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NAVLAB - Overview and User Guide November 2003 
 

1 INTRODUCTION 

This report is primarily intended for users of NavLab, but it can also be read to get general 
information about the software.  

With an increasing number of different NavLab users with different ranges of application, 
NavLab is regularly upgraded with new functionality. Consequently, this document is 
extended accordingly, to include descriptions of the new features. The current version of this 
report covers the main functionality in NavLab as of November 2003. 

2 NAVLAB OVERVIEW 

This chapter gives a brief overview of NavLab and its usage, and is also relevant for readers 
not planning to use NavLab themselves. Definitions of the notation and coordinate systems 
used are found in Appendix A. In Appendix F a list of abbreviations and acronyms is given. 

2.1 What is NavLab? 

NavLab (Navigation Laboratory) is a powerful and versatile tool intended for navigation 
system research and development, navigation system accuracy analysis and navigation data 
post-processing. 

Figure 2.1 shows the structure of NavLab, which consists of two main parts: 

Simulator  

The Trajectory Simulator can simulate any vehicle trajectory specified by the user, and true 
position, velocity, attitude etc are calculated. In addition, the user specifies a set of available 
sensors and their characteristics. Based on this information, the sensor simulators add 
characteristic errors to the true values, and by this calculate a set of artificial sensor 
measurements. 

Estimator 

Based on the available sensor measurements, the Estimator makes both Kalman filtered and 
smoothed estimates of position, velocity, attitude and sensor errors. This is done by first 
integrating the IMU (Inertial Measurement Unit) measurements in the navigation equations 
and comparing the result with the aiding sensors that are available. The differences are then 
sent as measurements to the Kalman filter (see section 2.4 and 2.5 for more details). Note that 
the measurements can be either simulated (from the NavLab Simulator) or real (from the 
sensors of a vehicle). 
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Figure 2.1 NavLab structure. Note: The colors used in the figure correspond to the colors 
of the graphs generated by the different parts of NavLab (blue is the 
measurement, red is the smoothed estimate etc). 

 

2.1.1 NavLab’s theoretical foundation 

The most significant feature of NavLab is probably its solid theoretical foundation. NavLab is 
the result of an innovative research process to establish a completely generic theoretical basis 
for navigation and for implementation of navigation systems. The development has lead to the 
following contributions:  

• A new stringent and unified system for notation and mathematical representation 
• A unified design and implementation of algorithms and aiding techniques for the 

Kalman filter, where statistical optimality is maintained throughout the entire system 
• Elimination of numerical problems by  

- Deducing and implementing exact formulas (rather than approximations)  
- Using only singular free representations 
- Controlling accumulation of Matlab’s inherent round-off errors 
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Many articles from the above work will be published, but currently the most relevant report 
available is (1). 

2.1.2 Overview of NavLab usage 

NavLab has been extensively used by numerous different users since 1999, including several 
international research groups and commercial mapping companies. The flexible structure of 
NavLab makes it useful for a wide range of applications. Some users use only simulated data, 
whereas others use the Estimator alone to process real data. Finally, there are many cases 
where both simulations and real data processing are of interest. A summary of current NavLab 
usage is given below:  

Navigation system research and development (using simulations and real data) 
• Development, testing and comparison of new navigation concepts and algorithms, 

including new aiding sensors and aiding techniques. 
• Development of real-time navigation systems where the algorithms are tested in 

NavLab, and then ported to the real-time navigation system. A typical development 
process is:  

- Test in simulations (NavLab) 
- Test with real data (NavLab) 
- Implementation in the real-time system (using a real-time operating system and 

C++ or similar program language) 
- Test of real-time system 

Analysis of a given navigation system (using simulations and real data) 
• Analysis of navigation system behavior under different maneuvers/trajectories and 

sensor configurations. 
• Robustness analysis. The performance of the Estimator is studied for the cases of: 

- Wrong sensor models used in the Kalman filter 
- Sensor dropouts 
- Sensor errors 
- Etc 

Teaching navigation theory (using simulations) 
By specifying appropriate simulations, everything from basic principles to complex 
mechanisms can be demonstrated and visualized. 

Decision basis for navigation sensor selection/purchase (using simulations) 
Simulations of the relevant scenarios are carried out to investigate how varying quality 
of the different sensors will affect the obtainable navigation performance. Typically it 
is established which sensor that has the critical accuracy. In addition, parameters for 
different sensors available in the market are usually entered for comparison. 
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Decision basis for mission planning (using simulations) 
Even if the set of sensors is given, the navigation accuracy can vary significantly 
during a mission. These variations are determined by specifications in the mission plan: 

- Activating/deactivating sensors or changing their measurement rate (reasons to 
deactivate might be to stay covert, avoid interfering with other systems or 
simply to save power) 

- Going to areas where certain measurements are available or are more accurate 
(e.g. go close to bottom to get DVL bottom track, go close to a transponder or 
go to surface to get GPS)  

- Doing maneuvers to increase the observability of the Estimator 
- Going in patterns to cancel out error growth 

When setting up complex mission plans, simulations are crucial to ensure effective 
plans that also meet the navigation accuracy requirements for all parts of the mission 
(transient phase, mapping phase etc).  

Post-processing of real navigation data (using real data) 
Post-processing of real data will improve both the navigation performance and the 
integrity. See 2.1.3 for more details.  

Tuning of real-time and post-processing navigation systems (using real data) 
The Kalman filter tuning is essential for the estimation accuracy. The tuning might be 
based on the sensor specifications, but the actual sensor performance often differs from 
these numbers, and in such cases the tuning should be based on empirical data. For this 
purpose, the error estimates from the smoothing algorithm are preferred as basis. 

Improving sensor calibration (using real data) 
Sometimes systematic errors are present in a sensor, typically due to imperfect 
calibration or misaligned mounting. Such (deterministic) errors should be removed 
before sending the measurements to the Estimator, otherwise the performance will be 
reduced (in particular for the real-time Kalman filter). To find these systematic errors, 
the smoothing algorithm can be used, as it is significantly better than the real-time filter 
at estimating such errors. When the errors are known they can be compensated for in 
future missions. 
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2.1.3 Using NavLab for real data post-processing 

For vehicles storing their navigation sensor measurements during missions, it is possible to 
make post-processed estimates of position, velocity and attitude. There are many situations 
where these estimates are of great interest after the mission is finished, for instance this is the 
case if the vehicle has recorded data that should be positioned accurately afterwards (e.g. map 
production or georeferencing of mine like objects). Since the Estimator works equally well 
with simulated and real measurements, NavLab is well suited and extensively used to produce 
optimal post-processed navigation results. These results are valuable also when the vehicle has 
calculated and stored real-time navigation estimates. Post-processed estimates are in general 
preferred to the real-time estimation results, since both the estimation accuracy and the 
integrity are improved: 

• The increased accuracy is mainly due to the use of smoothing, which is an optimal 
estimation technique that utilizes both past and future measurements. In addition, real-
time problems like delayed measurements and incomplete data sets from remote 
sensors are eliminated. 

• The improved integrity is partly due to the smoothing algorithm, which in general is 
more robust against degraded sensor performance than the real-time Kalman filter. In 
addition, the possibility to rerun the data increases the ability to recover a faulty data 
set. To do this, one can modify both the degraded sensor measurements and the filter 
tuning to get the best navigation possible.  

 

2.1.4 NavLab program modules 

In addition to the Simulator and Estimator, a preprocessing tool (Preproc) is used to handle 
real measurements (by removing wildpoints, converting measurements to the correct format 
etc), and an export tool creates files for export (which contain the estimated position etc). 
Figure 2.2 shows the NavLab program modules. Different modules are used in different cases. 
Typical examples are: 

• Simulations: Simulator → Estimator 

• Processing of real data: Preproc → Estimator → Export 
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Figure 2.2 NavLab program modules 

2.2 Trajectory Simulator 

The following coordinate systems1 are simulated:  

• I (Inertial) 
• E (Earth) 
• L (Local) 
• B (Body) 

All relevant forces, accelerations, (angular) velocities, positions, orientations etc are returned.  

Features: 

• Any trajectory in the vicinity of Earth can be simulated (with unlimited complexity). 
• All positions on Earth can be simulated with no singularities. 
• All vehicle attitudes can be simulated with no singularities. 
• Includes all Coriolis and centripetal effects due to own movement, rotating Earth, Earth 

curvature etc. 
• Includes elliptic Earth model and gravity model. 

2.3 Sensor simulators 

The most important error types are included: 

• White-noise 
• Colored noise 
• Scale factor error 
• Misalignment error (to be implemented) 
• Random constant error (to be implemented) 

                                                 
1 A more detailed description of the different coordinate systems is found in Table A.1. 
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The magnitude, time-constants etc that describe the different errors (sensor parameters) are 
user selectable. They can be given fixed values or vary as a function of time. 

The user can specify any time-vectors to simulate the individual sensors (including variable 
time-step lengths). Thus any sensor measurement may be present at any time. 

2.4 Navigation Equations 

The navigation equations are incremented each time new IMU measurements becomes 
available. 

Features: 

• Singular free for all positions and attitudes 
• Foucault wander azimuth 
• Direction cosine matrix attitude update 
• Necessary coning and sculling compensation 
• Numeric drift control 
• Elliptic Earth model and gravity model 
• Trapezoid updates to prevent systematic errors from forward or backward Euler 

2.5 Estimator 

The error state Kalman filter is an optimal estimator (given certain assumptions). The structure 
of the Kalman filter is shown in Figure 2.3. 
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Figure 2.3 Kalman Filter structure 

 
Features: 
• Includes optimal smoothing (Rauch-Tung-Striebel implementation) 
• The Estimator accepts arbitrary measurement series (time-vectors) from all sensors. 
• Along with each single sensor measurement, new sensor parameters can be specified, 

describing that particular measurement. 
• Zero velocity update (ZUPT), and depth/height measurement are included in the same 

Kalman filter in an optimal manner. 
• Nonsingular horizontal position measurements 
• Nonlinear 
• Asynchronous 
• Semi-continuous 
• Variable process and measurement noise 
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2.6 User interface 

In (Simulator): 

Trajectory simulator: The user specifies initial position, velocity and attitude, and all 
changes in velocity and attitude during the simulation. 

Sensor simulators: The user specifies the error behavior in each sensor to be included and 
the time intervals the sensor measurements are available at given rates. 

In (Estimator): 

The Estimator uses measurement vectors as input (either simulated or real). The user 
specifies the initial estimate, and sensor models used by the Kalman filter (sensor 
parameters). 

Out (common): 

After a simulation or estimation, data such as true values, measured values, estimated 
values, estimation uncertainties etc is available.  

All the available data (more than 450 possible graphs) is displayed with a general multi-
menu based plot function, see Figure 2.4. 

 

 
Figure 2.4 The main menu for plotting data 
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3 USING NAVLAB 

To take full advantage of NavLab, a background in inertial navigation and Kalman filtering is 
beneficial. However, knowledge of the background theory is not required for users that are 
only using NavLab for real data post-processing.  

3.1 System requirements and installation 

3.1.1 System requirements 

NavLab is written to run under Matlab1 (no toolboxes are required), hence the system 
requirements are the same as for Matlab. Check The MathWorks homepage, 
www.mathworks.com, to view the system requirements for the relevant version of Matlab. 

However, when working with real data or long simulations, a fast computer with plenty of 
memory is advantageous.  

Example: When processing real data from a typical AUV-run, a 1.4 GHz Pentium 4, with 512 
MB RAM gives a real-time factor of about 5, i.e. making estimates from 5 hours of data takes 
1 hour. (If also smoothed results are needed, another 30 minutes are required.) 

Multi-processor computers can be utilized by starting several Matlab processes, each 
processing one part of the entire run with NavLab. 

3.1.2 Installation 

NavLab does not need installation. The NavLab files are saved on any location, and then made 
visible for Matlab. See 3.4 for details. 

3.2 Different versions of NavLab 

NavLab is written as standard Matlab m-files (text files with names *.m). These m-files can be 
precompiled to corresponding *.p-files (binary). The *.p-files behave exactly the same under 
Matlab, but may run slightly faster (and the source code is not visible).  

By default, NavLab is delivered as p-files. Usually, only scientific groups needing details 
about the algorithms and source code will need the m-files. 

The different modules may be used separately, and thus NavLab can be delivered with only 
those modules needed by the user. 

                                                 
1 It is tested to run under Matlab version 5.3, 6.1 or 6.5 under Windows or Unix. 

http://www.mathworks.com/
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Typical sub-packages of NavLab for different users: 

1. Users processing real data only: Preproc, Estimator and Export as *.p-files 

2. Scientific groups analyzing theoretical navigation performance for a vehicle: Simulator 
and Estimator as *.p-files. Scientific groups participating in collaboration programs with 
FFI may get *.m-files. 

Note: When referring to the name of a specific m- or p-file in the user guide, the .m ending is 
used (representing any of the two). 

3.3 File structure 

3.3.1 NavLab 

The NavLab package consists of m- or p-files in a 2-level directory structure. Common files 
like general mathematics and plotting are located in the top directory (NavLab directory). The 
independent Simulator, Estimator, Preproc and Export modules (shown in Figure 2.2) are 
located in separate subdirectories. The m/p-files in each of these subdirectories are only used 
by that particular module. Figure 3.1 shows the file structure of NavLab. 

 

 

Figure 3.1 NavLab file structure (m-files) 

The NavLab files are not edited by the user, and the NavLab directory can be made Read-only. 

3.3.2 Working directories 

When working with NavLab the user should make working directories, one for each 
simulation and/or estimation. Each directory contains all relevant information for that 
particular simulation/estimation. 

To specify the user selectable parameters in a simulation/estimation, ini-files (text files) are 
used. For instance simulator.ini specifies simulation duration, which sensors to simulate 
etc. estimator.ini specifies Kalman filter tuning, if smoothing should be included etc. 
Appendix E contains examples of ini-files. 
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In each working directory, a copy of each relevant ini-file (with the selected values) is stored. 

In this manner, a set of parameter files is sufficient to recreate exactly the same 
simulation/estimation (even the random noise created). Under the working directory, there 
should also be a subdirectory called data to store all data used in that simulation/estimation.  

In general, files that are read/edited by the user are located in the working directory, and all the 
data-files (automatically generated and read) are “hidden” in the data directory. Figure 3.2 
shows an example of a working directory (when using real data). 

 

 

Figure 3.2 Example of working directory. (The About.txt-file is an optional file containing 
the user’s own comments/description of this particular run.) 

Note that the working directories are usually located somewhere else than the static (Read-
only) NavLab directory. 

3.4 Detailed user procedure 

Note: Users that are only using NavLab for real data post-processing may now jump to 
Appendix C, which contains a short user guide only for that purpose. 

 

To start using NavLab, you should have received the following:  

• NavLab (several m or p-files in a directory structure) 
• Example parameter files (examples of simulator.ini, estimator.ini etc) 
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What to do: 

1. Save the copy of NavLab at a suitable location, and make it visible for Matlab (add the 
paths to the front of Matlab’s path).  

2. Create the first working directory, and store a copy of the relevant ini-files there. Also 
make a subdirectory called data for all data storage relevant to that particular 
simulation/estimation. 

3. Change current directory in Matlab to the working directory (but not the data directory). 

4. Edit the relevant ini-files (see the next chapters for more details). 

5. Run either of these: simulator.m / estimator.m / preproc.m  

6. After simulation/estimation is finished, the result is present in memory (and also written to 
files if that was selected). To view the result now residing in memory, plot_general.m is 
used. This displays a multi-level menu from which you can select different graphs to view. 
Plot_general is automatically called at the end of both Simulator and Estimator. 

Repeat steps 2-6 for each new simulation/estimation. 

3.5 Simulator details 

For the simulation, the parameters are held in seven files. A copy of each file should be placed 
in the current working directory:  

1. simulator.ini: Contains general simulator parameters 

2. IMU_sim.ini: IMU parameters, used by IMU_sim.m 

3. posm_sim.ini: Position measurement parameters, used by posm_sim.m 

4. depthm_sim.ini: Depth measurement parameters, used by depthm_sim.m 

5. DVL_sim.ini: DVL parameters, used by DVL_sim.m 

6. cmps_sim.ini: Compass parameters, used by cmps_sim.m 

7. Trajrate.m: This is an m-file describing the changes in the trajectory, used by 
Traj_sim.m during simulation. 

Examples of these files are listed in Appendix E.1. 
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Simulator user guide: 

1. Change the current directory in Matlab to the working directory (but not the data 
directory). 

2. Set the correct values in the ini-files. 

3. Run simulator.m.  

The Simulator generates measurement-files (located in the data subdirectory). These files will 
later be found and used by the Estimator. Files containing the true trajectory are also 
generated. These will be loaded by plot_general when the estimation is finished. 

3.6 Estimator details 

For the estimation, the parameters are located in two files. A copy of each file should be 
located in the current working directory:  

1. estimator.ini: Contains general Estimator parameters, initial position, attitude and 
velocity, and Kalman filter tuning. 

2. cov_matrix.ini: Contains the parameters used to create the Kalman filter initial 
covariance matrix. 

Examples of these files are listed in Appendix E.2. 

Estimator user guide: 

1. Change the current directory in Matlab to the working directory (but not the data 
directory). 

2. Open estimator.ini and set the initial position, attitude and velocity (if using real data, 
see Estimator user guide in Appendix C.2 for details on how to find this). Set the different 
sensor parameters to be used in the Kalman filter and the general Estimator info. 

3. Normally (if the initialization was not totally perfect) you want to specify an initial 
covariance matrix to use in the Kalman filter. This matrix describes the uncertainty in the 
initial estimate that was specified in estimator.ini. The initial covariance matrix is 
stored on a file (initial_P_KF_u.txt), and this file can be created by the following: 

a. Make sure estimator.ini has the correct values and is saved before 
continuing with this. Open cov_matrix.ini and set the uncertainty in the initial 
position, attitude and velocity. Save this file, and run 
make_and_save_cov_matrix.m. A file called initial_P_KF_u.txt is created 
in the working-directory. This file is used by the Estimator. 

Note that running make_and_save_cov_matrix.m might be automated, rather than doing 
it manually as described above. This is done by selecting auto_create_cov_matrix = 1 
in estimator.ini, and the Estimator will then run it before starting the estimation.  
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4. Run estimator.m  

5. Recommended: Save the Matlab workspace for later use. Just exit the menu and type 
save (a file matlab.mat will be saved in the working directory1). To get the menu 
back, run plot_general. The workspace can also be saved after finishing the plotting, 
but it will then be larger, due to all the new variables calculated by the plotting routine. The 
advantage of a larger file is that the next time the plotting will be faster, as the variables are 
already calculated. 

3.7 Preproc and Export details 
See special version of the user guide (when using real data) in Appendix C. 

4 UNDERSTANDING NAVLAB 

It is not required to read this chapter to be able to use NavLab, but it may give relevant 
information and a more thorough understanding of NavLab. 

4.1 Information about user input 

In general the different parameters in the ini-files are (briefly) explained in the files 
themselves. Additional information is included in this chapter. 

4.1.1 Sensor error parameters 

A sensor error may consist of several components, and different parameters are used to 
describe each part. The relevant parameters are highlighted underlined and bold in the 
following explanations. 

4.1.1.1 White-noise 

This error is uncorrelated from one measurement to the next, and is described by its standard 
deviation.  

In the Simulator it is simulated as Gaussian white-noise. For gyros and accelerometers, a 
parameter describing continuous white-noise is used. This parameter is called power density, 
and has a different unit than the measurement. The reason for using this parameter, and an 
explanation of the unit is found in section 3.2.2 and 4.2.3 in (1). A general discussion about 
continuous white-noise is also found on page 42 in (2). 

                                                 
1 This file is simply loaded later (when the memory is cleared) by typing load. 
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4.1.1.2 Colored noise (bias) 

A colored error (also called bias) is modeled as a first order Markov process: 

 
1x x
T

γ= − +  (4.1) 

 

where x is the colored error, T is the time-constant, and γ is white-noise. Such a process is 
described by its standard deviation (of x) and its time-constant. The standard deviation will 
describe the magnitude of the colored noise, and the time-constant describes how fast it 
changes. In the Simulator, the white-noise that is driving the bias is Gaussian.  

4.1.1.3 Scale factor error 

This error depends on the value to be measured, and the error is a constant times the 
measurement. This constant (or scale factor error) may not change for one specific sensor unit, 
but can be viewed as a stochastic variable, varying from unit to unit. Thus the parameter 
describing its magnitude is its standard deviation. The Simulator draws the scale factor errors 
used in one simulation using a Gaussian distribution. 

4.1.2 Changing sensor availability 

Note that the Estimator uses all sensor measurements located under \data. If you have 
simulated with a sensor available, and later turn that sensor off, still using the same working 
directory (by setting 0 in simulator.ini), the Simulator will not delete your old txt files for 
that sensor. Thus the files will be found by the Estimator and the sensor measurement will be 
used. The solution is to rename or delete the relevant time-vector- and/or measurement-file 
(located under \data). Another solution is of course to use a new working directory for the 
new simulation.  

4.1.3 Trajectory simulation 

During a simulation the function Trajrate.m (located in the working directory) defines the 
changes in the trajectory, see Appendix E.1.7. for an example of this file. Inside this function 
the user can specify any mathematical function producing B

LBω  and  as function of the 
current time, 

B
EBv

t (and possibly time-step length, h). 

For instance, the following line will make the vehicle oscillate in pitch, with a maximum rate 
of 7 deg/s, and with a frequency of 0.17 Hz: 

omg_LB_B_a_deg = [0 , 7*sin(0.17*2*pi*t) , 0 ]'; % oscillate in pitch 

Standard maneuvers are typically specified by an interval and a rate. The following line will 
increase the forward speed with 2.1 m/s in the interval 100 to 110 seconds: 

if t >= 100  & t < 110,  v_EB_B_d_a = [0.21,0,0]';  end; % accelerate 
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Note that if no changes are specified,  and B
EBv B

LBω  are by default zero. = 0 means that the 
velocity-vector of the vehicle is constant seen from the B-system. 

B
EBv

B
LBω = 0 means that the 

attitude follows the L-system (defined in Table A.1). Thus, with an initial horizontal velocity, 
the vehicle will travel around the Earth at constant depth/height, crossing equator at the same 
angle each time (or traveling along it at latitude exactly zero). 

4.2 Information about the NavLab output 

This part contains explanations and comments on the graphs, and other outputs from NavLab. 
The format of exported files is described in D.1. 

4.2.1 Summary 

If the standard deviation of a bias estimate is more than 3 times the bias modeled in the 
Kalman filter, this number is shown in bold red text. Typically this means that the 
corresponding sensor has an error that is significantly larger than what has been modeled. 

4.2.2 Details about the “std” 

The number called “std” in the legends of the graphs in the error plots is based on the data set 
shown in the corresponding graph and has the same unit. The number is an estimate of the 
standard deviation of the stochastic process shown. Note that this estimate is not found using 
the function “std” in Matlab (this would give a poor estimate for instance if we have a small 
part of a colored stochastic process with a sample mean different from zero). RMS (Root Mean 
Square) is used, and this is the best estimate of standard deviation based on a sample, see 
Appendix B for more details. 

The std-numbers in the summary are the same as those found in the legends.  

4.2.3 Timing plot 

For the real-time Kalman filter, an x is plotted for each time-step it was run. In addition: 

• A circle is plotted around those time-steps the Kalman filter propagated without any 
measurements (due to a too long period without measurements). 

• A plus sign is plotted on those time-steps the Kalman filter had more than one 
measurement. 

4.2.4 Verifying the accuracy of the Kalman filter in simulations  

In general, the graphs showing true estimation error and Kalman filter standard deviation can 
be used to verify the accuracy of the Kalman filter. The true estimation error should be within 
the theoretical 3-sigma value from the Kalman filter. If the true estimation error seems too 
large, the Kalman filter is typically too optimistic, and probably the modeled sensor errors are 
too small. 
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4.2.4.1 Exception for bias estimates (detailed) 

The method described above is a quick way to verify the Kalman filter performance, and it is 
acceptable in most cases. However, for the bias estimates there may be cases where the 
estimation error seems too large, although it really is not. 

The simulated sensor error typically consists of other components in addition to the bias, 
usually white-noise, and sometimes also other errors like scale factor error and misalignment 
error. The Estimator only “sees” the total error, and in the current Kalman filter the total is 
modeled as a bias plus white-noise. Thus the bias estimate from the Kalman filter is really an 
estimate of the total colored sensor error. If this error is observable and a significant part of it 
originates from another source than the simulated bias, there will be a difference between the 
simulated bias and the estimated bias, corresponding to the other component. The plotted 
estimation error, calculated as the bias estimate minus the true simulated bias will then seem 
too large. To see the real estimation error, one should compare the total-error graph with the 
bias estimate. 

Example where this may occur: 

The Simulated error in the z-accelerometer consists of white-noise, bias and scale factor error. 
In the Kalman filter it is only modeled as white-noise and bias (the bias + scale factor is 
modeled as a bias with a larger magnitude). The filter will successfully find the sum (scale 
factor + bias) and make a good estimate of it. However when plotting true bias minus 
estimated bias the difference will correspond to the scale factor, and this may be significant in 
the z-direction due to the g-vector. 

5 ADVANCED USAGE 

5.1 Changing the rate of a sensor 

In the Simulator a fixed measurement rate for each sensor can be specified. When using this, 
the sensor will be available in the entire simulation interval with a fixed rate. However, it is 
also possible to use any variable rate, i.e. define the time each single measurement is available. 
This can be used to simulate sensor dropouts and varying sensor rate. 

To simulate a varying rate for a specific sensor, set sensor_tv_from_file = 1, in the 
sensor_sim.ini file (tv is time-vector). When this is set, the Simulator will look (in the 
working directory) for a file called sensor_tv_desired.txt containing all the time-steps the 
sensor should be available.  

Note: The phrase sensor (in italic) represents any of the abbreviations for the sensors (IMU, 
posm, depthm, DVL or cmps). 
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5.1.1 How the file is used 

When the Simulator starts, it is always going through all the time-steps from start to stop-time 
with the rate given in simulator.ini. The sensor(s) with varying rate is simulated at the 
simulator time-steps nearest the desired time-steps specified in sensor_tv_desired.txt. 
Time-steps outside the simulator interval are ignored. 

5.1.2 How the file is made 

The file sensor_tv_desired.txt can be made manually or by the utility 
make_and_save_sensor_tv.m. In this script the user can specify an interval by a start and 
stop time, and the desired sensor rate within this interval. Any number of intervals can be 
specified. 

Note: This script is located under the NavLab/Simulator directory. It is recommended to make 
a local copy of this m-file in the working directory, and then edit the local copy. 

5.1.3 Changing the sensor rate in the Estimator  

Changing the sensor rate is automatically taken care of by the Estimator: It always uses the 
sensor measurements at the time-steps they are available. 

5.2 Changing the quality of a sensor 

The parameters describing the sensor errors are, by default, constant. However it is possible to 
change these as a function of time (e.g. to describe degradation or improvement in a sensor).  

Note: In the summary (from plot_general) the constant parameters are given as numbers, 
and varying parameters are plotted as graphs. 

5.2.1 Changing quality in the Simulator 

In the Simulator the constant parameters are given in the sensor_sim.ini files. But if there 
exists a file (in the working directory) called sensor_sim_quality_intervals.txt 
changing quality specified in this file is used in stead. 

The file contains start and stop times for an interval, and the parameter values valid for that 
interval. Any number of intervals can be specified. Outside of the intervals specified, the fixed 
values from sensor_sim.ini are used. 

Note that not all parameters must be specified, only those changing. For an nD measurement 
(DVL is 3D, posm is 2D) the first n values after the interval will be interpreted as the standard 
deviation of the measurement noise. The next n, if specified, will be interpreted as the standard 
deviation of the bias. If the last n are also specified, they will be interpreted as the bias time-
constants. 

Parameters that are not specified, will have the fixed values specified in sensor_sim.ini. 
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Example: 

Assume DVL_sim_quality_intervals.txt looks like this: 
 50  70  0.1 0.1 0.1  0.05 0.05 0.05  600 600 600 
100 130  0.3 0.3 0.3  0.05 0.05 0.05   60  60  60 
 

This means that in the interval 50 to 70 seconds, the standard deviation of the white-noise 
in DVL x, y and z direction is 0.1 m/s (the units are the same as used in DVL_sim.ini). In 
the same interval the standard deviations of the 3 biases are 0.05 m/s with time-constants of 
600 seconds. 

Between 70 and 100 seconds, the values from DVL_sim.ini are used. 

In the interval 100 to 130 seconds, the white-noise is tripled, and the bias is changing ten 
times faster. 

The file can be made manually or by the script make_and_save_sensor_sim_quality.m. 
The script also contains more detailed help. 

Note: The script is located under the NavLab/Simulator directory. It is recommended to make 
a local copy of this m-file in the working directory, and then edit the local copy. 

5.2.2 Changing quality in the Estimator 

In the Estimator, the constant models of the sensors used are specified in estimator.ini. 
However, if a file called sensor_est_quality.txt exists in the working directory, the 
parameters specified in this file will be used (ignoring the corresponding parameter values in 
estimator.ini). This file has the same number of rows as the file containing the 
measurement itself, and each row describes the quality of the corresponding measurement. As 
for the Simulator, one or more parameters may be specified (parameters not specified are taken 
from estimator.ini). 

Example: 

Assume DVL_est_quality.txt looks like this: 
0.1 0.1 0.1  0.05 0.05 0.05  600 600 600 
0.1 0.1 0.1  0.05 0.05 0.05  600 600 600 
0.1 0.1 0.1  0.05 0.05 0.05  600 600 600 
0.3 0.3 0.3  0.05 0.05 0.05   60  60  60 
0.3 0.3 0.3  0.05 0.05 0.05   60  60  60 
 

This means that there exist 5 measurements from the DVL, and the first 3 have white-noise 
0.1 m/s in x, y and z and long time-constants. The biases are the same for all 5 
measurements. 

The file can be made by make_and_save_sensor_est_quality.m, but since it is closely 
related to the measurement, this file is usually made by the measurement source (details are 
given below). 
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5.2.2.1 Data from Simulator 

When changing sensor quality has been simulated, a file called sensor_sim_quality.txt 
is generated (in the working directory). This file has the same format as 
sensor_est_quality.txt (contains one row with parameters describing each measurement). 
Thus making a copy of this file with the filename changed from “sim” to “est” will give the 
Estimator the correct changing parameter values. Obviously, this new file can also be edited, to 
let the Estimator use a different model than what was simulated. 

5.2.2.2 Data from preproc (real data) 

Preproc automatically makes sensor_est_quality.txt – files for sensors with varying 
quality. The quality parameters are based on the sensors own quality numbers, knowledge of 
the sensor behavior etc. 

5.3 Zero velocity update (ZUPT) 

Zero velocity condition is valid when the vehicle has no movement relative to the Earth. This 
information can be used by the Estimator as measurements, and will improve the estimates. To 
tell the Estimator that the condition is valid (and that it can do ZUPT) a file called 
ZUPT_intervals.txt, should exist in the working directory. This file simply contains the 
start and stop time for the intervals where ZUPT is valid. 

The file has this format: 
start_time_interval_1  stop_time_interval_1 
start_time_interval_2  stop_time_interval_2   
start_time_interval_3  stop_time_interval_3 
 

The file can be made manually, or by the script make_and_save_ZUPT_intervals.m. 

Note that the script is located under the NavLab/Estimator directory. It is recommended to 
make a local copy of this m-file in the working directory, and then edit the local copy. 

Soon the ZUPT functionality in NavLab will be further improved with more options (for 
instance the possibility to specify the accuracy of the ZUPT). 

5.4 Programmable menu selections 

After a simulation or estimation, the result is shown by calling plot_general, which displays 
the main menu (see Figure 2.4). From the menu/submenus the user can select any figure to be 
displayed. 
 
Alternatively plot_general may automatically plot only one specific figure, not showing the 
menu. This is done by first creating the vector menu_preselection and then calling 
plot_general. The menu_preselection-vector contains the sequence of user selections 
that would normally be necessary to display a figure. The selections are expressed as button 
numbers (counting from the top) in each menu. 
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Example: 
 
menu_preselection=[6 4 5]  

plot_general 

 

menu_preselection=[7]  

plot_general 

 
 
The above code will automatically select button 6 (Summary) on the main menu, then it will 
select button 4 (Real Data Quality Control) on the Summary-submenu, and finally button 5 
(DVL) on the QC-submenu. A second call to plot_general is done selecting button 7, which 
shows the figure with graph colors. 
 
The programmable menus might be useful when the Simulator/Estimator is part of an 
automated process, and specific figures should be shown automatically. In such cases the 
variables skip_simulation_plot/skip_estimation_plot in 
simuator.ini/estimator.ini can be set to 1, and only the automatically selected figures 
are shown. 
 
Programmable menus also make it possible for the user to program his/her own customized 
menu, change figure properties, titles etc. 
 
Note that the default menus in plot_general might be changed in future versions of NavLab 
(e.g. new figures might be included). If the relevant menu-preselection numbers are affected by 
the change (pointing to wrong figure in the new version), they must be updated. 
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APPENDIX 

A MATHEMATICAL NOTATION 

The notation is in accordance with (1) and a summary is given here. 

A.1 General mathematics 

Table A.1 contains a summary of the most important coordinate systems used in NavLab 
(simplified description). 

 

Symbol Description 

I Inertial. (Orientation and location of the origin not relevant.) 

E Earth. The origin coincides with Earth’s center (geometrical center of ellipsoid 
model), the yz-plane coincides with the equatorial plane, the y-axis points towards 
longitude +90° (east) and the x-axis points towards north. 

L Local. The origin is directly beneath or above the vehicle, at Earth’s surface 
(surface of ellipsoid model). The z-axis is pointing down. 

NED-version (North East Down): The x-axis points towards north, and the 
y-axis towards east. 

Foucault-version (Wander Azimuth): The x- and y-axes are rotating about 
z such that their angular velocity relative to the Earth has zero component 
along the z-axis. 

NavLab uses the Foucault version. Initially it coincides with the NED system (the 
wander azimuth angle is zero). Note: If the run is within a limited geographical 
area, and not close to any of the poles, the L system in NavLab will be close to a 
NED system through the entire run. 

B Body. The origin is in the vehicle’s reference point. The x-axis points forward, the 
y-axis to the right (starboard), and the z-axis down. 

M Map. (Used in the plotting only. Useful when studying a local trajectory in 
meters). The origin is Earth fixed: Vertical position: At Earth’s surface. 
Horizontal position: At the initial vehicle-position of the run being plotted.  

The x-axis points towards North, y towards East and z down (NED). 

Note: M is equal to an Earth fixed NED-version of L located at the initial position. 

Table A.1 Definitions of coordinate systems (simplified). 
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The symbol usage in NavLab and the relevant documentation is summarized in Table A.2. 
 

Symbol Description: Example: 

Lowercase letter 
with arrow 

Coordinate free (or “symbolic”) vector (not 
decomposed in any coordinate system). 

v  (Velocity) 

(Right) 
subscript 

Specification of the value (coordinate 
systems involved, and further comma-
separated specifications if needed). 

EBv  (Velocity of the B-
system relative to E) 

Bold lowercase 
letter 

Vector decomposed in a coordinate 
system. 

Right 
superscript 

In which coordinate system the vector is 
decomposed. 

B
EBv  (The above velocity 

decomposed in B) 

Bold uppercase 
letter 

Matrix (decomposed in a coordinate 
system). 

EBR  (Orientation of the B-
system relative to E) 

Left superscript In which coordinate system time-
differentiation is done. (

E

EB
d v
dt

)  (The derivative 

relative to E) 

Table A.2 Symbol usage. 
 

Table A.3 shows the notation used to describe relations between two coordinate systems. 

 

Symbol Definition Description 

ABp  Defined by the 
description 

A vector whose length and direction is such that it goes from 
the origin of coordinate system A to the origin of coordinate 
system B. 

C
ABv  

( )
C

AB
d p
dt

 
The velocity of the origin in coordinate system B relative to 
coordinate system A, observed from coordinate system C. 

C
ABa  ( )

C
C

AB
d v
dt

 
The acceleration of the origin in coordinate system B relative 
to coordinate system A, observed from coordinate system C. 

ABω  Not included The angular velocity of coordinate system B, relative to 
coordinate system A. 

Table A.3 Notation used to describe different relations between two coordinate systems. 
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Usually the velocity and acceleration are observed from the same system as they are relative 
to, thus we define: 

A
AB ABv v  (A.1)

and: 

A
AB ABa a  (A.2)

 

In addition f is used for specific force (a + gravitation), with the same use of sub- and 
superscripts as a. 

 

Examples of the notation: 

IEω  Earth’s angular rate relative to the inertial space 

B
IBf   The specific force sensed by three orthogonal strapdown accelerometers (if no 

gravitation is present this would equal ) B
IBa

L
EBv   The velocity of a vehicle relative the Earth, decomposed in the local level 

(typically calculated by the navigation equations) 
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A.2 NavLab specific notation 

General symbols used in NavLab are summarized in Table A.4. 

Variable Description 

t Current time 

k Current time-step 

h Time since last time-step 

sav_x The general variable x has a certain value each time-step during a time 
interval. It is often useful to express the collection of all these values, 
and the prefix “sav” means that this is a vector (or matrix if x is a 
vector) that has saved all the values of x during the interval. 

source_tv A source has generated one or more variables at each time-step during 
a time interval. The suffix “tv” after a name of a source is used to 
express the time-vector of all variables from the source, i.e. the times 
the variables from that source are valid. (Corresponds to sav_x, and has 
the same length. Example: IMU_tv: the time the IMU measurements 
are available.) 

n Normal vector. A special unit vector we have introduced to be able to 
represent horizontal position all over the Earth with no singularities.  

Approximate1 description: The vector points from Earth’s center to the 
vehicle position, but is normalized to have length 1. 

The exact direction is the local normal, perpendicular to the ellipsoid 
(corresponding to geodetic latitude). The n-vector decomposed in E 
equals the last column in ELR  with opposite sign and is easily 
converted to or from longitude and geodetic latitude.  

Table A.4 General symbols used in NavLab. 
 
 

                                                 
1 Due to the ellipticity of the Earth. 
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Table A.5 contains various variants of the general variable x. 

Description Mathematical 
symbol  

Text (Matlab) symbol 

True value (from the Simulator) x x 

Measured value ~x  x_m (measured) 

Computed value (e.g. from navigation 
equations) 

x  x_c (computed) 

Updated value (from the Kalman filter) x  x_u (updated) 

Predicted value (from the Kalman filter) x  x_p (predicted) 

Derivative (in time) x  x_d (derivative/dot) 

Value valid next time-step  xk +1  x_n (next/new) 

Value valid last/previous time-step xk −1  x_l (last) 

Average of a value in the interval tk-1 to tk 1

2
k kx x− +  x_a (average) 

Total error in a computed or measured 
version of the variable x. A subscript will 
indicate the source of this error. 

δx  dx 

A part of δx , with its own description, for 
instance the bias-part of a measurement 
error. A subscript will indicate what kind 
of error this is. 

∆x  Dx 

Table A.5 Text equivalents to mathematical symbols, used when programming NavLab. 
The general variable x is used as an example. 
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Different data sources have standard names, as shown in Table A.6. 

Source Abbreviation 

Measurement from the gyros  gyro 

Measurement from the accelerometers  acc 

Measurement from GPS or other absolute position reference 
(position measurement) 

posm 

Measurement from the depth meter (depth measurement)  depthm 

Measurement from the Doppler Velocity Log (DVL) (or other 
velocity reference) 

DVL 

Measurement from the compass cmps 

  

From the navigation equations (strapdown navigator) naveq 

From the Kalman filter KF  

From the smoothing smooth 

Table A.6 Abbreviations used for the different data-sources in NavLab. 
 
 
Examples of the notation given in appendix A: 

roll_naveq_c Roll, calculated by navigation equations 

roll_KF_u Roll, updated estimate from the Kalman filter 

sav_v_EB_B_DVL_m The saved variant of v_EB_B measured by the DVL. 

DVL_tv The time-vector containing the times the DVL-measurements 
(sav_v_EB_B_DVL_m) are valid  

Dz_depthm_bias_smooth Bias error in the depth measurement, estimate from the 
smoothing 
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B ESTIMATING STANDARD DEVIATION OF A STOCHASTIC PROCESS FROM 
A SAMPLE 

The error plots show true errors, estimates of errors, and the final estimation errors, and they 
are all expected to be zero. The graphs shown can be viewed as samples from stochastic 
processes. 

Let xi be sample number i. Assuming µ = E[xi] is known, (B.1) is an unbiased estimator of the 
(underlying) true standard deviation σ, ˆ[ ]E σ σ= .  

2

1

1ˆ ( )
n

i
i

x
n

σ µ
=

= −∑  
(B.1)

Since we assume that E[xi] = µ = 0, the estimated standard deviation is given by (B.2). 

2

1

1ˆ
n

i
i

std x RMS
n

σ
=

= = =∑  
(B.2)

This turns out to be equal to the RMS1 of the sample.  

If xi is colored, and we have knowledge about the process model, estimators that are better on 
short intervals may exist. However RMS will converge towards the same (true) value for 
longer (ergodic) samples, and is the best to use when the model is unknown. For white 
Gaussian noise, RMS is also the maximum likelihood estimator. 

Note1: If the sample mean is zero, RMS equals the “std” function in Matlab, with the flag set.  

The flag set means that we divide by n instead of (n – 1). The (n – 1) is used when we 
have to estimate the expected value (underlying mean) in addition to the standard 
deviation from the same data set. The estimated mean also depends on σ, and is 
subtracted, and this leads to the –1 (see (3) page 240 for a simple example showing 
this). In our case however, we assume we know the underlying mean (zero), and thus 
we should divide by n. 

Note2: If the data in the sample is constant (“std” in Matlab is zero), RMS equals the sample 
mean. 

C USER GUIDE WHEN POST-PROCESSING REAL DATA 

Before starting: Make sure the NavLab directories (including the Preproc, Estimator and 
Export subdirectories) are in front of the Matlab path. If not, use Path Browser in Matlab, and 
add these 4 directories in front: NavLab, NavLab\Preproc, NavLab\Estimator and 
NavLab\Export (this can be done in one operation if using “Add with subdirectories”). 

                                                 
1 Root Mean Square, which is the square root of the empirical second moment of the sample 
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Figure C.1 shows the dataflow when using real data from HUGIN. 
 
 

Text files 
Filenames correspond to 

mathematical symbols (same name
as in Matlab code) 

IMU_tv.txt 
sav_delta_theta_gyro_m.txt

sav_delta_v_acc_m.txt

DVL_tv.txt 
sav_v_EB_B_DVL_m.txt

Text files   (for each sensor)

raw_IMU.txt 
raw_posm.txt 
raw_depthm.txt 
raw_DVL.txt 
raw_cmps.txt 

HDNavDataToText.exe 

Binary files   (15 min. per file)

File0001.log 
File0002.log 

Hugin Harddisk 

Preproc.m 

Merge selected files

Remove time errors
Convert time to seconds after first
IMU sample 
Select time interval of interest
Remove measurements with too low
quality 
Convert measurement to standard
value (pressure -> depth etc)
Compensate for misalignment
Compensate for lever arms
Calculate measurement quality for
use in the estimator
Desimate if sensor rate too high
Plot 
Wild point edit 

Text files   (for each sensor,
 15 min. per file) 

IMUInertialData0001.txt
IMUInertialData0002.txt

DVLData0001.txt 
DVLData0002.txt 

... 

... 

Estimator.m 

Navigation Equations
Make measurements
Kalman Filtering 
Smoothing 
Plot 

export_smooth_result.m

... 

Matlab workspace 
(May be saved to a file) 

Text files 
Format specified in appendix

position_smooth.txt 
attitude_smooth.txt 

... 

Position saved 
on surface ship 
( raw_posm.txt ) 

velocity_smooth.txt 

 
Figure C.1 Dataflow when processing real data from Hugin. 
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C.1  Preproc 

1. First, create a directory for the run (working directory), and a subdirectory called data.  

2. The txt-files with inertial data, depth, DVL and compass are copied into the data 
directory. (Filenames like IMUInertialData0001.txt etc) 

3. The position file from the surface vessel is also copied into this directory. (Filename, 
typically pos.txt) 

4. Rename pos.txt to raw_posm.txt (or make a copy with this name). 

5. Copy 3 files to the working directory: preproc.ini, estimator.ini and 
cov_matrix.ini (the two last files are for later use.) 

6. Edit preproc.ini. If necessary: Select the interval of sensor files to load and your 
preferred level of automation (and make sure the lever arms and misalignment are correct).  

7. Change current directory in Matlab to the working directory (but not the data 
directory). 

8. Run preproc. The sensor files have names like IMUInertialData0001.txt etc, and 
there are several of each (0002, 0003 etc). Preproc is first merging these files, and 
renaming them to raw_<sensor>.txt.  

9. Select time interval etc as requested in the Matlab command window (if not automated). 

10. Examine all figures that are plotted on the screen and the text output in the Matlab 
command window. Note that these figures are updated as you select shorter intervals, 
remove wild-points etc. 

11. If necessary, do wild-point editing for the sensors needed. Typically there are wild-points 
in the position measurement. A tip is to first remove those with poor HiPAP quality, and 
then auto-detect wild-points. For more details about the wild-point detection, see C.1.1. 

 

Note that any dotted graphs are the sensor measurement before lever arm compensation. 

After preproc has finished, new txt-files, containing time-vectors and measurements from the 
available sensors should be present in the data directory (their format is described in 
Appendix D.2). 

Note that all text output from preproc (in the command window) is logged in: 
preproc_log.txt. 

C.1.1 Position wild-point details 

The wild-point detection algorithm simply evaluates the velocity from one position 
measurement to the next. If the velocity exceeds a user-specified limit, the next measurement 
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is assumed to be a wild-point. To avoid “being stuck outside the truth”, it is not allowed to 
reject more than a user-specified number of consecutive measurements. 

A case where the algorithm has reduced performance is if there is a long time before the next 
measurement, and this measurement is a wild-point. If the time is long enough, the algorithm 
will assume that the measurement is OK. Additionally, if this wild-point is directly followed 
by good measurements, the first few of those might incorrectly be assumed to be wild-points. 

To reduce such problems, the algorithm is also run backwards through the position 
measurements. The above example will be handled correctly by the algorithm running 
backwards.  

The wild-points detected by the forward algorithm are marked with a red circle on the existing 
position figures. A green circle means that the measurement is accepted only because too many 
consecutive were rejected. The backward filter uses similar marking, but it uses squares 
instead of circles. Figure C.2 shows the above example, where the vehicle is heading south-
east. The wild-point is not detected by the forward algorithm, and four consecutive correct 
measurements are assumed to be wild-points, before the fifth is accepted due to the limit. The 
backward algorithm correctly detects the wild-point. 
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Figure C.2 Position dropout followed by a wild-point. 
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A wild-point status is calculated for each position measurement based on the two algorithms. 
The total status is the sum of the status from each of the two. The numbers used are as follows: 

 

Measurement status: Forward filter Backward filter 

OK 0 0 

OK since too many were rejected 0.3 0.2 

Wild-point 2 1.8 

Consequently a total status 0 means OK according to both algorithms. 3.8 means wild-point 
according to both, etc (in general, a higher value means that the measurement is more 
unreliable). 

The tuning of the detection algorithm is inside preproc.ini, and the parameters entered 
here will be read each time you press “Detect wild-points”. In this manner it is possible to tune 
the algorithm and watch the result until the tuning is OK. 

C.2  Estimator 

 

1. Open estimator.ini and set the initial position, attitude and velocity (see bullet 
below or explanation in C.2.2). Set the different sensor parameters to be used in the 
Kalman filter and the general Estimator info. 

a. Initial estimates of position, attitude and velocity can be set by using sensor 
measurements valid at the estimation_start_time (initialization time). To get the 
sensor measurements valid at the initialization time, the script 
get_sensor_values_for_init.m can be run. This script will get 
interpolated values for position, attitude and velocity based on the sensor 
measurements. If the requested initialization time is prior to the first measurement, 
the initialization will be less accurate (see below). 

2. Specify an initial covariance matrix to use in the Kalman filter: Make sure the 
estimator.ini has the correct values and is saved before continuing with this. Open 
cov_matrix.ini and set the uncertainty in the initial position, attitude and velocity (if 
changes are necessary). Save this file, and run make_and_save_cov_matrix. A file 
called initial_P_KF_u.txt is created in the working-directory. This file is used by 
the Estimator.  

a. Tips for setting the initial uncertainty: If sensor measurements were used for 
initialization, the uncertainty should correspond to sensor uncertainties. For 
instance the uncertainty in initial position should account for AUV depth and the 
difference between init-time and the time of the position measurement used for init. 
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Note that running make_and_save_cov_matrix.m might be automated, by selecting 
auto_create_cov_matrix = 1 in estimator.ini. The Estimator will then run it 
before starting the estimation. 

3. Run estimator.m. For long runs, it is recommended to first run only about 30 to 60 
seconds, to check that the initial values and standard deviations are ok. If there are several 
hours with data, a good solution may be to divide it into several parts, and estimate one 
part at a time (see C.2.3). Available memory can be increased by closing other applications 
and closing all Matlab figures (use: close all). 

4. Recommended: Save the Matlab workspace for later use. Just exit the menu and type 
save (a file matlab.mat will be saved in the working directory). To get the menu back, 
run plot_general. The workspace can also be saved after finishing the plotting, but it 
will then be larger, due to all the new variables calculated by the plotting routine. 

5. Inspect the result. Details about how to check that the data is OK, is found in C.2.1. 

6. Export the result. Run export_smooth_result.m (or a special custom version like 
save_result_to_CnC.m). Result files (with format described in Appendix D.1) will be 
created in the working directory. To view these files at a later time 
plot_exported_result.m can be used. 

Note: For long runs, some of the figures may take several minutes to plot. Please be patient if 
no response, a NavLab/Matlab crash is very unlikely. 

C.2.1 How to check that the real data is OK? 

Sometimes sensors degrade, timing is wrong or perhaps wrong initial values were given to the 
Estimator. Any of these problems will typically reduce the accuracy of the estimates. To verify 
that the real data and the estimation is OK, the following figures should be inspected: 
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Fig # Figure contents Figure group 

1 
2 
3 
4 

11 

Longitude vs Latitude  
Long, Lat, depth (vs time)  
Roll, pitch, yaw 
Yaw relative North (contains compass measurement)

Velocity decomposed in B (contains DVL 
measurement. Note: May take a long time to plot!) 

Plots of total states 
(including measurement 
and estimates) 

45 
46 

General summary, including IMU 
Summary for posm, depthm, DVL and cmps 

Numerical summary 

53 
54 
55 
56 
57 
58 

Gyro error 
Accelerometer error 
Position measurement error 
Depth measurement error 
DVL error 
Compass error 

Estimate of sensor bias 
errors versus error models 
(for Quality Control). 
 

 

The figure numbers shown in bold should always be inspected. It is recommended to check all 
figures listed, especially if irregularities are found. What to look for depends on the figure 
group: 

C.2.1.1 Plots of total states 

Check that the measurements are not too far from the estimates. If the real-time (green) and 
smooth (red) estimates are far apart at the start, the initial values given in estimator.ini are 
probably wrong.  

C.2.1.2 Numerical summary 

Look for bold red numbers. If a number is bold and red it means that the standard deviation of 
this error estimate is above 3 times the model. This indicates that the sensor has a much larger 
error than assumed by the model. Note that for parameters that are varying (the text “varying” 
has replaced the number in the summary), the Quality Control menu should be used, see 
below. 

C.2.1.3 Sensor errors 

The usage of red numbers in the numerical summary is based on comparison of the total 
standard deviation with the model. The quality control graphs show the estimates and limits as 
a function of time. This makes it possible to detect sensor problems present in a small interval 
only, such that the total standard deviation for the entire run is still under the limit (and no 
numbers are red). 
The thick red line shows the bias estimate, and the green lines show the Kalman filter model, 
±1 and 3 sigma. The bias estimate should ideally be inside the 1-sigma limit 68% of the time, 
and inside the 3-sigma limit 99.7% of the time (if fully observable). If it is outside the 3-sigma 
limit much of the time, the sensor error is probably larger than modeled. 
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The figures (except gyro and accelerometer) also have a dotted red graph showing the sensor 
measurement minus the estimate. Thus, this graph shows the total estimated error (with both 
bias (colored) and white-noise). This graph is included in the plot to detect wild-points that 
was not removed during preproc. Figure C.3 shows a remaining position wild-point of 22 
meters. To evaluate the impact the wild-point has on the estimate, the full state plot with the 
measurement can be used. If the smooth (red) estimate makes a jump/shift towards the wild-
point that is too big, preproc should be re-run to remove the wild-point (or the wild-point could 
be removed by editing the measurement files directly). 
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Figure C.3 Quality control of the position measurement 

 

C.2.1.4  Checking estimation accuracy 

In addition to the above-mentioned figures, it is often interesting to take a look at the Kalman 
filter estimation uncertainty. Figure 21, 23 and 25 in NavLab shows the accuracy of the 
attitude, velocity and position estimates.  

Note that the accuracy shown is the theoretical number from the Kalman filter, assuming all 
sensors behave exactly as modeled. When using real (non-ideal) sensors, the actual estimation 
error is usually somewhat larger. However, if the sensor errors are modeled larger than they 
really are, the real estimation error might also be smaller than the theoretical standard 
deviation. 
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C.2.2 How to find the initial estimate? 

An alternative to running get_sensor_values_for_init.m is to use the procedure 
described below: 

Yaw: Use the compass measurement valid at the estimation_start_time, by looking at the 
figure from preproc. 

Depth: Use the depth measurement valid at the estimation_start_time, by looking at the figure 
from preproc. 

Velocity in B: Use the DVL measurement valid at the estimation_start_time, by looking at the 
figure from preproc. 

Roll and pitch: Roll and pitch from a motion sensor (if available) may be used, - by looking at 
the graph from preproc with the attitude reference used in posm or depthm lever arm 
compensation. However they may not always be available. Solution: Run the Estimator with 
smoothing for about 30 seconds or more using zero (or a better guess) for both initial roll and 
pitch and an uncertainty of several degrees. The smoothing will detect (most of) the error and 
suggest a more correct initial roll and pitch. Use these values as initial values. You may have 
to repeat this procedure to get acceptable initial roll and pitch. Initial roll and pitch might also 
be found from the direction of the specific force measurements (assuming the acceleration is 
significantly below g). 

Horizontal position: Use the posm long and lat measurement valid at the 
estimation_start_time, by looking at the figure from preproc if possible. Sometimes it is not 
possible to zoom enough on this figure to get the required accuracy. These Matlab lines will 
pick out the first posm measurement, and display the values needed:  

%Get the first position measurement: 
[long_posm,lat_posm]=n_E2long_lat(sav_n_E_posm_m(:,1)); 
format long 
deg(long_posm) 
deg(lat_posm) 

 

If there is a long time from the estimation_start_time to the first position measurement, the 
first measurement will not be valid at estimation_start_time (have a too big error). Solution: 
Run the Estimator with smoothing for about 30 seconds or more using the first (incorrect) 
measurement. The smoothing will detect (most of) the error and suggest a more correct 
position valid at estimation_start_time. Use this estimate as the initial position by means of 
these lines (if it is not possible to zoom enough on the figure): 
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% Get the first smoothed position: 
[long_smooth,lat_smooth]=n_E2long_lat(sav_n_E_smooth(:,1)); 
deg(long_smooth) 
deg(lat_smooth) 

You may have to repeat this procedure to get an ok initial position. 

C.2.3 How much data can be processed by NavLab in one run? 

NavLab itself has no limit when it comes to the endurance of the run or amount of data. 
However, after the run is processed, there is a lot of data in memory to be plotted. On a 1.4 
GHz computer with 512 MB RAM, the plotting might get pretty slow if the run is longer than 
5 - 6 hours (assuming IMU-rate is 100 Hz, Kalman filter rate is about 4 Hz and smoothing is 
included). 

D DATA FORMATS 

D.1  Standard export format. 

After the estimation is finished, data is resident in memory. Running 
export_smooth_result.m will save the result to files with position, attitude and velocity in 
the working directory (assuming smooth estimates have been made). The format of these files 
are given in tables D.1 to D.3

 

Filename: position_smooth.txt 

Contents: Vehicle position relative Earth ( ) E
EBp

Column 1: Column 2: Column 3: Column 4: 

time since 
1970.01.01 

[sec] geodetic 
latitude 

[rad] longitude [rad] 
depth/height (from ellipsoid 
surfacea, positive down) 

[m]

Table D.1 Exported position file 
 
a Note: NavLab assumes that the depth measurement is relative to the ellipsoid surface, using the same ellipsoid 
as the latitude and longitude measurements (e.g. WGS-84). However, if the depth input is relative to the mean sea 
level (geoid) or other reference, such that it has a relatively fixed error compared to the ellipsoid, no significant 
error is introduced in NavLab. However, in such cases the depth output from NavLab will be relative to that same 
reference. 
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Filename: attitude_smooth.txt 

Contents: Vehicle attitude relative local (L) North-East-Down (NED) system ( LBR ) 

Column 1: Column 2: Column 3: Column 4: 

time since 1970.01.01 [sec] roll [rad] pitch [rad] yaw/heading (relative north) [rad]

Table D.2 Exported attitude file 
 
 

Filename: velocity_smooth.txt 

Contents: Vehicle velocity relative Earth (E), decomposed in the body (B) system ( ) B
EBv

Column 1: Column 2: Column 3: Column 4: 

time since 1970.01.01 [sec] ,
B
EB xv  [m/s] ,

B
EB yv  [m/s] ,

B
EB zv  [m/s] 

Table D.3 Exported velocity file 
 

The rate of the data corresponds to the rate of the Kalman filter (will vary according to the 
sensor measurement rates during the run). 

If smoothing was not included in the estimation, or the result from the real-time Kalman filter 
is preferred, a similar script, export_realtime_result.m, can be used. The resulting file-
formats are the same (but the file names are now position_realtime.txt, 
attitude_realtime.txt and velocity_realtime.txt.) 
 
All exported files can be loaded and plotted (typically useful for verification) by running 
plot_exported_results.m. This script looks for the files at the current directory and plots 
all files available. 

D.2  Format of files into the Estimator 

When running the Estimator it will look for files containing sensor measurements. The sensor 
measurements found will be used in the estimation. IMU measurements must be present for the 
estimation to take place, all other sensors are optional. 
 
The measurement files are located in the /data directory, and are usually produced by the 
Simulator or Preproc. However advanced users might want to make or modify these files, and 
thus their format is given below. 
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Note that the file-names and content directly1 correspond to variables in the Estimator. Thus, 
the names are explained in Appendix A. 
 
The Estimator assumes that the timing of the measurements is in seconds relative to a common 
time, start_time. 

D.2.1 IMU measurements 

 

Filename: IMU_tv.txt 

Contents: The time of each IMU delta measurement in seconds after start_time (one 
column). The delta measurements are valid for an interval, and the timing is at 
the end of that interval. 

Table D.4 IMU time-vector 
 
 

Filename: sav_delta_theta_gyro_m.txt 

Contents: The delta theta angular increment from the gyros ( gyro∆θ ). It is assumed to be 

the angle-axis product expressing the rotation during the interval after the 
previous sample, decomposed in the body (B) system. 

Column 1: Column 2: Column 3: 

,gyro xθ∆  [rad] ,gyro yθ∆  [rad] ,gyro zθ∆  [rad] 

Table D.5 Delta theta measurements 
 
 

Filename: sav_delta_v_acc_m.txt 

Contents: The delta v velocity increment from the accelerometers ( ) in the interval 
after last sample. It is assumed to be decomposed in the body (B) system at the 
beginning of the interval. 

acc∆v

Column 1: Column 2: Column 3: 

,acc xv∆  [m/s] ,acc yv∆  [m/s] ,acc zv∆  [m/s] 

Table D.6 Delta v measurements 
 
                                                 
1 The only difference is a transpose. NavLab follows the standard convention that column vectors are used to 
represent physical vectors. Saving many vectors (valid at different times) in a matrix thus means a new column 
for each time-step. When representing the same matrix in a text file it is transposed to make the file more 
readable. 
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D.2.2 Position measurements (posm) 

 

Filename: posm_tv.txt 

Contents: The time of each position measurement in seconds after start_time (one 
column) 

Table D.7 Position measurement time-vector 
 
 

Filename: sav_n_E_posm_m.txt 

Contents: The horizontal position measurement expressed as n-vector decomposed in the 
Earth (E) system ( ). E

posmn

Column 1: Column 2: Column 3: 

,
E
posm xn  [no unit] ,

E
posm yn  [no unit] ,

E
posm zn  [no unit] 

Table D.8 Horizontal position measurements 
 
The n-vector is described briefly in Table A.4. To get the n-vector from longitude and geodetic 
latitude, use long_lat2n_E.m (included in NavLab). This function calculates a 3D n-vector 
from each pair of longitude/latitude (in radians). 
 
To convert n-vector to longitude and geodetic latitude, use n_E2long_lat.m. 

D.2.3 Depth measurements (depthm) 

 

Filename: depthm_tv.txt 

Contents: The time of each depth measurement in seconds after start_time (one 
column). 

Table D.9 Depth measurement time-vector 
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Filename: sav_z_depthm_m.txt 

Contents: The depth measurement, which equals the z-component of the vector from the 
local (L) system to the body (B) system ( ), thus positive 

direction is down. 
,

L
depthm LB depthm zz p= ,

Column 1: 

depthmz  [m] 

Table D.10 Depth measurements 
 
NavLab assumes that the depth measurement is relative to the ellipsoid surface, using the same 
ellipsoid as the n-vector (or longitude/latitude) measurements (e.g. WGS-84). However, if the 
depth input is relative to the mean sea level (geoid) or other reference, such that it has a 
relatively fixed error compared to the ellipsoid, no significant error is introduced in NavLab. 
However, in such cases the depth output from NavLab will be relative to that same reference. 

D.2.4 DVL measurements 

 

Filename: DVL_tv.txt 

Contents: The time of each DVL measurement in seconds after start_time (one 
column). 

Table D.11 DVL measurement time-vector 
 
 

Filename: sav_v_EB_B_DVL_m.txt 

Contents: The vehicle velocity relative Earth (E) decomposed in the body (B) system 
( ). ,

B
EB DVLv

Column 1: Column 2: Column 3: 

, ,
B
EB DVL xv  [m/s] , ,

B
EB DVL yv  [m/s] , ,

B
EB DVL zv  [m/s] 

Table D.12 Velocity measurements 
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D.2.5 Compass measurements (cmps) 

 

Filename: cmps_tv.txt 

Contents: The time of each compass measurement in seconds after start_time (one 
column). 

Table D.13 Compass measurement time-vector 
 
 

Filename: sav_yaw_north_cmps_m.txt 

Contents: The compass measurement, which equals the yaw/heading angle relative north 
( ,north cmpsψ ). 

Column 1: 

,north cmpsψ  [rad]  in the interval [0 2π) 

Table D.14 Compass measurements 
 

D.2.6 Other files read by the Estimator 

In addition to the sensor measurements in the /data directory the Estimator also looks 
for/reads other files in the working directory: 
 
• sensor_est_quality.txt (sensor quality files): If the quality in any of the sensor 

measurements is changing, the quality of each single measurement is specified in files 
called sensor_est_quality.txt , where sensor represents any of the aiding sensors. 
Otherwise, the constant quality is specified in estimator.ini. For format and more 
details, see section 5.2. 

 
• estimator.ini: General Estimator parameters, initial estimate and Kalman filter tuning. 
 
• initial_P_KF_u.txt: A file containing the initial covariance matrix used by the 

Estimator.  
 
• cov_matrix.ini: This ini-file is actually used by the script 

make_and_save_cov_matrix.m, to produce initial_P_KF_u.txt, but if selected the 
script is automatically run in the start of the Estimator. 
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E EXAMPLES OF INI-FILES 

In the following, examples of the different ini-files are listed. 

E.1 Simulator 

E.1.1 General Simulator parameters 

 
Filename: Simulator.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% simulator.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains simulator parameters, and is read by: 
% Simulator.m 
% Traj_sim_init.m 
 
% Syntax: 
variable = value 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        General parameters: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Choose the time interval to simulate (seconds): 
sim_starttime = 0    % sec 
sim_stoptime  = 240  % sec 
h             = 0.1  % simulator time-step length, seconds 
 
 
% Simulate IMU errors and make measurements (0 or 1): 
IMU_available    = 1 
 
% Simulate errors and make measurements from the aiding sensors (0 or 1): 
posm_available   = 1 
depthm_available = 1 
DVL_available    = 1 
cmps_available   = 1 
 
 
% This variable decides if the simulation results should be saved to  
% files (0 or 1). If 1, the Estimator can read the data later: 
save_sim_data_to_files = 1 
 
 
% Select a random seed (integer) to produce all measurement and process noise. 
% Choose random_seed=0 to let the internal clock produce the seed: 
random_seed = 1977 
 
 
% By default the plot menu (plot_general.m) is called at the end of the 
% simulation, alternatively this menu can be skipped: 
skip_simulation_plot = 0 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Trajectory initialization: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
% Initial horizontal position (and wander azimuth) (degrees): 
Latitude_deg       = 60 % deg 
Longitude_deg      = 10 % deg 
Wander_azimuth_deg = 0  % deg 
 
% Initial depth (note: z = p_LB_L_z) (meters): 
z = 50    % m, positive below sea level 
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% Initial attitude (degrees): 
roll_deg  = 0   % deg 
pitch_deg = 0   % deg 
yaw_deg   = 90   % deg 
 
% Initial velocity (meters/second): 
v_EB_B_x = 2   % m/s 
v_EB_B_y = 0   % m/s 
v_EB_B_z = 0   % m/s 
 

 

E.1.2 IMU simulator 

Filename: IMU_sim.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% IMU_sim.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains IMU simulation parameters, and is read by: 
% IMU_sim_init.m 
 
% Syntax: 
variable = value 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  Measurement rate of the sensor:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% If sensor_tv_from_file==0, then the given constant rate is used, otherwise an 
% (arbitrary) user specified time-vector saved on file is used: 
 
% NOTE: Currently, only constant time-steps are allowed for IMU. 
 
IMU_tv_from_file = 0 
h_IMU            = 0.1   % IMU time-step length, seconds 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                           Gyros: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Current values: Honeywell HG 1700 Inertial measurement unit 
  
%%%%%%%%%%%%% Gyro continous measurement noise, Angular Random Walk (mn_gyro): 
% Magnitude ( power density, rad/sqrt(s) ) 
% ( 0.1 deg/sqrt(h) = 2.91e-5 rad/sqrt(s) ) 
pd_mn_gyro_x = 2.91e-5  % rad/sqrt(s) 
pd_mn_gyro_y = 2.91e-5  % rad/sqrt(s) 
pd_mn_gyro_z = 2.91e-5  % rad/sqrt(s) 
 
 
%%%%%%%%%%%%% Gyro bias (Domg_gyro_bias): 
%  Magnitude (rad/s) 
% (1 deg/h = 4.85e-6 rad/s) 
std_Domg_gyro_bias_x = 4.85e-6 % rad/s 
std_Domg_gyro_bias_y = 4.85e-6  % rad/s 
std_Domg_gyro_bias_z = 4.85e-6 % rad/s 
 
% Timeconstant (seconds): 
T_Domg_gyro_bias_x   = 600 % s 
T_Domg_gyro_bias_y   = 600 % s 
T_Domg_gyro_bias_z   = 600 % s 
 
 
%%%%%%%%%%%%% Gyro scale factor error (Domg_gyro_sf, no unit): 
% (100 ppm = 1e-4) 
std_Domg_gyro_sf_x = 1e-4 
std_Domg_gyro_sf_y = 1e-4 
std_Domg_gyro_sf_z = 1e-4 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                           Accelerometers: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Current values: Honeywell HG 1700 Inertial measurement unit 
 
%%%%%%%%%%%%% Accelerometer continous measurement noise (mn_acc): 
% Magnitude ( power density, m/s^(3/2) ) 
% ( 10 micro g/sqrt(Hz) = 9.81e-5 m/s^(3/2) ) 
pd_mn_acc_x = 9.81e-5  % m/s^(3/2) 
pd_mn_acc_y = 9.81e-5  % m/s^(3/2) 
pd_mn_acc_z = 9.81e-5  % m/s^(3/2) 
 
%%%%%%%%%%%%% Accelerometer bias (Df_acc_bias): 
% Magnitude (m/s^2): 
% (1 milli g = (1e-3)*9.81 m/s^2, 9.81e-3 m/s^2 + contribution from  
% misalignment = 1.1e-2 m/s^2 
std_Df_acc_bias_x = 1.1e-2 % m/s^2 
std_Df_acc_bias_y = 1.1e-2 % m/s^2 
std_Df_acc_bias_z = 1.1e-2 % m/s^2 
 
% Timeconstant (seconds): 
T_Df_acc_bias_x   = 600 % s 
T_Df_acc_bias_y   = 600 % s 
T_Df_acc_bias_z   = 600 % s 
 
 
%%%%%%%%%%%%% Accelerometer scale factor error (Df_acc_sf, no unit): 
% (200 ppm = 2e-4) 
std_Df_acc_sf_x = 2e-4 
std_Df_acc_sf_y = 2e-4 
std_Df_acc_sf_z = 2e-4 
 

 

E.1.3 Position measurement simulator 

Filename: posm_sim.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% posm_sim.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains position measurement (posm) simulation parameters, and is 
% read by: 
posm_sim_init.m 
 
% Syntax: 
variable = value 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  Measurement rate of the sensor:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% If sensor_tv_from_file==0, then the given constant rate is used, otherwise an 
% (arbitrary) user specified time-vector saved on file is used: 
 
posm_tv_from_file = 0 
h_posm            = 5     % posm time-step length, seconds 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                 posm white measurement noise (w_posm_dp): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Standard deviation (in L, meters): 
 
std_w_posm_dp_x = 1.5  % m 
std_w_posm_dp_y = 1.5  % m 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                       posm bias (Dp_posm_bias): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This variable decides if the standard deviation of the bias in 
% posm is depth dependent (which is typical for acoustic position, HPR/HiPAP) 
std_posm_bias_is_depth_dependent = 0; 
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This is used if depth dependent: 
% Magnitude of angular uncertainty (degrees): 
std_Dp_posm_bias_angle_deg = 0.3 % deg 
 
 
This is used if not depth dependent: 
% Magnitude (in L, meters): 
std_Dp_posm_bias_x = 2  % m 
std_Dp_posm_bias_y = 2  % m 
 
 
% Timeconstant (in L, T_Dp_posm_bias=T_e_posm_bias) (seconds): 
T_Dp_posm_bias_x = 60   % s 
T_Dp_posm_bias_y = 60   % s 
 

 

E.1.4 Depth measurement simulator 

Filename: depthm_sim.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% depthm_sim.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains depth measurement (depthm) simulation parameters, and is 
% read by: 
% depthm_sim_init.m 
 
% Syntax: 
variable = value 
 
 
% Current values: Pharoscientific Digiquartz FS = 3000 m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  Measurement rate of the sensor:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% If sensor_tv_from_file==0, then the given constant rate is used, otherwise an 
% (arbitrary) user specified time-vector saved on file is used: 
 
depthm_tv_from_file = 0 
h_depthm            = 0.5  % depthm time-step length, seconds 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                 depthm white measurement noise (w_depthm): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Standard deviation (meters): 
std_w_depthm = 0.02  % m 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                      depthm bias (Dz_depthm_bias): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Magnitude (meters): 
std_Dz_depthm_bias = 0.15 % m   
 
% Timeconstant (seconds): 
T_Dz_depthm_bias   = 100 % s 
 

 

E.1.5 DVL simulator 

Filename: DVL_sim.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% DVL_sim.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains DVL simulation parameters, and is read by: 
% DVL_sim_init.m 
 
% Syntax: 
variable = value 
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% The current values: RDI WorkHorse Navigator DVL, 300 kHz 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  Measurement rate of the sensor:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% If sensor_tv_from_file==0, then the given constant rate is used, otherwise an 
% (arbitrary) user specified time-vector saved on file is used: 
 
DVL_tv_from_file = 0 
h_DVL            = 1  %DVL time-step length, sec 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                     DVL white measurement noise (w_DVL): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Standard deviation (m/s): 
% (0.6 cm/s = 6e-3 m/s)      
std_w_DVL_x = 6e-3   % m/s 
std_w_DVL_y = 6e-3   % m/s 
std_w_DVL_z = 6e-3   % m/s 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                           DVL bias (Dv_DVL_bias): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Magnitude (m/s): 
% (0.3 cm/s = 3e-3 m/s 
std_Dv_DVL_bias_x = 3e-3 % m/s 
std_Dv_DVL_bias_y = 3e-3 % m/s 
std_Dv_DVL_bias_z = 3e-3  % m/s 
 
% Timeconstant (seconds): 
T_Dv_DVL_bias_x = 800  % s 
T_Dv_DVL_bias_y = 800  % s 
T_Dv_DVL_bias_z = 800  % s 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  DVL scale factor error (Dv_DVL_sf, no unit): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
std_Dv_DVL_sf_x = 100e-6 
std_Dv_DVL_sf_y = 100e-6 
std_Dv_DVL_sf_z = 100e-6 
 

 

E.1.6 Compass simulator 

Filename: cmps_sim.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% cmps_sim.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains compass simulation parameters, and is read by: 
% cmps_sim_init.m 
 
% Syntax: 
variable = value 
 
 
 
% Current values: Octans gyrocompass 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  Measurement rate of the sensor:  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% If sensor_tv_from_file==0, then the given constant rate is used, otherwise an 
% (arbitrary) user specified time-vector saved on file is used: 
 
cmps_tv_from_file = 0 
h_cmps            = 0.4   % cmps time-step length, seconds 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                    cmps white measurement noise (w_cmps): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Standard deviation (degrees): 
std_w_cmps_deg         = 0.01 % deg 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        cmps bias (Dyaw_cmps_bias): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Magnitude (degrees): 
% Specification: 0.7 deg * sec(lat) 
std_Dyaw_cmps_bias_deg = 0.9 % deg 
 
% Timeconstant (seconds): 
T_Dyaw_cmps_bias       = 600 % s 
 

 

E.1.7 Change-rate of the trajectory 

Filename: Trajrate.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Trajrate.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function [omg_LB_B_a,v_EB_B_d_a]=Trajrate(t,h) 
% 
% The rate of change in attitude and velocity is returned, as function 
% of the time (t). 
%  
% In:  
% t: (seconds) Current time 
% h: (seconds) The amount of time since last time-step 
% 
% Out: 
% omg_LB_B_a: (rad/s) Average omg_LB_B in the interval from t-h to t 
% v_EB_B_d_a: (m/s^2) Average change in v_EB_B in the interval from t-h to t 
%                     _d means dot (= time derivative) 
% 
% 
% Note: This is a local copy of the file, located in the users working directory. 
% The original is located in the NavLab directory, under Simulator. 
 
% Originated: 1999.01.24 Kenneth Gade, FFI 
% Modified: 
% 
% Possible modifications: 
% 
 
function [omg_LB_B_a,v_EB_B_d_a]=Trajrate(t,h) 
 
 
% Default values: 
omg_LB_B_a_deg=[0,0,0]'; 
v_EB_B_d_a=[0,0,0]'; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% User selectable. Specify average v_EB_B_d and omg_LB_B for the interval t-h to t. 
% omg_LB_B_a_deg: deg/s 
% v_EB_B_d_a:     m/s^2 
 
 
%%%%%% Example: 
if t>=50  & t<60,    v_EB_B_d_a=[0.21,0,0]';    end; % accelerate 
if t>=100 & t<106,   omg_LB_B_a_deg=[0,0,15]';  end; % turn right 
if t>=120 & t<124.5, omg_LB_B_a_deg=[0,-10,0]'; end; % pitch down 
if t>=140 & t<144.5, omg_LB_B_a_deg=[0,10,0]';  end; % pitch up 
if t>=160 & t<166,   omg_LB_B_a_deg=[0,0,15]';  end; % turn right 
%%%%%%%%%% 
 
 
% End of user selectable variables    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Converts the angular rate in deg/s to radians/s 
omg_LB_B_a=rad(omg_LB_B_a_deg); 
 

 

E.2 Estimator 

E.2.1 General Estimator parameters 

Filename: Estimator.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% estimator.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains Estimator parameters, and is read by: 
% Estimator.m 
% naveq_init.m 
% make_and_save_cov_matrix.m 
% + several others 
 
% Syntax: 
variable = value 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        General parameters: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% By default, the entire IMU interval is used by the Estimator. 
% If this variable is 0, a smaller interval may be selected: 
use_entire_IMU_interval = 1 
 
% The desired start and stop times (nearest IMU time-steps will be used). 
% These values will be used if use_entire_IMU_interval = 0: 
est_starttime_desired = 45 % s 
est_stoptime_desired  = 200 % s 
 
 
% Making smoothed estimates requires a lot of memory. This variable decides 
% if smoothed estimates should be made (0 or 1): 
make_smoothed_estimates = 1  
 
 
% The navigation equations should be reset every k_KF (Kalman filter time-step), 
% but longer intervals could be chosen to better view the drift etc: 
n_of_k_KF_per_reset     = 5   % number of KF time-steps per reset 
 
 
% Only the navigation equations can be run (no estimation): 
naveq_only = 0 
 
 
% The Estimator needs an initial covariance matrix. This can be manually created 
% and saved to a file (initial_P_KF_u.txt) by running make_and_save_cov_matrix.m 
% before running the Estimator. Alternatively the Estimator can automatically  
% run make_and_save_cov_matrix.m itself:  
auto_create_cov_matrix = 1 
 
% The initial covariance matrix (P_KF_u) is by default read from a file  
% (initial_P_KF_u.txt), if not initialization is assumed to be perfect: 
initial_P_KF_from_file  = 1 
 
 
% By default the plot menu (plot_general.m) is called at the end of the  
% estimation, alternatively this menu can be skipped: 
skip_estimation_plot = 0 
 
 
% This variable decides if the complete set of estimation results should automatically   
% be saved to txt-files (0 or 1). Alternatively, save the workspace manually by typing  
% save in the command window. (The latter is often preferred.) 
save_est_data_to_files  = 0 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Naveq initialization: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Initial horizontal position (and wander azimuth) (degrees) 
Latitude_deg       = 60 % deg 
Longitude_deg      = 10 % deg 
Wander_azimuth_deg = 0  % deg 
 
% Initial depth (note: z = p_LB_L_z) (meters) 
z         = 50   % m, positive below sea level 
 
% Initial attitude (degrees): 
roll_deg  = 0   % deg 
pitch_deg = 0   % deg 
yaw_deg   = 90   % deg 
 
% Initial velocity (meters/second): 
v_EB_B_x = 2   % m/s 
v_EB_B_y = 0   % m/s 
v_EB_B_z = 0   % m/s 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Kalman filter parameters: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gyros %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Current values: Honeywell HG 1700 Inertial measurement unit 
  
%%%%%%%%%%%%% Gyro continous measurement noise, Angular Random Walk (mn_gyro): 
% Magnitude ( power density, rad/sqrt(s) ) 
% ( 0.1 deg/sqrt(h) = 2.91e-5 rad/sqrt(s) ) 
pd_mn_gyro_x         = 2.91e-5  % rad/sqrt(s) 
pd_mn_gyro_y         = 2.91e-5  % rad/sqrt(s) 
pd_mn_gyro_z         = 2.91e-5  % rad/sqrt(s) 
 
 
%%%%%%%%%%%%% Gyro bias (Domg_gyro_bias): 
%  Magnitude (rad/s) 
% (1 deg/h = 4.85e-6 rad/s) 
std_Domg_gyro_bias_x = 4.85e-6 % rad/s 
std_Domg_gyro_bias_y = 4.85e-6 % rad/s 
std_Domg_gyro_bias_z = 4.85e-6 % rad/s 
 
% Timeconstant (seconds): 
T_Domg_gyro_bias_x   = 600     % s 
T_Domg_gyro_bias_y   = 600     % s 
T_Domg_gyro_bias_z   = 600     % s 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Accelerometers %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Current values: Honeywell HG 1700 Inertial measurement unit 
 
%%%%%%%%%%%%% Accelerometer continous measurement noise (mn_acc): 
% Magnitude ( power density, m/s^(3/2) ) 
% ( 10 micro g/sqrt(Hz) = 9.81e-5 m/s^(3/2) ) 
pd_mn_acc_x        = 9.81e-5 % m/s^(3/2) 
pd_mn_acc_y        = 9.81e-5 % m/s^(3/2) 
pd_mn_acc_z        = 9.81e-5 % m/s^(3/2) 
 
%%%%%%%%%%%%% Accelerometer bias (Df_acc_bias): 
% Magnitude (m/s^2): 
% (1 milli g = (1e-3)*9.81 m/s^2, 9.81e-3 m/s^2 + contribution from  
% misalignment = 1.1e-2 m/s^2 
std_Df_acc_bias_x  = 1.1e-2 % m/s^2 
std_Df_acc_bias_y  = 1.1e-2 % m/s^2 
std_Df_acc_bias_z  = 1.1e-2 % m/s^2 
 
% Timeconstant (seconds): 
T_Df_acc_bias_x    = 600 % s 
T_Df_acc_bias_y    = 600 % s 
T_Df_acc_bias_z    = 600 % s 
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%%%%%%%%%%%%%%%%%%%%%% Position measurement (posm) %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%% posm white measurement noise (w_posm_dp): 
% Standard deviation (in L, meters): 
std_w_posm_dp_x    = 1.5  % m 
std_w_posm_dp_y    = 1.5  % m 
 
%%%%%%%%%%%%% posm bias (Dp_posm_bias): 
% This variable decides if the standard deviation of the bias in 
% posm is depth dependent (which is typical for acoustic position, HPR/HiPAP) 
std_posm_bias_is_depth_dependent = 0 
 
This is used if depth dependent: 
% Magnitude of angular uncertainty (degrees): 
std_Dp_posm_bias_angle_deg = 0.3 % deg 
 
This is used if not depth dependent: 
% Magnitude (in L, meters): 
std_Dp_posm_bias_x = 2  % m 
std_Dp_posm_bias_y = 2  % m 
 
% Timeconstant (in L, T_Dp_posm_bias=T_e_posm_bias) (seconds): 
T_Dp_posm_bias_x   = 60 % s 
T_Dp_posm_bias_y   = 60 % s 
 
 
%%%%%%%%%%%%%%%%%%%%%% Depth measurement (depthm) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Current values: Pharoscientific Digiquartz FS = 3000 m 
 
%%%%%%%%%%%%% depthm white measurement noise (w_depthm): 
% Standard deviation (meters): 
std_w_depthm       = 0.02 % m 
 
%%%%%%%%%%%%% depthm bias (Dz_depthm_bias): 
%  Magnitude (meters): 
std_Dz_depthm_bias = 0.15 % m   
 
% Timeconstant (seconds): 
T_Dz_depthm_bias   = 100 % s 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DVL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Current values: RDI workhorse navigator, 300 kHz: 
 
%%%%%%%%%%%%% DVL white measurement noise (w_DVL): 
% Standard deviation (m/s): 
% (0.6 cm/s = 6e-3 m/s)      
std_w_DVL_x       = 6e-3  % m/s 
std_w_DVL_y       = 6e-3  % m/s 
std_w_DVL_z       = 6e-3  % m/s 
 
%%%%%%%%%%%%% DVL bias (Dv_DVL_bias): 
% Magnitude (m/s): 
% (0.3 cm/s = 3e-3 m/s 
std_Dv_DVL_bias_x = 3e-3 % m/s 
std_Dv_DVL_bias_y = 3e-3 % m/s 
std_Dv_DVL_bias_z = 3e-3  % m/s 
 
% Timeconstant (seconds): 
T_Dv_DVL_bias_x   = 800 % s 
T_Dv_DVL_bias_y   = 800 % s 
T_Dv_DVL_bias_z   = 800 % s 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Compass (cmps) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Current values: Octans gyrocompass 
 
%%%%%%%%%%%%% cmps measurement noise (w_cmps): 
% Standard deviation (degrees): 
std_w_cmps_deg    = 0.01  % deg 
 
%%%%%%%%%%%%% cmps bias (Dyaw_cmps_bias): 
% Magnitude (degrees): 
% Specification: 0.7 deg * sec(lat) 
std_Dyaw_cmps_bias_deg = 0.9 % deg 
 
% Timeconstant (seconds): 
T_Dyaw_cmps_bias       = 600 % s 
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E.2.2 Initial covariance matrix 

 
Filename: cov_matrix.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% cov_matrix.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This file contains values for the initial Kalman filter covariance matrix,  
% and is read by: 
% make_and_save_cov_matrix.m 
 
 
IMPORTANT: Make sure estimator.ini has the correct values before running 
    make_and_save_cov_matrix.m 
 
 
% Syntax: 
variable = value 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                    Initial naveq uncertainty: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%% Attitude uncertainty 
% Uncertainty in initial attitude estimate (in degrees): 
% (The initial attitude estimate is set in estimator.ini) 
 
std_e_LB_L_x_deg = 0.2   % deg, (Roll when yaw and pitch is 0) 
std_e_LB_L_y_deg = 0.2   % deg, (Pitch when yaw and roll is 0) 
std_e_LB_L_z_deg = 2     % deg, (Yaw (Heading) when roll and pitch is 0) 
 
 
 
%%%%%%%%%%%%% Velocity uncertainty 
% Uncertainty in initial velocity estimate (in m/s): 
% (The initial velocity estimate is set in estimator.ini) 
 
std_dv_EB_B_x = 0.1      % m/s, Vehicle fore-aft velocity 
std_dv_EB_B_y = 0.1      % m/s, Vehicle starboard-port velocity 
std_dv_EB_B_z = 0.1      % m/s, Vehicle down-up velocity 
 
 
 
%%%%%%%%%%%%% Position uncertainty 
% Uncertainty in initial position estimate (in meters): 
% (The initial position estimate is set in estimator.ini) 
 
std_dp_L_x = 2           % m, North 
std_dp_L_y = 2           % m, East 
std_dp_L_z = 0.3         % m, Down 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                         Correlations: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% If the aiding sensors were used to get the initial estimate, errors are correlated  
% (which should be reflected by the off-diagonal elementes in the cov matrix). 
 
posm_was_used_for_init   = 1  % 0 = false, 1 = true 
depthm_was_used_for_init = 1  % 0 = false, 1 = true 
DVL_was_used_for_init    = 1  % 0 = false, 1 = true 
cmps_was_used_for_init   = 1  % 0 = false, 1 = true 
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E.3 Preproc 

 
Filename: preproc.ini 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% preproc.ini %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This file contains parameters for preproc.m 
%  
% 
% Syntax: 
variable = value 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File numbers: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Hugin stores several sequential files with limited length (e.g. 15 min) containing  
% sensor data. 
%  
% Example: DVL-data is stored in files called: 
% C:\data\DVLData0001.txt 
% C:\data\DVLData0002.txt 
%   etc... 
 
% If this variable is 1, all files that are found are loaded for each sensor: 
load_all_files = 1 
 
% If a smaller interval should be loaded, select the number of the first and last 
% file to be included: 
file_start_no = 9 
file_stop_no  = 10 
 
 
%%% Advanced: 
% By default the sequential files described above are located in the \data-directory  
% under the current directory. In special cases, these files may be located 
% somewhere else (perhaps at a read-only location). 
% 
% Note that only sequential files are read from the alternative location, thus a copy 
% of the raw_posm.txt (pos.txt) from the ship (if used) must still be in the \data-directory 
 
use_default_sequentialfile_location = 1     % Default is 1 
 
% If not default is used, this location is used: 
alternative_sequentialfile_location = G:\RecordedData\Run20010710_2\data\ 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Automated user input: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Normally preproc prompts the user to do different selections. However, the 
% user input can also be set in advance: 
 
% After the IMU data is loaded, it is possible to reduce the interval found in 
% the IMU data: 
use_entire_interval_first_time = 0    % 0 : No (let user decide) 
                                      % 1 : Yes 
                  
 
 
%%%%%% Depth decimation: 
% Often, the depth measurement is available at a higher rate than needed by the Estimator.  
% Decimating the depth measurement will increase estimation speed.                
decimate_depthm = 2  % 0 : No 
                     % 1 : Yes 
                     % 2 : Let user decide 
 
% If decimate_depthm == 1, then this rate will be used automatically: 
desired_depthm_rate = 1 % Hz 
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%%%%% Compass decimation: 
% Often, the compass is available at a higher rate than needed by the Estimator.  
% Desimating the compass measurement will increase estimation speed.                
decimate_cmps = 2  % 0 : No 
                   % 1 : Yes 
                   % 2 : Let user decide 
 
% If decimate_cmps == 1, then this rate will be used automatically: 
desired_cmps_rate = 2 % Hz 
 
 
 
% After all the sensor graphs are plotted, it is possible to reduce the interval 
% a second time: 
use_entire_interval_second_time = 0    % 0 : No (let user decide) 
                                       % 1 : Yes 
                  
% The wildpoint edit menu may be skipped: 
skip_wildpoint_edit = 0  % 0 : No 
                         % 1 : Yes 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Tuning of automatic wildpoint detection: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% For some sensors wildpoints can be detected automatically. The following parameters 
% are used to tune the detection algorithm.  
% 
% NOTE: These parameters are read each time the algorithm is run, and thus you can 
% repeatedly tune the algorithm and press "Detect wildpoints" until the tuning is fine. 
% 
 
%%%% posm wildpoints: 
% If the new horizontal position measurement indicates a velocity (based on the  
% established position) exceeding this limit, then the measurement is assumed to be a  
% wildpoint: 
wp_posm_velocity_limit = 5  % m/s 
 
% To avoid "being stuck outside the truth" it is not allowed to reject more than a  
% limited number of consecutive measurements: 
wp_posm_n_of_consecutive_wp_limit = 4 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Which position measurement to use: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Normally there are two possible position files to use. The best is the one stored on the 
% surface ship, because it has a higher rate. However it is also possible to make a file 
% from DGPSHiPAPData0001.txt etc which are the position measurements stored on HUGIN  
% (with low rate). Using the latter will overwrite raw_posm.txt from the surface ship 
% (if it exists). 
 
use_posm_from_surface_ship = 1   % 1 is default 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Lever arms: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Measurements from the sensors are assumed to be valid in B. However, their physical 
% distribution gives us several B systems: BIMU, Bposm, Bdepthm, BDVL and Bcmps. 
%  
% 
% The physical location of the different sensors, relative a reference point (Bref),  
% should be given. The Estimator will give its results in IMUs position. 
 
% All lever arms (vector from Bref to Bsensor) are decomposed in the body system: 
% x: forward (towards the nose) 
% y: starboard (right) 
% z: down 
 
% The numbers are given in meters. 
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% Hugin3000 parameters 
% From Odd Arild Pedersen 27th of October 2000. 
% Bref = the tip of HUGIN 3000 nose cone 
 
% IMU: 
p_Bref_BIMU_Bx     = -3.620 % m 
p_Bref_BIMU_By     =  0 % m 
p_Bref_BIMU_Bz     =  0.076 % m 
 
 
% posm: 
% NOTE: TWO different transducers are used, depending on depth! 
% 
% 324: Is used when depth is 0 to 1000 m. 
% 331: narrow-beam, is typically used when deeper than 1000 m 
% 
% 324: (above 1000 m) 
p_Bref_Bposm_Bx    = -3.4747 % m 
p_Bref_Bposm_By    = -0.215 % m 
p_Bref_Bposm_Bz    = -0.3967 % m 
 
% 331: (below 1000 m) 
% p_Bref_Bposm_Bx  = -3.3437 % m 
% p_Bref_Bposm_By  = -0.215 % m 
% p_Bref_Bposm_Bz  = -0.4474 % m 
 
 
 
% depthm: 
p_Bref_Bdepthm_Bx  = -3.620 % m 
p_Bref_Bdepthm_By  = -0.145 % m 
p_Bref_Bdepthm_Bz  =  0.284 % m 
 
% DVL: 
p_Bref_BDVL_Bx     = -3.355 % m 
p_Bref_BDVL_By     =  0 % m 
p_Bref_BDVL_Bz     =  0.456 % m 
 
% cmps (Not relevant when used only as orientation sensor):  
p_Bref_Bcmps_Bx    = 0  % m 
p_Bref_Bcmps_By    = 0  % m 
p_Bref_Bcmps_Bz    = 0  % m 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Misalignment: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Measurements from the sensors are assumed to be decomposed in B. However,  
% if not mounted properly the misalignment must be compensated for. 
%  
% Assume that the sensor first has a nonzero roll, pitch and yaw angle, relative  
% to the true B. Enter the values that describe the misalignment (in deg): 
% (Note that the sign is from true to error, i.e. the angles describe the  
% misalignment, not the correction)    
 
% DVL: 
DVL_roll_deg   = 0   % deg 
DVL_pitch_deg  = 0   % deg  
DVL_yaw_deg    = 0   % deg 
 
% cmps: 
cmps_roll_deg  = 0   % deg 
cmps_pitch_deg = 0   % deg  
cmps_yaw_deg   = 0   % deg 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Known constant sensor errors: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Due to bad calibration or other reasons, constant (repeatable) errors may be 
% present in sensors. If these errors are known, the values can be entered below 
% and will be compensated for by preproc.  
 
% Constant gyro error (deg/h):  
Domg_gyro_constant_deg_pr_h_x = 0 % deg/h 
Domg_gyro_constant_deg_pr_h_y = 0 % deg/h 
Domg_gyro_constant_deg_pr_h_z = 0 % deg/h 
 



 65 

 
   

% Constant accelerometer error (milli g): 
Df_acc_constant_mg_x          = 0 % milli g 
Df_acc_constant_mg_y          = 0 % milli g 
Df_acc_constant_mg_z          = 0 % milli g 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        Varying sensor quality: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% For some sensors we have knowledge of how their accuracy are varying, e.g. by  
% means of numbers reported by the sensor. For these sensors the quality in  
% each single measurement should be sent to the Kalman filter. To calculate  
% this quality based on the reported numbers and other variables, the parameters 
% below are used. 
 
 
% Position measurement may be received from different sources, and different 
% models should be used depending on the source. In the following parameters 
% for 3 different sources are listed: 
% 
% 1: DGPS-HiPAP (standard AUV position measurement) 
% 2: GPS (from own receiver when vehicle at surface) 
% 3: ShipGPS (received when AUV on deck of a ship) 
 
 
%%%%%%%%%%%%%%%%%% posm: Combined DGPS-HiPAP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Usually, two numbers are received from the sensor: assumed standard deviation  
% in DGPS (DGPS_qlty) and in HiPAP (HiPAP_qlty), in addition we might have a  
% depth dependency. 
% 
% 
 
 
% Factor to multiply reported DGPS_qlty: 
DGPS_qlty2std_fctr  = 1   % default is 1 
 
 
% Factor to multiply reported HiPAP_qlty: 
HiPAP_qlty2std_fctr = 1   % default is 1 
 
% Factor to calculate horizontal position accuracy from depth (in degrees): 
depth2std_fctr_deg  = 0.1 % deg 
 
 
%%%%%%%%%%%%% White measurement noise (w_posm_dp): 
 
% fixed part (in L, meters): 
std_w_DGPS_HiPAP_fxd_x = 0      % m 
std_w_DGPS_HiPAP_fxd_y = 0      % m 
 
 
% White part of DGPS_qlty (in the interval [0 1] ): 
wht_part_DGPS  = 0.2 % Assuming that 20% of the DGPS error is white-noise 
 
 
% White part of HiPAP_qlty (in the interval [0 1] ): 
wht_part_HiPAP = 0.9 % Assuming that 90% of the HiPAP error is white-noise 
 
 
% White part of depth dependent error (in the interval [0 1] ): 
wht_part_depth = 0 % White-noise does not include the depth dependent part 
 
 
 
%%%%%%%%%%%%% Colored/bias error (Dp_posm_bias): 
 
% fixed part (in L, meters): 
std_DGPS_HiPAP_bias_fxd_x = 1.4    % m 
std_DGPS_HiPAP_bias_fxd_y = 1.4    % m 
 
 
% Colored part of DGPS_qlty (in the interval [0 1] ): 
col_part_DGPS  = 0 %NOTE: To avoid jumps in the colored error, this number is usually 0 
 
 
% Colored part of HiPAP_qlty (in the interval [0 1] ): 
col_part_HiPAP = 0 %NOTE: To avoid jumps in the colored error, this number is usually 0 
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% Colored part of depth dependent error (in the interval [0 1] ): 
col_part_depth = 1 % Assuming that 100% of the depth dependent error is colored 
 
 
 
%%%%%%%%%%%% Timeconstant (in L, T_Dp_posm_bias) (seconds): 
T_Dp_DGPS_HiPAP_bias_x   = 120 % s 
T_Dp_DGPS_HiPAP_bias_y   = 120 % s 
 
 
 
 
%%%%%%%%%%%%%%%%%% posm: GPS from own Hugin receiver %%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%  
% Factor to multiply reported GPS_qlty: 
GPS_qlty2std_fctr  = 1   % default is 1 
 
%%%%%%%% White measurement noise: 
std_w_GPS_fxd_x    = 0   % m 
std_w_GPS_fxd_y    = 0   % m 
 
% White part of GPS_qlty (in the interval [0 1] ): 
wht_part_GPS       = 0.2 
 
 
%%%%%%%% Colored/bias error: 
std_GPS_bias_fxd_x = 0   % m 
std_GPS_bias_fxd_y = 0   % m 
 
% Colored part of GPS_qlty (in the interval [0 1] ): 
col_part_GPS       = 0.8 
 
 
%%%%%%%% Timeconstant (seconds): 
T_Dp_GPS_bias_x    = 60  % s 
T_Dp_GPS_bias_y    = 60  % s 
 
 
 
 
%%%%%%%%%%%%%%%%%% posm: Position received onboard ship %%%%%%%%%%%%%%%%%%%%%%%% 
% 
%  
% Factor to multiply reported ShipGPS_qlty: 
ShipGPS_qlty2std_fctr  = 0    % default is 1 
 
%%%%%%%% White measurement noise: 
std_w_ShipGPS_fxd_x    = 1.0  % m 
std_w_ShipGPS_fxd_y    = 1.0  % m 
 
% White part of ShipGPS_qlty (in the interval [0 1] ): 
wht_part_ShipGPS       = 0.0 
 
 
%%%%%%%% Colored/bias error: 
std_ShipGPS_bias_fxd_x = 5.0  % m 
std_ShipGPS_bias_fxd_y = 5.0  % m 
 
% Colored part of ShipGPS_qlty (in the interval [0 1] ): 
col_part_ShipGPS       = 0.0 
 
%%%%%%%% Timeconstant (seconds): 
T_Dp_ShipGPS_bias_x    = 60   % s 
T_Dp_ShipGPS_bias_y    = 60   % s 
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F ABBREVIATIONS AND ACRONYMS 

AUV Autonomous Underwater Vehicle 
DVL Doppler Velocity Log 
GPS Global Positioning System 
HiPAP High Precision Acoustic Positioning 
IMU Inertial Measurement Unit 
KF Kalman Filter 
NavLab Navigation Laboratory 
NED North-East-Down 
QC Quality Control 
RMS Root Mean Square 
WGS World Geodetic System 
ZUPT Zero velocity update 
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