of the incident electric field is 
 

( ) ( )0 ,ˆ ˆ ˆ exp 'i i i n iE e p p jk r⋅ ⋅  (6.18) 

 
The TM  component of the local reflected electric field is 
 

( ) ( ), 0 ,ˆ ˆ ˆ exp 'n i i r n rR E e p p jk r⋅ ⋅  (6.19) 

 
where the Fresnel coefficient of the TM (parallel) component is 
 

( )
( )

2 2 2
1 0 ,1

, 2 2 2
1 0 ,1

cos sin

cos sin
n i n n

n

n i n n

k k k
R

k k k
i

i

ε θ ε θ

ε θ ε θ

− −
=

+ −
 (6.20) 

 
If we add Eqs. (6.18) and (6.19) we get the TM (parallel) component of total electric field at 
the reflecting boundary. Using the fact that ˆ ˆ ˆ ˆrn p n pi× = − × , the tangential  field is  
 

( ) ( )( ) ( ) ( ), 0 , , ,ˆ ˆ ˆ ˆ ˆ exp ' exp 'n i i i n i n n rn E E e q n p jk r R jk r⎡ ⎤× = ⋅ × ⋅ − ⋅⎣ ⎦  (6.21) 

 
The magnetic fields associated with Eqs. (6.18) and (6.19) are 
 

( )( ) ( )0
,

ˆˆ ˆ ˆ exp 'i i i i n i
E

e p k p jk r
η

⋅ × ⋅  (6.22) 

 
and 
 

( )( ) ( ),
0 ,

ˆˆ ˆ ˆ exp 'n
i i r r n r

R
e p k p E jk r

η
⋅ × ⋅  (6.23) 

 
The total TM (parallel) component of the magnetic field is the sum of Eqs. (6.22) and (6.23). 
Then we get the tangential field 
 

( ) ( ) ( ) ( ) ( ) ( )0
, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆexp ' exp 'n i i i i i n r r n r
E

n H e p n k p jk r R n k p jk r
η

⎡ ⎤× = ⋅ × × ⋅ + × × ⋅⎣ ⎦,  (6.24) 

 
If we use that  and that ˆ ˆˆr r ik p k p× = × ˆ i ˆ i

ˆˆi iq k p= ×  we can write Eq. (6.24) 
 

( ) ( )( ) ( ) ( )0
,

ˆˆ ˆ ˆ ˆ ˆ exp ' exp 'n i i i i n n r
E

n H e p n q jk r R jk r
η

⎡ ⎤× = ⋅ × ⋅ + ⋅⎣ ⎦, ,  (6.25) 
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The total electric tangential field is given by the sum of Eqs. (6.10) and (6.21) 
 

( ) ( )( ) ( ) ( ){
( )( ) ( ) ( ) }

0 , ,

, , ,

ˆ ˆ ˆ ˆ ˆ exp ' exp '

ˆ ˆ ˆ ˆ exp ' exp '

n i i i n i n n r

i i i n i n n r

n E E e q n q jk r R jk r

e p n p jk r R jk r

⊥
⎡ ⎤× = ⋅ × ⋅ + ⋅⎣ ⎦

⎡ ⎤+ ⋅ × ⋅ − ⋅⎣ ⎦

,
 (6.26) 

 
The total magnetic field is given by the sum of  Eq. (6.17) and (6.25)  
 

( ) ( ) ( ) ( ){ ( ) ( ) ( )

( ) ( ) ( ) ( ) }

0
, , ,

, , ,

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp ' exp '

ˆˆ ˆ ˆexp ' exp '

n i i i n i i i n n r i

i n i n r i n r

E
n H e q n p jk r n k q R jk r e p

n q jk r R n k p jk r

η ⊥
⎤⎡× = ⋅ − × ⋅ + ⋅ ⋅ + ⋅⎣ ⎦

⎡ ⎤× ⋅ + × × ⋅⎣ ⎦

ˆ i ⋅

 

(6.27) 

 
We note that that if we insert Eqs. (6.26) and (6.27)  into Eq. (5.13) we get the scattered field 
in terms of the geometry and Fresnel coefficients. If we insert Eq. (6.6) into Eq. (6.26) and 
take the cross product of ˆ

sk with Eq. (6.26) we get 
 

( ) ( ) ( ) ( )( ){
( )( )( ) ( ) ( )( ) ( )( )( ) }

0 , ,

,

ˆ ˆˆ ˆ ˆ ˆ ˆexp ' 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp 2 ' 1 exp 2 '

s n n i i i s i n

n i i i s i n n i

k n E E jk r e q k n q R

j k n k n r e p k n p R j k n k n r

⊥⎡× × = ⋅ ⋅ ⋅ × × + ⋅⎣

⎤ ⎡− ⋅ ⋅ + ⋅ ⋅ × × − − ⋅ ⋅ ⎤
⎥ ⎢ ⎥⎦ ⎣ ⎦

 

(6.28) 

( ) ( ) ( ){ ( ) ( )
( )( )( ) ( )( ) ( )( )( ) }

0 , ,

,

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆexp '

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp 2 ' 1 exp 2 '

n n i i i i i i n

n i i i i n n i

n H E jk r e q n p n k q R

j k n k n r e p n q R j k n k n r

η ⊥
⎡× = ⋅ ⋅ ⋅ − × + ⋅ ⋅⎣

⎤ ⎡− ⋅ ⋅ + ⋅ × + − ⋅ ⋅ ⎤
⎥ ⎢ ⎥⎦ ⎣ ⎦

 (6.29) 

 
where 0 0/η µ ε=  is the intrinsic impedance in region 0. Then we can put Eqs. (6.28) and 

(6.29) into Eq.  (5.13) and we get the scattered field. 
 

( ) ( ) ( )
( ) ( ){ } ( )( )

0
1

, ,

exp ˆ ˆ
4

ˆ ' ' exp

N
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s s s
n

s n n n s n i

jk jk r
E r E I k k

r

k n E r n H r j k k r dS

π

η

=

= −

⎡ ⎤ ⎡ ⎤× × + × − − ⋅⎣ ⎦ ⎣ ⎦

∑

∫∫ ' '

k

 (6.30) 

 
We remember that the wave vectors are given by ,

ˆ
n s n sk k= and ,

ˆ
n i n ik k= k where 2 2

0 0n nk ω µ ε=  

for region 0. Eqs. (6.28), (6.29) and (6.30) are different from the literature (Kong (1986), 
Franceschetti (2003)) in two ways. First we use incident and scattered wave vectors  and 

 as well as Fresnel coefficients 
,n ik

,n sk ,nR ⊥ and ,nR  for angular frequency nω , which means 

different frequencies within the chirp bandwidth. Second, we use another expression for the 
local reflected field in the specular direction. The TE component of the incident field is given 
by Eq. (6.4): ( ) .We use the local reflected TE component given by Eq. (0 ,ˆ ˆ ˆ exp 'i i i n ie q q E jk r⋅ )⋅
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(6.5): ( ) (, 0 ,ˆ ˆ ˆ exp 'n i i i n r )R e q q E jk r⊥ ⋅ ⋅  where the specular direction is given by Eq. (6.6): 

. In Kong (1986) a monochromatic incident wave vector is used (ˆ ˆ ˆˆ ˆ2r i ik k n n k= − ⋅ ) both in the  

incident and reflected field, which means exp( ')ijk r⋅ .   It should be mentioned that Eq. (6.30) 
is valid for single scattering. For double scattering new equations have to be calculated.

7 CALCULATION OF SCATTERING ELEMENTS FOR SPECIFIED GEOMETRY 

If we assume that we have a planar surface, ' , the surface normal  in Eqs. (6.28), (6.29) and 
(6.30) is a constant over the surface. Then the integral in Eq. (6.30)  must be calculated only 
with the expontential 

S n̂

( )( , ,exp 'n s n ij k k r− − ⋅ ) as the integrand. Since the r’ dependent parts in 

Eqs. (6.28) and (6.29)  are calculated on a flat surface, the  exponentials become a constant 
 

( )( ) ( )( ),
ˆˆ ˆexp 2 ' exp 2 cos (0,0,1) ( , ,0)) 1n n i nj k n k n r j k x yθ− ⋅ ⋅ = − − ⋅ ⋅ =

ˆ

 (7.1) 

 
If  we consider the backscatter direction opposite to incident ˆ

s ik k= − , Eq. (6.30) can be 
simplified as  
 

( ) ( ) ( ) ( )0 ,
1

exp ˆ ˆ ˆ
4

N
n n

s i i n i n S
n

jk jk r
E r E I k k F e I

rπ=

= −∑  (7.2) 

 
where 
 

( ), ,exp 2 ' 'n S n iI j k r dS= ⋅∫∫  (7.3) 

and 
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⊥

⊥
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⋅ ⋅ × − ⋅ + ⋅ × +

−
 (7.4) 

 
,n SI  can be a random variable if we define a reflecting rough surface. We define as in 

Franceschetti (2002) the horizontal  polarization states for the incident ( ih ) and scattered ( ) 
fields  

sh

 
ˆ ˆˆ
ˆ ˆ
i

ih

i

k z
e

k z

×
=

×
, 

ˆ ˆ
ˆ

ˆ ˆ
s

sh

s

k z
e

k z

×
=

×
 (7.5) 

 
and for the vertical polarization 
 

ˆˆ ˆiv ih ie e k= × , ˆˆ ˆsv she e k= × s                                 (7.6) 
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which is shown in   Figure 7.1. The simple flat surface is illustrated in this figure where the z-
axis and the surface normal are coincident. We now write Eq. (7.2) in terms of the modified 
Jones scattering matrix  
 

( ) ,0, ,
,

1 , , ,0

exp
4

N
n hn hh n vhsh n n

n S
n n hv n vvsv n v

ES SE jk jk r
I

S SE Erπ=

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  (7.7) 

 
We show how to calculate the scattering elements for the geometry in   Figure 7.1. Let us now 
define the Cartesian scattering vector 
 

( ) ( ),
ˆ ˆ ˆn p i i n ipS I k k F e= −  (7.8) 

 
We let and  if we write out the components in Eq. (7.8) we get  (ˆ , ,i ix iy izk k k k= )
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F eS k k k k k k
S k k k k k k

k k k k k kS F e
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F e  (7.9) 

 
where p  is either  or v .  Since andh 0ixk = siniyk θ= −  and cosizk θ= −  we get 
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e  (7.10) 

 

 
Figure 7.1 Scattering from a plane surface. Definition of horizontal and vertical polarization. 
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The scattering elements can be defined in the following way , , , ,, , ,n hh n hv n vh n vvS S S S

 

, , , , ˆ, ,n hh n hx n hy n hz shS S S S⎡ ⎤= ⋅⎣ ⎦ e

e

e

e

= − ivê (0,cos , sin

 (7.11) 

 
 

, , , , ˆ, ,n hv n vx n vy n vz shS S S S⎡ ⎤= ⋅⎣ ⎦  (7.12) 

 
 

, , , , ˆ, ,n vh n hx n hy n hz svS S S S⎡ ⎤= ⋅⎣ ⎦  (7.13) 

 
 

, , , , ˆ, ,n vv n vx n vy n vz svS S S S⎡ ⎤= ⋅⎣ ⎦  (7.14) 

 
To calculate the scattering elements we look at Figure 7.1 and calculate the vectors needed to 
calculate Eqs. (7.4), (7.5), and (7.6) 

ihê ( 1,0,0) , )θ θ= − shê (1,0,0, )= , svê (0, cos ,sin )θ θ= − ˆ ( 1,0,0)iq = −, , 
ˆ (0, sin , cos )ik θ θ= − − , ˆˆ ˆ (0, cos ,sin )i i ip q k θ θ= × = − , ˆ (0,0,1)n = , , ˆ ˆ (0, 1,0)in q× = −

ˆ ˆ (cos ,0,0)in p θ× = , , ( )ˆ ˆ ˆ (cos ,0,0)s i
k n q θ× × = ( ) 2ˆ ˆ ˆ (0,cos , cos sin )s i

k n p θ θ θ× × = − , 

, ˆ ˆ ( 1,0,0) ( 1,0,0) 1ih ie q⋅ = − ⋅ − = ˆ ˆ 0iv ie q⋅ = , ˆ ˆ 0ih ie p⋅ = , ˆ ˆ 1iv ie p⋅ = − , ˆˆ cosn k θ⋅ = −  
Using these vectors in Eq. (7.8) we get 
 

( ) ,ˆ (2cos (1 ),0,0)n ih nF e Rθ ⊥= +  (7.15) 
 
Calculation of Eq. (7.10) yields 
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 (7.16) 

 
Finally we calculate the scattering elements in Eqs. (7.11)-(7.14) 
 

( ), , , , ˆ, , 2cosn hh n hx n hy n hz sh nS S S S e Rθ ,⊥⎡ ⎤= ⋅ =⎣ ⎦  (7.17) 

 
( )2coshhS Rθ ⊥=  (7.18) 
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For the harmonic wave (if we omit the index ) this is equivalent to the result in Franceschetti 
(2002). 

n

88  IINNVVEERRSSEE--EEEETTFF  FFOORR  RAW  DDAATTAA  SSIIMMUULLAATTIIOONN  

The EETF (Extended Exact Transfer Function) is an algorithm which was developed 
optimized for spaceborne SAR processing. It is shown in Eldhuset (2004) that the spaceborne 
formalism which the EETF4 (4th order) is based upon is necessary in order to represent the 
azimuth phase history with sufficient accuracy for high squint and spatial resolution less than 1 
m for X-band. A spotlight raw data simulator for extended scenes was for the first time 
published in Cimmino (2003) where the focus depth variation is taken care of for a non-
squinted geometry and a straight line flight path. The Inverse-EETF4 used in Eldhuset (2004) 
is a unique raw data simulator for extended scenes with very high resolution. The space-
variance of the SAR transfer function is handled in the same way as in the EETF4 for squinted 
SAR and a very long synthetic aperture of a curved orbit. The Inverse-EETF4 simulates raw 
data for extended targets for a squinted SAR in a very efficient way by using multi-block 
processing and handles the enormous range migration in a very compact way, as shown in 
Figure 8.1. In the left figure the raw data of a point target P is continuous. In the right figure 
the same raw data are split into two parts  P1 and P2 where the matrix is half of the size in 
range. If there is very large range cell migration the point target may be split into n partial 
point targets (P1,….,Pn). The clue is that there must be enough space in the matrix in the 
frequency domain. It is concluded in Eldhuset (2004) that the EETF4 algorithm is a good 
candidate for future ultra high resolution (0.3 m) spaceborne SAR processing. Its novel 
properties are also mentioned in Fornaro et al (2002) and in Wang and Liu (2004). 

 

Figure 8.1 Continuous raw data (P) and discontinous raw data (P1,P2) of a point target. 
(Time domain in both azimuth and range). 

 
The exact transfer function up to fourth order (ETF4) can be found in Eldhuset (1998) and is 
given by 
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( ) [ ]{ } *

4 , ; exp ( ) exp ( )ETF r a a r r r aH R F j t jω ω φ t⎡ ⎤= Φ ⎣ ⎦  (8.1) 
 
where [ ]{ }exp ( )r rF j tΦ r is the Fourier transform of the range chirp and the phase function 

is given by *( )atφ
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and is the stationary point of the equation *

at
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1 2 2 32 a
a a aa a t a t a t
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λω

π⎛ ⎞+ + + +⎜ ⎟
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The Doppler parameters are denoted , , , .1a 2a 3a 4a rω and aω are the range and azimuth angular 
frequencies. The ETF4 is multiplied by the data before the inverse 2 D FFT in Figure 8.2. The 
phase correction (4 ; ,EETF a m )R Rφ ω∆ is applied after the azimuth FFT in every azimuth line (at 

range mR ) and the expressions for ( )4 ; ,EETF a mR Rφ ω∆ can be found in Eldhuset (1998) or 
compactly written as in Eldhuset (2004) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 1 2 3 4 1 2 3 4; , ; , , , ; , , ,EETF a m EETF a m m m mR R a R a R a R a R a R a R a R a Rφ ω φ ω∇ = ∇ ⎡ ⎤⎣ ⎦  (8.4) 
 

R is the slant range for a given azimuth line in a block and mR  is the slant range in the middle  

Figure 8.3. Here the raw data output in Figure 8.2 have been processed with the EETF4 
algorithm. Point targets with strong values in single points have been put into  . In the 

future we will implement the calculation of the reflectivity matrix
( ,r at tσ )

( ),r at tσ  in terms of Eq. 
(6.30).  
 
It is mentioned in Touzi and Raney (2004) that the four elements  of the 
scattering matrix will be affected if the Doppler parameters and are erroneous. This means 
that the scattering elements for moving targets will be affected if they have not been re-
focused. The effect on the scattering elements could be studied with a total polarimetric 
modelling also including SAR processing. Another novel application of the Inverse-EETF2 or 
the Inverse-EETF4 is the simulation of two raw data sets from each of the sub-apertures of the 
antenna of an along-track MTI (Moving Target Indicator). Clutter, thermal noise and noise due 
to decorrelations between the channels or moving extended targets or point targets can be 
simulated. The additional phase of the moving targets can be superposed on the 
matrix  in one of the raw data sets.  

, , ,hh hv vh vvS S S S

1a 2a

( ,r at tσ )
 
The scattered field in Eq. (6.30) was calculated under the assumption that the surface was 
smooth.  If we assume that the surface is rough and described in a statistical manner, it is 
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possible to calculate expressions for the mean scattered field of Eq. (6.30) and its standard 
deviation. The surface can for example be specified by a Gaussian height distribution.  

 
Figure 8.2 The Inverse-EETF4 algorithm where many blocks of raw data in range  can be 

processed. 

 

 
 

Figure 8.3  Simulation of point targets in clutter using the Inverse-EETF4 followed by EETF4. 
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9 CONCLUSION 
A method for calculation of  the reflectivity matrix for spaceborne polarimetric SAR has been 
outlined. The existing scattering theory has been briefly reviewed and revised for very high 
resolution. It is shown how the reflectivity matrix can be used as input to the Inverse-EETF4 
raw data generator. The single scattering case has been considered. More calculations must be 
done for double scattering and for rough surfaces. The deterioration of polarimetric 
characterization of moving targets can be studied by a total modelling of both scattering and 
SAR processing.  
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